References
1. Globocan, International Agency for
Research on Cancer, World Health Organization. Cancer Today 2020.
2. Marur S, D’Souza G, Westra WH,
Forastiere AA. HPV-associated head and neck cancer: a virus-related
cancer epidemic. Lancet 2010;11: 781-9.
3. Galvao-Moreira LV, da Cruz, MCFN.
Saliva protein biomarkers and oral squamous cell carcinoma. Proc
Nat Acad Sci 2017;114: E109-E10.
4. Hartwell LH. Reply to
Galvao-Moreira and da Cruz: Saliva biomarkers to complement the
visualization-based oral cancer detection. Proc Nat Acad Sci2017;114: E111.
5. Yakob M, Fuentes L, Wang MB,
Abemayor E, Wong DTW. Salivary biomarkers for detection of oral squamous
cell carcinoma - current state and recent advances. Curr Oral
Health Rep 2014;1: 133-41.
6. Ge S, Zhou H, Zhou Z, Liu L, Lou
J. Serum metabolite profiling of a 4-Nitroquinoline-1-oxide-induced
experimental oral carcinogenesis model using gas chromatography-mass
spectrometry. PeerJ 2021;9: e10619.
7. Xu H, Yang Y, Zhao H, Yang X, Luo
Y, Ren Y, Liu W, Li N. Serum miR-483-5p: a novel diagnostic and
prognostic biomarker for patients with oral squamous cell carcinoma.Tumor Biol 2016;37: 447–53.
8. Sun L, Liu L, Fu H, Wang Q, Shi Y.
Association of decreased expression of serum mir-9 with poor prognosis
of oral squamous cell carcinoma patients. Med Sci Monit 2016;22:
289-94.
9. Liu C, Lin J, Cheng H, Hsu Y,
Cheng C, Lin S. Plasma miR-187* is a potential biomarker for oral
carcinoma. Clinical oral investigations 2017;21: 1131–8.
10. Lu Y, Chen Y, Wang H, Tsai C,
Chen W, Huang Y, Fan K, Tsai C, Huang S, Kang C, Chang JTC, Cheng AJ.
Oncogenic function and early detection potential of miRNA-10b in oral
cancer as identified by microRNA profilin. Cancer Prev Res 2012.
11. Liu C, Tsai M, Tu H, Lui M,
Cheng W, Lin S. miR-196a overexpression and mir-196a2 gene polymorphism
are prognostic predictors of oral carcinomas. Ann Surg Oncol2013;20: S406–S14.
12. Bu J, Bu X, Liu B, Chen F, Chen
P. Increased expression of tissue/salivary transgelin mrna predicts poor
prognosis in patients with oral squamous cell carcinoma (OSCC) surgery.Med Sci Monit 2015;21: 2275-81.
13. Aggarwal S, Sharma SC, Das SN.
Galectin-1 and galectin-3: plausible tumourmarkers for oral squamous
cell carcinoma and suitable targets for screening high-risk population.Clinica Chimica Acta 2015;442: 13-21.
14. Martinez-Outschoorn UE,
Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a
therapeutic perspective. Nat Rev Clinica Oncol 2017;14: 11-31.
15. Zhou Z, Alvarez D, Milla C, Zare
RN. Proof of concept for identifying cystic fibrosis from perspiration
samples. Proc Nat Acad Sci 2019;116: 24408–12.
16. Pu F, Chiang S, Zhang W, Ouyang
Z. Direct sampling mass spectrometry for clinical analysis. The
Analyst 2019;144: 1034-51.
17. Yao YN, Di D, Yuan ZC, Wu L, Hu
B. Schirmer Paper Noninvasive Microsampling for Direct Mass Spectrometry
Analysis of Human Tears. Ana Chem 2020;92: 6207-12.
18. Mendes TPP, Pereira I, de Lima
LAS, Morais CLM, Neves ACON, Martin FL, Lima KMG, Vaz BG. Paper Spray
Ionization Mass Spectrometry as a Potential Tool for Early Diagnosis of
Cervical Cancer. J Am Soc Mass Spectrom 2020;31: 1665-72.
19. Huang YC, Chung HH, Dutkiewicz
EP, Chen CL, Hsieh HY, Chen BR, Wang MY, Hsu CC. Predicting Breast
Cancer by Paper Spray Ion Mobility Spectrometry Mass Spectrometry and
Machine Learning. Anal Chem 2020;92: 1653-7.
20. Vijayalakshmi K, Shankar V, Bain
RM, Nolley R, Sonn GA, Kao CS, Zhao H, Tibshirani R, Zare RN, Brooks JD.
Identification of diagnostic metabolic signatures in clear cell renal
cell carcinoma using mass spectrometry imaging. Int J Cancer2020;147: 256-65.
21. Song X, Yang X, Narayanan R,
Shankar V, Ethiraj S, Wang X, Duan N, Ni Y, Hu Q, Zare RN. Oral squamous
cell carcinoma diagnosed from saliva metabolic profiling. Proc Nat
Acad Sci 2020;17: 16167-73.
22. Song, X, Chen, H., Zare, R.N.
Conductive polymer spray ionization mass spectrometry for biofluid
analysis. Anal Chem 2018;90: 12878-85.
23. Rai V, Mukherjee R, Routray A,
Ghosh AK, Roy S, Ghosh BP, Mandal PB, Bose S, Chakraborty C. Serum-based
diagnostic prediction of oral submucous fibrosis using FTIR
spectrometry. Spectrochim Acta A: Mol Biomol Spectrosc 2018 189:
322–9.
24. Saraswat M, Makitie A, Tohmola
T, Dickinson A, Saraswat S, Joenvaara S, Renkonen S. Tongue cancer
patients can be distinguished from healthy controls by specific
n-glycopeptides found in serum. Proteom Clin Appl 2018;16:
1800061.
25. Yonezawa K, Nishiumii S,
Kitamoto-Matsuda J, Fujita T, Morimoto K, Yamashita D, Saito M, Otsuki
N, Irino Y, Shinohara M, Yoshida M, Nibu KI. Serum and tissue
metabolomics of head and neck cancer. Cancer Genom Proteom2013;10: 233-8.
26. Kong X, Yang X, Zhou J, Chen S,
Li X, Jian F, Deng P, Li W. Analysis of plasma metabolic biomarkers in
the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis
in rats. Ontology Letters 2015;9: 283-9.
27. Bag S, Banerjee DR, Basak A, Das
AK, Pal M, Banerjee R, Paul RR, Chatterjee J. NMR (1H and 13C) based
signatures of abnormal choline metabolism in oral squamous cell
carcinoma with no prominent Warburg effect. Biochemical and
biophysical research communications 2015;459: 574-8.
28. Tiziani S, Lopes V, Günther UL.
Early stage diagnosis of oral cancer using 1H NMR–based metabolomics.Neoplasia 2009;11: 269–76.
29. Yang X, Zhang X, Jing Y, Ding L,
Fu Y, Wang S, Hu S, Zhang L, Huang X, Ni Y, Hu Q. Amino acids signatures
of distance-related surgical margins of oral squamous cell carcinoma.EBioMedicine 2019;48: 81-91.
30. Yang X, Jing Y, Wang S, Deng F,
Zhang X, Chen S, Zheng L, Hu Q, Ni Y. Integrated non-targeted and
targeted metabolomics uncovers amino acid markers of oral squamous cell
carcinoma. Front Pharmacol 2020;10.
31. Hrydziuszko O, Viant MR. Missing values in mass spectrometry based
metabolomics:
an undervalued step in the data processing pipeline. Metabolomics. 2012;
8: S161–S174.
32. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. Royal Stat. Soc.
1995; 57:289–300.
33. Kohavi R, John GH. Wrappers for
feature subset selection. Artif Intell 1997;97: 273-324.
34. Jennifer A. Kirwan, RJMW, David
I. Broadhurst, Mark R. Viant. Direct infusion mass spectrometry
metabolomics dataset: a benchmark for data processing and quality
control. Sci Data 2014;1: 140012.
35. Vander Heiden MG, DeBerardinis
RJ. Understanding the intersections between metabolism and cancer
biology. Cell 2017;168: 657-69.
36. Pavlova NN, Thompson CB. The
emerging hallmarks of cancer metabolism. Cell Metab 2016;23:
27-47.
37. Zhu J, Thompson CB. Metabolic
regulation of cell growth and proliferation. Nat Rev Mol Cell
Biol 2019;20: 436-50.
38. Ward PS, Thompson CB. Metabolic
reprogramming: a cancer hallmark even warburg did not anticipate.Cancer cell 2012;21: 297-308.
39. Liu JY, Wellen KE. Advances into
understanding metabolites as signaling molecules in cancer progression.Current opinion in cell biology 2020;63: 144-53.
40. Park SG, Schimmel P, Kim S.
Aminoacyl tRNA synthetases and their connections to disease. Proc
Nat Acad Sci 2008;105: 11043-9.
41. Kim S, You S, Hwang D.
Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping.Nat Rev Cancer 2011;11: 708-18.
42. Corbet C, Feron O. Emerging
roles of lipid metabolism in cancer progression. Current opinion
in clinical nutrition and metabolic care 2017;20: 254-60.
43. Ogretmen B. Sphingolipid
metabolism in cancer signalling and therapy. Nat Rev Cancer2018;18: 33-50.