References
1. Globocan, International Agency for Research on Cancer, World Health Organization. Cancer Today 2020.
2. Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet 2010;11: 781-9.
3. Galvao-Moreira LV, da Cruz, MCFN. Saliva protein biomarkers and oral squamous cell carcinoma. Proc Nat Acad Sci 2017;114: E109-E10.
4. Hartwell LH. Reply to Galvao-Moreira and da Cruz: Saliva biomarkers to complement the visualization-based oral cancer detection. Proc Nat Acad Sci2017;114: E111.
5. Yakob M, Fuentes L, Wang MB, Abemayor E, Wong DTW. Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. Curr Oral Health Rep 2014;1: 133-41.
6. Ge S, Zhou H, Zhou Z, Liu L, Lou J. Serum metabolite profiling of a 4-Nitroquinoline-1-oxide-induced experimental oral carcinogenesis model using gas chromatography-mass spectrometry. PeerJ 2021;9: e10619.
7. Xu H, Yang Y, Zhao H, Yang X, Luo Y, Ren Y, Liu W, Li N. Serum miR-483-5p: a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma.Tumor Biol 2016;37: 447–53.
8. Sun L, Liu L, Fu H, Wang Q, Shi Y. Association of decreased expression of serum mir-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit 2016;22: 289-94.
9. Liu C, Lin J, Cheng H, Hsu Y, Cheng C, Lin S. Plasma miR-187* is a potential biomarker for oral carcinoma. Clinical oral investigations 2017;21: 1131–8.
10. Lu Y, Chen Y, Wang H, Tsai C, Chen W, Huang Y, Fan K, Tsai C, Huang S, Kang C, Chang JTC, Cheng AJ. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profilin. Cancer Prev Res 2012.
11. Liu C, Tsai M, Tu H, Lui M, Cheng W, Lin S. miR-196a overexpression and mir-196a2 gene polymorphism are prognostic predictors of oral carcinomas. Ann Surg Oncol2013;20: S406–S14.
12. Bu J, Bu X, Liu B, Chen F, Chen P. Increased expression of tissue/salivary transgelin mrna predicts poor prognosis in patients with oral squamous cell carcinoma (OSCC) surgery.Med Sci Monit 2015;21: 2275-81.
13. Aggarwal S, Sharma SC, Das SN. Galectin-1 and galectin-3: plausible tumourmarkers for oral squamous cell carcinoma and suitable targets for screening high-risk population.Clinica Chimica Acta 2015;442: 13-21.
14. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clinica Oncol 2017;14: 11-31.
15. Zhou Z, Alvarez D, Milla C, Zare RN. Proof of concept for identifying cystic fibrosis from perspiration samples. Proc Nat Acad Sci 2019;116: 24408–12.
16. Pu F, Chiang S, Zhang W, Ouyang Z. Direct sampling mass spectrometry for clinical analysis. The Analyst 2019;144: 1034-51.
17. Yao YN, Di D, Yuan ZC, Wu L, Hu B. Schirmer Paper Noninvasive Microsampling for Direct Mass Spectrometry Analysis of Human Tears. Ana Chem 2020;92: 6207-12.
18. Mendes TPP, Pereira I, de Lima LAS, Morais CLM, Neves ACON, Martin FL, Lima KMG, Vaz BG. Paper Spray Ionization Mass Spectrometry as a Potential Tool for Early Diagnosis of Cervical Cancer. J Am Soc Mass Spectrom 2020;31: 1665-72.
19. Huang YC, Chung HH, Dutkiewicz EP, Chen CL, Hsieh HY, Chen BR, Wang MY, Hsu CC. Predicting Breast Cancer by Paper Spray Ion Mobility Spectrometry Mass Spectrometry and Machine Learning. Anal Chem 2020;92: 1653-7.
20. Vijayalakshmi K, Shankar V, Bain RM, Nolley R, Sonn GA, Kao CS, Zhao H, Tibshirani R, Zare RN, Brooks JD. Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging. Int J Cancer2020;147: 256-65.
21. Song X, Yang X, Narayanan R, Shankar V, Ethiraj S, Wang X, Duan N, Ni Y, Hu Q, Zare RN. Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc Nat Acad Sci 2020;17: 16167-73.
22. Song, X, Chen, H., Zare, R.N. Conductive polymer spray ionization mass spectrometry for biofluid analysis. Anal Chem 2018;90: 12878-85.
23. Rai V, Mukherjee R, Routray A, Ghosh AK, Roy S, Ghosh BP, Mandal PB, Bose S, Chakraborty C. Serum-based diagnostic prediction of oral submucous fibrosis using FTIR spectrometry. Spectrochim Acta A: Mol Biomol Spectrosc 2018 189: 322–9.
24. Saraswat M, Makitie A, Tohmola T, Dickinson A, Saraswat S, Joenvaara S, Renkonen S. Tongue cancer patients can be distinguished from healthy controls by specific n-glycopeptides found in serum. Proteom Clin Appl 2018;16: 1800061.
25. Yonezawa K, Nishiumii S, Kitamoto-Matsuda J, Fujita T, Morimoto K, Yamashita D, Saito M, Otsuki N, Irino Y, Shinohara M, Yoshida M, Nibu KI. Serum and tissue metabolomics of head and neck cancer. Cancer Genom Proteom2013;10: 233-8.
26. Kong X, Yang X, Zhou J, Chen S, Li X, Jian F, Deng P, Li W. Analysis of plasma metabolic biomarkers in the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis in rats. Ontology Letters 2015;9: 283-9.
27. Bag S, Banerjee DR, Basak A, Das AK, Pal M, Banerjee R, Paul RR, Chatterjee J. NMR (1H and 13C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect. Biochemical and biophysical research communications 2015;459: 574-8.
28. Tiziani S, Lopes V, Günther UL. Early stage diagnosis of oral cancer using 1H NMR–based metabolomics.Neoplasia 2009;11: 269–76.
29. Yang X, Zhang X, Jing Y, Ding L, Fu Y, Wang S, Hu S, Zhang L, Huang X, Ni Y, Hu Q. Amino acids signatures of distance-related surgical margins of oral squamous cell carcinoma.EBioMedicine 2019;48: 81-91.
30. Yang X, Jing Y, Wang S, Deng F, Zhang X, Chen S, Zheng L, Hu Q, Ni Y. Integrated non-targeted and targeted metabolomics uncovers amino acid markers of oral squamous cell carcinoma. Front Pharmacol 2020;10.
31. Hrydziuszko O, Viant MR. Missing values in mass spectrometry based metabolomics:
an undervalued step in the data processing pipeline. Metabolomics. 2012; 8: S161–S174.
32. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. 1995; 57:289–300.
33. Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97: 273-324.
34. Jennifer A. Kirwan, RJMW, David I. Broadhurst, Mark R. Viant. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Sci Data 2014;1: 140012.
35. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell 2017;168: 657-69.
36. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016;23: 27-47.
37. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019;20: 436-50.
38. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.Cancer cell 2012;21: 297-308.
39. Liu JY, Wellen KE. Advances into understanding metabolites as signaling molecules in cancer progression.Current opinion in cell biology 2020;63: 144-53.
40. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Nat Acad Sci 2008;105: 11043-9.
41. Kim S, You S, Hwang D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping.Nat Rev Cancer 2011;11: 708-18.
42. Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression. Current opinion in clinical nutrition and metabolic care 2017;20: 254-60.
43. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer2018;18: 33-50.