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Abstract  31 

It is generally assumed that there is a relationship between microbial diversity and 32 

multiple ecosystem functions. Although it is indisputable that microbial diversity is 33 

controlled by stochastic and deterministic ecological assembly processes, the 34 

relationship between these processes and soil multifunctionality (SMF) remains less 35 

clear. In this study, we examined how different grassland restoration treatments, namely 36 

harvest only, topsoil removal and topsoil removal plus propagule addition, affected i) 37 

soil bacterial and fungal community stochasticity, ii) SMF, and iii) the relationship 38 

between community stochasticity and SMF. Results showed that soil microbial 39 

community stochasticity decreased in all the three restoration treatments, while SMF 40 

increased. Soil multifunctionality was found to be significantly and negatively 41 

correlated with soil microbial community stochasticity. Plant diversity and plant C/N 42 

indirectly influenced SMF by regulating the microbial community stochasticity. Our 43 

findings provide empirical evidence that when deterministic community assembly 44 

processes dominate in soils, then higher microbial functioning is expected.  45 
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INTRODUCTION 49 

Soils simultaneously provide multiple ecological functions and services, e.g., carbon 50 

(C) storage, nutrient supply and litter decomposition (Bardgett & Van Der Putten, 2014; 51 

Wagg et al., 2014), hereafter referred to as soil multifunctionality (SMF). A large body 52 

of research indicates that soil microbial diversity rather than abiotic environmental 53 

factors, e.g., climate or topography, is important for SMF (ref). A loss of microbial 54 

diversity was shown to reduce SMF (Delgado-Baquerizo et al., 2016; Wagg et al., 2014; 55 

Zavaleta et al., 2010), and rare microbial taxa were found to likely be more important 56 

for upholding SMF compare to ubiquitous taxa (Chen et al., 2020a; Wei et al., 2019; 57 

Xiong et al., 2021). Since soil microbial community assembly processes control 58 

microbial diversity, composition and succession patterns, soil microbial community 59 

assembly processes likely are also linked to SMF (Wagg et al., 2014; Zheng et al., 2019). 60 

However, less is known about the relationship between soil microbial community 61 

assembly processes and SMF. 62 

Generally, the soil microbial community assembly is controlled by both 63 

deterministic and stochastic processes (Chase, 2010; Chase & Myers, 2011; Guo et al., 64 

2019; Ofiţeru et al., 2010). Deterministic processes are based on the niche theory and 65 

ecological selection which suggest that there are specific biotic and abiotic conditions 66 

under which species can coexist (Chesson, 2000). Stochastic processes include, in 67 

contrast, random birth/death, speciation/extinction, and immigration/emigration 68 

(Chave, 2004). Resource limitation, e.g., low nutrient or water availability, largely 69 

results in a dominance of deterministic processes (Zhou & Ning, 2017), whereas high 70 



nutrient and water supply, or neutral pH as well as random disturbances may lead to a 71 

predominance of stochastic processes (Chase, 2010, Chase & Myers, 2011). 72 

Deterministic processes tend to enhance the function of microbial communities. For 73 

instance, microorganisms enhance the excretion of nitrogen (N) or phosphorus (P) 74 

related extracellular enzymes to mineralize N or P from organic material when they are 75 

limited by these elements (Gusewell & Freeman, 2005; Yang et al., 2020). Therefore, 76 

understanding how soil microbial community assembly processes and SMF are related 77 

may provide an insight into the underlying mechanisms that drive SMF. 78 

Besides soil microbial diversity, also high plant diversity is generally thought to be 79 

important for sustaining high levels of SMF (Berdugo et al., 2017; Sanaei et al., 2021). 80 

As aboveground plant diversity shapes belowground community composition by 81 

regulating microbial community assembly processes (Liu et al., 2021; Ma et al., 2019), 82 

high SMF can, for example, be indirectly mediated by high plant species richness 83 

(Sweeney et al., 2021; Wen et al., 2020; Yuan et al., 2020). The impact of plants on soil 84 

microbial community assembly processes may be directly related to competition for the 85 

same nutrients (e.g., N) (Martínez-García et al., 2015) or via indirect mediation of soil 86 

physicochemical properties (Chen et al., 2017). In addition, the quantity and quality of 87 

plant and root litter as well as root exudates, i.e., the quantity/quality of C and N 88 

returned to the soil, may strongly alter microbial community structure (Adamczyk et al. 89 

2021; Chen et al. 2020b). Thus, it would be meaningful to include interactions between 90 

plants and soil microorganisms and especially the influence of plant C/N ratios on soil 91 

microbial community assembly processes to gain a more in-depth understanding about 92 



how these organisms are linked to SMF.  93 

Here, we took advantage of a 22-year-old restoration experiment in Switzerland to 94 

examine the relationship between soil microbial community assembly processes and 95 

SMF and how these are linked to plant community properties. The aim of the 96 

experiment was to re-connect and enlarge small remnants of oligotrophic semi-natural 97 

grasslands, which represent species-rich grassland patches in an otherwise intensively 98 

managed species-poor agricultural landscape. Three different restoration methods were 99 

tested, namely i) repeated mowing and removing of the harvested plant material, ii) 100 

removing of the topsoil (between 10 and 20 cm) and iii) combing topsoil removal with 101 

the addition of propagules of plant species from the targeted semi-natural grasslands 102 

(Resch et al., 2019). This experimental setup is very well suited to assess soil microbial 103 

community assembly processes as we expect that stochastic processes would dominate 104 

in microbial communities of the intensively managed agricultural systems (initial 105 

systems), while deterministic processes would dominate in the resource limited 106 

oligotrophic, semi-natural grasslands, which are our target systems for restoration 107 

(Ofiţeru et al., 2010; Zhou et al., 2014). Our restoration treatments are thus expected to 108 

support microbial assembly processes that are nested between the two extremes, 109 

intensively managed and semi-natural grasslands: community assembly processes in 110 

the repeated mowing treatment will be tending more towards the stochastic processes 111 

dominating in intensively managed agricultural systems, while after topsoil removal 112 

deterministic processes will become more dominant, similar to what is found in the 113 

semi-natural grasslands (Dini-Andreote et al., 2015).  114 



Topsoil removal, which is a commonly used method in grassland restoration to 115 

mitigate ongoing nutrient-enrichment and the concomitant losses of biodiversity in 116 

Europe (Kiehl et al., 2010; Török et al., 2011), is often criticized to be harmful for soil 117 

faunal communities and soil functioning due to its massive disturbance. Yet, to date 118 

little evidence for this negative impact was provided (Geissen et al., 2013). Hence 119 

understanding how soil communities re-assemble and how these processes are related 120 

to SMF is an important gap in knowledge to be closed if we want to achieve future 121 

conservation and restoration goals. 122 

We hypothesize that (1) SMF will be higher in oligotrophic semi-natural compared to 123 

intensively managed agricultural grassland due to higher soil microbial stochasticity 124 

and lower microbial diversity in the latter, (2) topsoil removal in agricultural grasslands 125 

will decrease soil microbial community stochasticity and enhance diversity in the long-126 

term resulting in SMF similar to that found in oligotrophic grasslands, and (3) plant 127 

community properties (e.g., species diversity, shoot C/N) will positively and indirectly 128 

affect SMF by controlling soil microbial community stochasticity. 129 

Method 130 

Study area  131 

Our experimental sites were located in the Canton of Zurich, Switzerland, in and around 132 

the nature reserve Eigental (47° 27' to 47° 29' N, 8° 37' E). The elevation of the sites 133 

ranged from 461 to 507 m, mean annual temperature from 8.9 to 10.6 °C and mean 134 

annual precipitation from 910 to 1260 mm (average from 2007 to 2017; MeteoSchweiz, 135 

2018). The soils are classified as calcaric to gleyic Cambisols and Gleysols. The nature 136 



reserve was founded in 1967 to protect small remnants of oligotrophic and species-rich 137 

semi-natural grasslands (12 ha overall), enclosed in an intensively managed agricultural 138 

landscape. Since these small remnants proved to be too small and too fragmented to 139 

conserve high plant species richness, the government of the Canton Zurich decided to 140 

re-connect and enlarge these remnants by restoring patches of intensively managed 141 

farmland nearby (for detailed information, see Neff et al., 2020; Resch et al., 2019, 142 

2021).  143 

Experimental design  144 

The restoration started in 1995 as an experiment. Three restoration treatments were 145 

established in each of eleven patches of farmland: ‘Harvest only’ (mowing two to three 146 

times per year and removal of biomass); ‘Topsoil’ (removal of 10–20 cm of topsoil); 147 

‘Topsoil + Propagules’ (topsoil removal combined with the addition of propagules from 148 

target plants). In each treatment and patch one permanent plot (5 m x 5 m) was 149 

randomly established for a total of 33 plots. Another 11 plots were randomly selected 150 

in the adjacent intensively managed farmland, representing the initial conditions 151 

(‘Initial’), and 11 plots were established in remnants of the targeted species-rich semi-152 

natural grasslands, which represent the ‘Target’ conditions. In total this led to the 153 

establishment of 55 permanent plots (5 treatments × 11 replicates). 154 

Microbial community data 155 

Two soil cores (2.2 cm diameter, 12 cm depth) were randomly collected within a subplot 156 

(2 m x 2 m) established at two-meter distance from the permanent plots in mid-July 157 

2017 (see Resch et al., 2021). The two samples were pooled, immediately placed in a 158 



cooler and transported to the laboratory at the Swiss Federal Institute for Forest, Snow 159 

and Landscape Research WSL (Birmensdorf, Switzerland) to be stored at -20 °C. The 160 

metagenomic DNA was extracted from 8 g sieved soil (2 mm) with the DNeasy 161 

PowerMax Soil Kit (Qiagen, Hilden, NRW, Germany) according to the manufacturer`s 162 

protocol. Amplification of the V3–V4 region of the prokaryotic small-subunit (16S) and 163 

the ribosomal internal transcribed spacer region (ITS2) of eukaryotes was done using 164 

primers and PCR conditions as described in Frey et al. (2016). PCRs were run in 165 

triplicates, pooled and then paired-end sequenced on the Illumina MiSeq v3 platform 166 

(Illumina, San Diego, California, USA) at the Genome Quebec Innovation Centre 167 

(Montreal, Quebec, Canada). We used a modified customized pipeline largely based on 168 

UPARSE implemented in USEARCH v.9.2 (Edgar, 2013) to conduct quality filtering, 169 

clustering into operational taxonomic units (OTUs) and taxonomic assignment 170 

(Adamczyk et al., 2019; Frey et al., 2016). High-quality sequences were clustered into 171 

OTUs at 97% similarity level after discarding singletons of dereplicated sequences. 172 

Taxonomic information was annotated using the most recent versions of SILVA (v.132; 173 

Quast et al., 2012) and UNITE (v.8; Nilsson et al., 2019) databases for Prokaryota and 174 

Fungi, respectively. Taxonomic assignment with confidence rankings equal or higher 175 

than 0.8 were accepted, while rankings below 0.8 were set to unidentified. After 176 

rarefying the sequencing depth to the lowest number of sequences for all samples 177 

(rarefy_even_depth function of ‘phyloseq’ package; McMurdie & Holmes, 2013), the 178 

sequences were classified into 14,025 and 5,800 OTUs for 16S and ITS data, 179 

respectively. The Shannon diversity index of both bacteria and fungi were estimated 180 



using the estimate_richness function of ‘phyloseq’ package. 181 

To calculate the relative importance of the stochastic versus deterministic processes of 182 

microbial community assembly, we calculated the modified stochasticity ratio (MST) 183 

using the ‘NST’ package (v3.0.6; Ning et al., 2019). We used null model-based 184 

approaches for examining community stochasticity, with 50% as the boundary point 185 

between more deterministic ( < 50%) and more stochastic ( > 50%) assemblies.  186 

Soil properties and multifunctionality 187 

For measuring soil chemical and physical properties, we collected three random soil 188 

samples with a slide hammer corer (5 cm diameter × 12 cm, AMS Samplers, American 189 

Falls ID, USA) in each subplot in mid-June 2017. The three samples were pooled and 190 

afterwards divided into two subsamples. The further handling of the two subsamples is 191 

described in detail in Resch et al. (2021). Briefly, one subsample was stored at 4°C for 192 

measuring ammonium (NH+ 
4 ) and nitrate (NO- 

3 ) contents, soil potential net nitrogen 193 

mineralization (Resch et al., 2021; Risch et al., 2019). Soil respiration (CO2 fluxes) was 194 

assessed during an 8-week incubation period under controlled moisture (60% of field 195 

capacity), temperature (20 °C) and light conditions (dark) in the laboratory. We weighed 196 

duplicate samples of fresh soil equivalent to 8 g dry soil (24 h at 104 °C) into 50 mL 197 

Falcon tubes. The production of CO2 was measured indirectly every week by the 198 

electrical conductivity of the sodium hydroxide solution (calibration by titration of the 199 

solution). Carbon dioxide fluxes were calculated as cumulated CO2 concentrations over 200 

the entire sampling time. Soil respiration was corrected for the total incubation time 201 

and represented per day values expressed as mg C kg-1 soil d-1. The other subsample 202 



was dried for 48 h at 60 °C for measuring soil pH, total and organic C, total N, and 203 

cation exchange capacity. For measuring soil physical properties, one additional soil 204 

core was collected using a steel cylinder within the core sampler to assure the collection 205 

of an undisturbed sample. The cylinder was capped in the field to prevent disturbance. 206 

We measured soil field capacity, bulk density, density of fine earth, proportion of 207 

skeleton, particle density, total porosity, proportion of fine pores and content of clay, 208 

silt and sand (i.e., soil texture) on this sample. We also assessed surface and soil 209 

temperature, soil volumetric moisture content, slope inclination and thickness of topsoil 210 

horizon for each subplot. For measuring soil microbial biomass carbon (SMC) we used 211 

Nanodrop (ND-1000 Spectrometer, Witec AG, Sursee, Switzerland) to determine DNA 212 

concentration (ng µl-1) after DNA extraction. We corrected DNA concentration with the 213 

dry weight of soil samples. Finally, the corrected DNA concentration was multiplied 214 

with the FDNA-factor 6.0 to receive SMC (Joergensen & Emmerling, 2006). We then 215 

calculated the soil microbial metabolic quotient (qCO2) as an index of stress 216 

(Bhattacharjya et al., 2021; Singh et al., 2020; Wardle & Ghani, 1995): 217 

qCO2 = soil respiration / SMC 218 

We then calculated SMF using the averaging approach (Hooper & Vitousek, 1998) as 219 

described in detail in Resch et al. (2021). We included soil heterogeneity, soil C storage, 220 

water-holding capacity, nutrient retention capacity, and soil potential net N 221 

mineralization. For details on how we calculated these five individual functions we 222 

refer to Resch et al. (2021). Briefly, soil heterogeneity was calculated using 20 soil 223 

properties: soil pH, organic C content, NH+ 
4  and NO-

3 concentrations, concentrations 224 



of exchangeable cations [K, Ca, Mg, Na, Mn], bulk density, texture [sand, silt, clay], 225 

proportion of skeleton and fine pores, surface and soil temperature, and soil moisture, 226 

slope class, thickness of topsoil horizon. Nutrient retention capacity was calculated as 227 

the sum of exchangeable cations and protons expresses as mmolc per 1 kg soil. Soil C 228 

storage was corrected for soil depth, stone content, and density of fine earth.  229 

Vegetation data 230 

Plant species were identified on each permanent plot (nomenclature: Lauber & Wagner, 231 

1996) in June 2017 and species cover was visually estimated by the semi-quantitative 232 

cover-abundance scale of Braun-Blanquet (1964). We calculated the plant Shannon 233 

diversity index based on the matrix of aboveground plant abundance survey data using 234 

the R package ‘Vegan’ (v 2.5-7; Oksanen et al., 2020). Biomass was clipped on a 235 

diagonal 2 m x 10 cm rectangle in each permanent plot after plant species identification. 236 

Biomass was dried at 60° C for 48 h and weighed. Subsequently, the biomass was 237 

ground (Pulverisette 16, Fritsch, Idar-Oberstein, Germany) to pass a 0.5 mm sieve, and 238 

shoot C and N were measured by dry combustion using a CN analyzer NC 2500 (CE 239 

Instruments, Wigan, United Kingdom).  240 

Network construction 241 

We calculated interaction networks for plants and microorganisms (bacteria, fungi) 242 

based on plant species numbers and OTUs using the ‘CoNet’ software (v 1.1.1. beta; 243 

Faust & Raes, 2016) implemented in ‘Cytoscape’ (v 3.8.2; Shannon et al., 2003). 244 

Bacterial or fungal OTU tables were used as first input matrix, and the plant species 245 

number table as the second input matrix. Thus, we were able to calculate a bipartite 246 



network of plants and microorganisms. OTUs below a minimum occurrence of five 247 

across all the samples were clustered to ‘others’ when calculate the network. To 248 

calculate the interactions between plants and microorganisms, we chose four different 249 

methods: Pearson and Spearman rank correlations, Bray-Curtis and Kullback-Leibler 250 

nonparametric dissimilarity indices. A maximum of 1000 top-ranking and 1000 bottom-251 

ranking edges were automatically set for each of the four measures. Then the 252 

significance of each edge was evaluated from permutation and bootstrap distributions 253 

(100 iterations) and Benjamini-Hochberg multiple test correction, and edges with p < 254 

0.05 were retained. The output files of the ‘CoNet’ software were used to calculate 255 

network features and for visualization via the ‘Gephi’ software (v 0.9.2; Bastian et al., 256 

2009). We chose the four following network features: network size (total number of 257 

nodes), network connectivity (total number of links), average connectivity (average 258 

links per node), ratio of mutual exclusion (ratio of negative to total links). Average 259 

connectivity is an indicator for the complexity of the network (Pimm, 1984), high 260 

values of ratio of mutual exclusion imply high competition activity between microbes 261 

and plants. 262 

Statistical analysis 263 

We tested for treatment differences in stochasticity, diversity and richness of bacteria 264 

and fungi as well as SMF using beta regression models (Ferrari & Cribari-Neto, 2004) 265 

and likelihood ratio tests (lrtest function of the ‘lmtest’ package, v 0.9-38; Zeileis & 266 

Hothorn, 2002). Modified post-hoc pairwise comparison, combining the Bonferroni 267 

correction method with false-discovery-rate approach, were applied for multiple testing 268 



(cld function of the ‘multcomp’ package, v 1.4-16; Hothorn et al., 2008). Linear 269 

relationships between microbial community stochasticity and SMF as well as between 270 

microbial community stochasticity and network features of plant-microbe networks 271 

were determined using the lm function (‘stats’ package, v 4.0.5).  272 

We built a structural equation model (SEM) to assess how SMF was influenced by soil 273 

microbial community stochasticity, soil microbial alpha-diversity, plant Shannon 274 

diversity, plant biomass and plant overall C/N concentrations, and soil chemical and 275 

physical properties (soil organic C, soil NO-
3, soil exchangeable K, soil pH, soil C/N, 276 

Supplementary Figure 1). We hypothesize that SMF will be influenced by soil microbial 277 

community stochasticity, and soil pH (Delgado-Baquerizo et al., 2016). Soil microbial 278 

community stochasticity will be determined by plant community diversity, plant overall 279 

C/N, soil nutrients availability (here represented by the concentration of NO-
3 and soil 280 

exchangeable K), soil organic C and pH (Jiao & Lu, 2020). Plant Shannon diversity and 281 

plant overall C/N will be controlled by soil nutrient availability (Bobbink et al., 2010) 282 

and NO-
3 (Sun et al., 2020), respectively (Supplementary Figure 1). Overall goodness 283 

of fit for SEMs was evaluated using a Chi-square test (p > 0.05 indicates that the 284 

observed and expected covariance matrices are not statistically different), the root mean 285 

square error of approximation (RMSEA, < 0.08 indicates a good fit) and the goodness-286 

of-fit index (GFI, close to 1 indicates perfect model; Rosseel, 2012). We simplified the 287 

a priori model by dropping non-significant paths to improve the GFI score while 288 

reducing the RMSEA values. The SEM analyses were performed with the ‘lavaan’ 289 

package (v 0.6-8; Rosseel, 2012) using the maximum likelihood estimation method.  290 



All the statistical analyses were conducted in R version 4.0.4 (R Core Team 2021). 291 

RESULTS 292 

The estimated community stochasticity of soil bacteria varied significantly, but 293 

somewhat random, between the treatments with mean values of 55% to 72% (Fig. 1a). 294 

Against our expectations, stochasticity of ‘Initial’ did neither differ from the three 295 

restoration treatments nor from ‘Target’. ‘Harvest only’, did, in contrast, significantly 296 

differ from ‘Topsoil + Propagules’ and ‘Target’. For soil fungi we found the highest 297 

percentage of stochasticity community assembly in ‘Initial’ (76%; Fig. 1b), which 298 

corresponds to our hypothesis I. This value was significantly different from all the 299 

restored treatments as well as ‘Target’ (Fig. 1b). In addition, stochasticity was 300 

significantly higher in ‘Harvest only’ compared to ‘Topsoil’, ‘Topsoil + Propagules’ 301 

and ‘Target’ (Fig. 1b). Interestingly, and against our expectations, Shannon diversity of 302 

the bacterial communities was not affected by restoration as we found no differences 303 

between the three treatments and ‘Initial’. A significantly lower bacterial Shannon 304 

diversity was observed in ‘Target’ (Fig. 1c). No differences at all were detected between 305 

‘Initial’, ‘Target’ and the three treatments for fungal Shannon diversity (Fig 1d).  306 

To verify whether the microbial community received external stress at a lower degree 307 

of stochasticity, we calculated qCO2. qCO2 was significantly higher in ‘Topsoil + 308 

Propagules’ and ‘Target’ compared to ‘Initial’ (Supplementary Fig. 2a). No significant 309 

differences were found between ‘Topsoil’, ‘Topsoil + Propagules’, ‘Target’ and 310 

‘Harvest only’, even though qCO2 was relatively higher in ‘Topsoil’, ‘Topsoil + 311 

Propagules’ and ‘Target’ compared to ‘Harvest only’ (Supplementary Fig. 2a). 312 



The ‘Target’ plots had the highest SMF (Fig. 2). In addition, SMF was significantly 313 

higher in all the three restoration treatments compared to ‘Initial’, but significantly 314 

lower than in ‘Target’. No significant differences in SMF were observed among the 315 

three restoration treatments. 316 

Soil bacterial (R2 = 0.06, p = 0.04) and fungal (R2 = 0.19, p < 0.001) community 317 

stochasticity were both negatively related to SMF (Fig 3a, b), which corresponds to our 318 

hypothesis II. However, we detected no relationships between SMF and microbial 319 

diversity (Fig 3c, d), but the qCO2 was positively related to SMF (Supplementary Fig. 320 

2b) 321 

We assessed interactions between plant and bacterial/fungal communities to explore 322 

whether these interactions are important for regulating microbial community assembly 323 

processes. The networks showed distinct differences in their structure and topology, but 324 

were similar for plants-bacteria and plants-fungi (Fig 4, Table S1). Generally, the 325 

networks of ‘Initial’ and ‘Harvest only’ were much simpler than the ones of ‘Topsoil’, 326 

‘Topsoil + Propagules’ and ‘Target’ (Fig 4, Table S1).  327 

Bacterial community stochasticity was significantly and negatively related to network 328 

size, network connectivity, average connectivity, and the ratio of mutual exclusion of 329 

the plant-bacteria networks (Fig. 5a-d). Similarly, negative relationships were observed 330 

between fungal community stochasticity and network size, network connectivity, 331 

average connectivity, but not between fungal community stochasticity and mutual 332 

exclusion (Fig. 5e-h).  333 

The SEM showed that soil NO-
3 and exchangeable K were negatively related to plant 334 



Shannon diversity (standardized coefficient: -0.57 and -0.36, respectively), while soil 335 

NO- 
3  negatively affected plant C/N (-0.64; Fig. 6). Plant Shannon diversity and soil 336 

exchangeable K had negative (-0.35) and positive direct effects (+0.30) on fungal 337 

community stochasticity, respectively. Soil pH had significantly and positively effects 338 

on both bacterial (+0.43) and fungal (0.23) community stochasticity. Soil bacterial and 339 

fungal community stochasticity were directly and negatively affected by plant C/N (-340 

0.64 and -0.39, respectively). Soil fungal community stochasticity had a significant 341 

direct negative effect (-0.31) and soil pH a direct positive effect on SMF (+0.47), while 342 

soil bacterial community stochasticity had a marginal direct negative effect on SMF (-343 

0.25, p = 0.080). Overall, the SEM explained 33 % of the variance in SMF.  344 

DISCUSSION 345 

We found that fungal community assembly processes were more stochastic in 346 

intensively managed grassland (‘Initial’) where SMF was lower compared to nutrient-347 

poor semi-natural grasslands (‘Target’). The three restoration treatments showed values 348 

between the two extremes ‘Initial’ and ‘Target’. In contrast to our expectations, we did 349 

not find large differences in bacterial stochasticity across treatments. Yet, we detected 350 

a strong negative relationship between bacterial stochasticity and SMF.  351 

As suggested by previous studies, highly productive conditions as in our ‘Initial’ 352 

grasslands generally lead to a predominance of stochastic community assembly 353 

processes (Chase, 2010; Chase & Myers, 2011) compared to more deterministic 354 

processes under resource limited conditions for microbes such as found in our ‘Target’ 355 

grasslands (Zhou & Ning, 2017). A high community stochasticity implies that microbes 356 



do not experience much environmental stress, while deterministic processes are more 357 

generally found when microbes are experiencing stress. Accordingly, we found high 358 

qCO2, which indicates environmental stress such as nutrient limitation in our nutrient 359 

poor ‘Target’, ‘Topsoil’ and ‘Topsoil + Propagule’ plots. Similarly, high N inputs as 360 

found in our ‘Initial’ plots likely lead to lower soil N mineralization, lower abundance 361 

of N related functional genes and lower microbial extracellular enzyme activities and 362 

therefore lower SMF (Fierer et al., 2012; Jia et al., 2020; Risch et al., 2020), explaining 363 

the negative relationships between bacterial and fungal stochasticity and SMF found in 364 

our study.  365 

In general, we found stronger treatment effects on fungal than bacterial community 366 

assembly processes and a stronger relationship between fungal stochasticity and SMF 367 

compared to bacterial stochasticity and SMF. This is consistent with findings by 368 

Delgado-Baquerizo et al. (2016) and Luo et al. (2018), who reported stronger positive 369 

effects of fungal communities on ecosystem multifunctionality than bacterial 370 

communities.  371 

Also, and against our expectations, microbial diversity did not differ much between 372 

agricultural, restored and semi-natural grasslands and was not related to SMF. This 373 

contrasts with several other studies reporting that microbial diversity was the main 374 

driver of SMF at both regional and global scales (Delgado-Baquerizo et al., 2020; 375 

Delgado-Baquerizo et al., 2016; Fan et al., 2021; Li et al., 2020; Linders et al., 2019; 376 

Wagg et al., 2019; Zheng et al., 2019). A likely explanation for our results could be 377 

decoupling of the microbial diversity from SMF due to functional redundancy, i.e., that 378 



various microbial taxa in a community support the same common functions (Ayala-379 

Munoz et al., 2021; Chen et al., 2020; Kivlin & Hawkes, 2020; Louca et al., 2018; 380 

Rousk et al., 2009; Tian et al., 2020; Van Der Heijden et al., 2008; Zhang et al., 2016).   381 

A growing number of studies found links between aboveground and belowground 382 

communities (Shen et al., 2021; Xu et al., 2021). We thus hypothesized that plant 383 

community diversity and plant traits (shoot C/N) may play key roles in determining 384 

SMF by regulating microbial community stochasticity and network complexity. We 385 

found much stronger networks between plants and microbes in the topsoil removal 386 

treatments as well as ‘Target’ compared to ‘Harvest only’ and ‘Initial’. The most likely 387 

explanation for these interactions could be that in nutrient poor systems soil microbes 388 

compete with plants for nutrients, which then results in strong and complex interaction 389 

networks and higher SMF (Nordin et al., 2004; Kuzyakov & Xu, 2013). The stronger 390 

relationships between stochasticity and plant-microbe network properties we found for 391 

fungal compared to bacterial communities could be related to fungal community has 392 

more intimate relationship with plants, and is strongly shaped over time by plants 393 

compared to bacterial communities (Guo et al., 2019; Hannula et al., 2019; Heinen et 394 

al., 2020) 395 

When exploring our findings across treatments with the structural equation model, we 396 

were able to confirm the importance of soil microbial stochasticity for SMF, and the 397 

crucial role plants play in shaping soil microbial community stochasticity. The negative 398 

influence of plant C/N on soil microbial community stochasticity may be due to higher 399 

plant C/N ratio in nutrient limited systems (Zhang et al., 2020), which leads to 400 



competition between plants and microbes for N and leads to a decrease in the 401 

stochasticity of the microbial community (Dini-Andreote et al., 2015): higher plant 402 

diversity may lead to larger soil heterogeneity due to plant specific differences in root 403 

exudation and nutrient uptake (Sun et al., 2016). Yet, in our study, we only found a 404 

negative effect of plant diversity on fungal but not bacterial community stochasticity. 405 

Yet, it is known that plant-fungi interactions likely are much stronger than the ones 406 

between plants and bacteria (Frey et al., 2021; Sun et al., 2017; Vandenkoornhuyse et 407 

al., 2003). The positive effects of soil pH on microbial community stochasticity in our 408 

study are corroborated by a study of (Tripathi et al., 2018). A decrease of soil pH (range 409 

from 7.37 to 4.37 in our study) may result in the decrease of soil microbial community 410 

stochasticity by exerting more stringent limits on survival and fitness of soil microbes. 411 

Soil pH also had a strong direct effect on SMF, which is consistent with the findings of 412 

(Delgado-Baquerizo et al., 2020; Delgado-Baquerizo et al., 2016) and was likely related 413 

to changes in soil enzymatic activities (Sinsabaugh et al., 2008), cation sorption 414 

capacity (Fernandez et al., 2015), and mineral weathering (Tian & Niu, 2015).    415 

 Overall, we found that soil microbial community stochasticity was critically important 416 

for maintaining soil functions. Interactions between plants and microbes, such as 417 

competition for nutrients, were found to be crucial for regulating microbial community 418 

stochasticity. Our results suggest that practices that cause limitation of nutrients, such 419 

as topsoil removal, may boost the functioning of microbes due to the decrease of soil 420 

microbial community stochasticity.  421 

 422 
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Legends 676 

Fig. 1 Treatment effects on soil bacterial (a, c) and fungal (b, d) community stochasticity 677 

(BCS, a and FCS, b) and Shannon Index (c, d). I, Initial; H, Harvest only; Ts, Topsoil; 678 

TsP, Topsoil + Propagules; T, Target. Different lowercase letters indicate significant 679 

differences between treatments (p < 0.05).  680 

 681 

Fig. 2 Treatment effects on soil multifunctionality (SMF). I, Initial; H, Harvest only; Ts, 682 

Topsoil; TsP, Topsoil + Propagules; T, Target. Different lowercase letters indicate 683 

significant differences between treatments (p < 0.05). 684 

 685 

Fig. 3 Linear regressions between soil multifunctionality (SMF) and (a) soil bacterial 686 

community stochasticity (BCS), (b) soil fungal community stochasticity (FCS), (c) soil 687 

bacterial Shannon diversity and (d) soil fungal Shannon diversity. Adjusted R2, F and p 688 

values from linear regression are shown in each panel. 689 

 690 

Fig. 4 Treatment effects on interaction networks between plant (species numbers) and 691 

microorganisms (OTUs as relative abundance). The upper five panels are the interaction 692 

networks between plants and soil bacteria, the lower five panels are the interaction 693 

networks between plants and soil fungi. Modules are shown in different colors. The size 694 

of the nodes is proportional to their connectivity to other nodes. Details of network 695 

topological attributes are listed in Supplementary Table S1. I, Initial; H, Harvest only; 696 

Ts, Topsoil; TsP, Topsoil + Propagules; T, Target. 697 

 698 



Fig. 5 Relationships between microbial community stochasticity and topological 699 

attributes of plant and microorganism interaction networks. Relationships between 700 

bacterial community stochasticity (BCS) and network size (a), network connectivity (b), 701 

average connectivity (c), and mutual exclusion (d); relationships between fungal 702 

community stochasticity (FCS) and network size (e), network connectivity (f), average 703 

connectivity (g), mutual exclusion (h) data sets. Adjusted R2, F and p values from linear 704 

regression are shown in each panel. The large points with different colors represent 705 

mean values of bacterial community stochasticity or fungal community stochasticity 706 

with the standard error as bars. The grey points represent each replicate plot. I, Initial; 707 

H, Harvest only; Ts, Topsoil; TsP, Topsoil + Propagules; T, Target. 708 

 709 

Fig. 6 Structural equation model shows the influences of soil pH, NO- 
3, exchangeable 710 

potassium (K), plant C/N, plant Shannon diversity (PSD), soil bacterial community 711 

stochasticity (BCS), and fungal community stochasticity (FCS) on soil 712 

multifunctionality (SMF). The blue lines refer to significant positive relationships, 713 

whereas the red lines refer to significant negative relationships. Arrows represent the 714 

directional influence of one variable upon another. Values next to the arrows are 715 

standardized coefficients. R2 represents the proportion of variance explained. #, *, ** 716 

and *** represent significant at levels p < 0.1, p < 0.01, p < 0.01 and p < 0.001. 717 
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Fig. 2 723 
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Fig. 3 726 
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