
Abstract1

Integrated distribution models (IDMs), in which datasets with different properties are analysed together,2

are becoming widely used to model species distributions and abundance in space and time. To date, the IDM3

literature has focused on technical and statistical issues, such as the precision of parameter estimates and4

mitigation of biases arising from unstructured data sources. However, IDMs have an unrealised potential to5

estimate ecological properties that could not be derived from the source datasets if analysed separately. We6

present a model that estimates community alpha diversity metrics by integrating one species-level dataset of7

presence-absence records with a co-located dataset of group-level counts (i.e. lacking information about8

species identity). We illustrate the ability of IDMs to capture the true community alpha diversity through9

simulation studies and apply the model to data from the UK Pollinator Monitoring Scheme, to describe10

spatial variation in the diversity of solitary bees, bumblebees and hoverflies. The simulation and case studies11

showed that the proposed IDM produced more precise estimates of the community diversity than the single12

models, and the analysis of the real dataset further showed that the alpha diversity estimates from the IDM13

were averages of the single models. Our findings also revealed that IDMs had a higher prediction accuracy14

for all the insect groups in most cases, with this performance linked to the information provided by a data15

source into the IDM.16

Key words: Alpha diversity, Bayesian models, Markov Chain Monte Carlo methods, Multispecies distribu-17

tion models, UK Pollinator Monitoring scheme18

1 Introduction19

Biodiversity monitoring programs generate disparate data types that are used to infer and make predictions20

about species distributions, dynamics and diversity (Kéry and Royle, 2015, 2020; Isaac et al., 2020; Bird21

et al., 2014). From the various datasets available, there is now a plethora of modelling approaches to deal22

with various aspects of the ecological and observational processes in response to the availability of large and23

varied data from different sources and survey and sampling protocols. The vast majority of these modelling24

approaches were developed with one particular data type in mind, such as count data or presence-only records.25

In recent years, the growing heterogeneity of data types has made integrated distribution models (IDMs)26

an emerging development in ecological statistics and species distribution modelling (Pacifici et al., 2017;27

Koshkina et al., 2017; Miller et al., 2019; Isaac et al., 2020). IDMs involve integrating datasets of different28
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types into one model that explicitly captures the features of each.29

There are different approaches to developing an integrated model. One data set can be used as a fixed30

effect to model the other (covariate structure), or datasets can share information through their correlation in31

space and possibly time (correlation structure; Pacifici et al., 2017; Miller et al., 2019). The most common32

implementation of IDMs uses a joint likelihood in a hierarchical Bayesian framework (Miller et al., 2019).33

In the joint likelihood framework, each dataset is conceptualised as an independent realisation of the same34

underlying ecological state variables (e.g. abundance or occupancy). The strength of the joint likelihood35

approach comes from sharing information between datasets through common parameters and/or by sampling36

the same locations in multiple datasets.37

Most studies on IDMs are either case studies of particular applications (Doser et al., 2022) or explorations38

of statistical challenges that data integration brings (Simmonds et al., 2020; Ahmad Suhaimi et al., 2021).39

Typically, these have addressed the degree to which spatial biases in unstructured data can be overcome, and40

the precision of the parameters being estimated (Simmonds et al., 2020; Ahmad Suhaimi et al., 2021; Koshkina41

et al., 2017). These studies have shown, either by using the model predictive accuracy and/or the accuracy and42

precision of estimated parameters, that IDMs can, in some circumstances, perform better than single models or43

models developed from a subset of all the datasets (Koshkina et al., 2017; Pacifici et al., 2017; Miller et al.,44

2019; Isaac et al., 2020; Simmonds et al., 2020; Zulian et al., 2021).45

An unrealised benefit of IDMs is the potential to estimate parameters that would not be estimable from46

either of the data sets if analysed separately. Usually, community alpha diversity measures such as Shannon and47

Simpson indices are estimated using abundance-based diversity metrics and these indices need species-level48

abundance information (Hill, 1973; Gatti et al., 2020). However, it is not always possible to identify individuals49

to their species level. This is often true for insect monitoring, where counts may be resolved to a coarser50

taxonomic level. This can arise for a number of reasons, such as: the cryptic nature of some species (requiring51

microscopic examination to separate similar species), the need for specialised taxonomy skills and organisms52

being observed only briefly (e.g. on the wing).53

The vast majority of biodiversity data available, such as presence-absence, capture-recapture, and presence-54

only data, do not contain information on abundance but may have information on the species identity. Alpha55

diversity indices can be estimated from the presence-absence data when imperfect detection has been accounted56

for in a multi-species occupancy model, as has been done in some studies (Gotelli and Chao, 2013; Broms57
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et al., 2015; Guillera-Arroita et al., 2019). These species-level presence-absence data, however, are less58

informative than count data (Broms et al., 2015), and the diversity indices estimated can be strongly affected59

by the model structure such as parametric assumptions, prior specifications and prior choices (Guillera-Arroita60

et al., 2019).61

In this study, we combine these two data types in an IDM to estimate community alpha diversity parameters62

that could not be "properly" estimated from the datasets when analysed separately. To date, no studies we63

are aware of have attempted to demonstrate this potential from IDMs, but it is something that integrated64

population models (IPMs) have been used for for a long time (Besbeas et al., 2002; Abadi et al., 2010; Schaub65

et al., 2007). For example, Besbeas et al. (2002) integrated census data (providing information about the total66

number of organisms) and ring recovery data (providing information on individual organisms) to estimate67

birth, death and fecundity at the population level.68

Our model is parameterised using data from the UK Pollinator Monitoring Scheme (PoMS) (O’Connor69

et al., 2019; Breeze et al., 2021), which has been generating monitoring data on pollinating insects in the UK70

for the last five years and is now informing an EU-wide pollinator monitoring scheme (Potts et al., 2020).71

PoMS collects two types of data: one dataset contains presence-absence data on individual species (using pan72

traps), and the other contains counts that are not resolved to the species level (so-called Flower-Insect Timed73

Counts or "FIT Counts"). Our analyses of PoMS data are supported by simulations. We demonstrate that74

between them, these datasets can provide inferences about site-level alpha diversity that would not be possible75

using either dataset in isolation. The model developed here will be useful in situations where professional and76

mass participation schemes collect data on the same organisms and where the species are difficult to identify77

(e.g. most insect groups).78

2 Methods79

We first provide a motivation for the methods of this study by exploring the PoMS data. We then describe80

the overall structure of the data. We define the state models representing each species’ unknown site-specific81

abundance and occupancy. The state variables are defined in terms of spatial point processes, which provide82

a flexible way to integrate datasets in different ecological currencies (Miller et al., 2019; Isaac et al., 2020).83

We then define sub-models for each of the two data types. The final two sections of the Methods deal with84
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inference and the estimation of community parameters.85

2.1 UK Pollinator Monitoring Scheme Data86

The data used is a subset of the PoMS data (Breeze et al., 2021; O’Connor et al., 2019; Scheme, 2022a,b).87

PoMS implements a systematic survey with 95 1 km square sites selected following a stratified sampling88

design across Great Britain (GB) and Northern Ireland (NI). The sites are surveyed up to four times per year89

from May to September, with a minimum of two weeks between each consecutive survey at a site. On the90

same visit, the observer implements two survey protocols: a pan trap survey and a FIT count survey (Breeze91

et al., 2021; O’Connor et al., 2019). On each visit, five pan trap stations (each hosting three coloured bowls92

painted UV-bright yellow, blue and white, mounted at vegetation height and filled with water) are set out93

along a diagonal of each 1 km square site and left for six hours. During this time, the surveyor undertakes at94

least two ten-minute FIT counts, which involves counting all insects landing on a target flower in a 50x5095

cm patch. Pollinators are identified at the level of a broad taxonomic group, e.g. bumblebees, solitary bees,96

and hoverflies. After six hours, the samples from the pan traps are collected and sent to a lab for professional97

identification. Therefore, each visit to the 1km site produces a list of bee and hoverfly species found in the pan98

traps and group-level count data from the FIT counts. The data used in this study were from the first two years99

(2017 - 2018) of PoMS, during which 74 of the 75 survey sites across GB returned suitable data (PoMS was100

not active in NI in the first two years). The summary of the group-level count data and species occupancy data101

are presented in Table 1 and the distribution of each dataset at each study site is provided in Supplementary102

information 1 Figures S1-1 to S1-6.103

FIT counts Pantrap occupancy
Insect group Average (SD) Nspecies Naive occupancy (SD)
Bumblebees 1.11 (5.18) 17 0.086 (0.20)
Hoverflies 2.74 (10.92) 79 0.055 (0.01)

Solitary bees 0.29 (1.62) 70 0.027 (0.111)
Table 1: Summaries of the group-level FIT count and species-level pan trap occupancy data. Both datasets
were collected from 74 survey sites (Nsites) with 8 survey visits (Nvisit) (four visits in each year 2017 and
2018). The average FIT counts and their standard deviation (in brackets) were calculated from the group-level
FIT count data across all sites and visits and the average naive occupancy from the pantrap occupancy data
across all species and sites. The number of species (Nspecies) in the species list for each insect group is also
provided in the summary.
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The above monitoring protocols generate two types of data, each collected at the same set of R indexed104

locations during replicated T number of visits at each site. One dataset comprises detection-nondetection105

data at the species level (henceforth ’species occupancy data’); the other is a count across all S species in the106

taxonomic group (’group count data’).107

2.2 State variables108

We model species abundance as a spatial point process, in which the intensity of that point process determines109

the expected number of organisms per unit area. Let λij be a latent variable describing the intensity of species110

j at location i and ψij be the probability that species j occupies location i. We consider two ways by which111

the two latent variables can be linked in the IDM using the joint likelihood approach (Pacifici et al., 2017): the112

’shared’ and the ’covariate’ formulation.113

2.2.1 Shared formulation114

The intensity of each species is linked to the occupancy probability using the complementary log-log link115

function, which defines the probability that at least one organism is present (Kéry and Royle, 2015):116

log(λij) = cloglog(ψij) = β0j + β1j × latitude;

β0j ∼ N(µβ0 , σ
2
β0

); β1j ∼ N(µβ1 , σ
2
β1

),
(1)

where β0j the intercept for the species occupancy was normally distributed with mean µβ0 and variance σ2
β0

,117

β1j the latitudinal gradient slope for species j was normally distributed with mean µβ1 and variance σ2
β1

. The118

hyperparameters of the intercept (µβ0 and σ2
β0

) and latitude effect (µβ1 and σ2
β1

) represent the community-level119

mean and variance parameters respectively in the IDM.120

In this model structure, all the parameters are shared by the two latent states. Hence each dataset directly121

informs the latent state and both datasets provide equal weights to the joint likelihood of the IDM (Miller et al.,122

2019).123
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2.2.2 Covariate formulation124

Although both FIT counts and pantrap surveys were performed by the same observer on the same survey visit,125

it makes sense for both latent variables to share covariates but allow each dataset to have separate intercepts126

because they have different survey protocols. The separate intercepts help model the average abundance and127

occupancy observation difference. Our use of the term "covariate formulation" differs slightly from previous128

studies (Pacifici et al., 2017; Miller et al., 2019), in which the term refers to using one dataset as a fixed effect129

in modelling the second dataset. In the classification of Miller et al. (2019), our covariate model is a form of130

joint-likelihood structure, but the term is useful to distinguish it from the shared formulation above.131

The link function for the latent variables in this IDM framework becomes:132

cloglog(ψij) = β0j + β1j × latitude;

log(λij) = ω0 + β1j × latitude;

β0j ∼ N(µβ0 , σ
2
β0

);

β1j ∼ N(µβ1 , σ
2
β1

);

ω0 ∼ N(µω0 , σ
2
ω0

),

(2)

where β0j the intercept for the species occupancy is normally distributed with mean µβ0 and variance σ2
β0

, ω0133

the intercept of the group counts is normally distributed with mean µω0 and variance σ2
ω0

, β1j the slope of the134

latitudinal gradient for species j is normally distributed with mean µβ1 and variance σ2
β1

. As described for135

the shared model (section 2.2.1), the intercept and covariate effect hyperparameters represent their respective136

community-level mean and variance parameters in the models.137

The covariate structure allows both state variable models in the IDM to share important parameters but138

preserve their average abundance when no covariate effects exist. Moreover, the quality of both datasets139

determines how well the parameters are estimated (Pacifici et al., 2017) since some parameters will be estimated140

using each dataset, and the parameters that are not shared serve as (unequal) weights for the contribution from141

each dataset.142
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2.3 Sub-models for each dataset143

Having defined the latent state variables λij and ψij and the possible ways they can be linked together, the144

sub-models for species occupancy data (section 2.3.1) and group-level count data (section 2.3.2) can be defined.145

In addition, the model can estimate various community ecology metrics (see section 2.5) as derived parameters.146

Based on preliminary analysis (Supplementary information 1), we used a negative binomial model with an147

intercept and covariate to fit the group count data. We also used logistic regression with intercept, covariate148

effect, site and visit random effect to fit the species occupancy data.149

2.3.1 Sub-models for species occupancy data150

We model the species occupancy data with an occupancy-detection model (MacKenzie et al., 2002). The true151

ecological state (true presence or absence denoted as z in this study) for species j at site i is modelled with152

a Bernoulli distribution with probability ψij , where ψij was the probability of species j occupying site i as153

defined by equations (1) and (2).154

The detection probability (pijk) for species j at site i during the survey visit k is modelled with a site,155

species and visit random effect logistic regression using the logit link. That is:156

logit(pijk) = ζi + νj + ρk;

ζi ∼ N(0, σ2
ζ ) and νj ∼ N(0, σ2

ν) ρk ∼ N(0, σ2
ρ),

(3)

where ζi, the effect of site i, is normally distributed with zero mean and variance σ2
ζ ; νj , the effect of species157

j, is normally distributed with zero mean and variance σ2
ν ; and ρk, the effect of survey visit k, is normally158

distributed with mean 0 and variance σ2
ρ. We model the visit effect in the detection process to account for159

the significant visit effect found during the exploration phase for the species occupancy data (Supplementary160

information 1). By the definition of our model for the detection probability in equation (3), the average161

detection probability for a species in any given site is 0.5, which allows all species in the taxonomic group to162

have an equal chance of being detected or not detected on average.163

Let the observation for species j during the kth visit to location i be represented by Xijk, for i =164

1, 2, . . . , R indexed sites and j = 1, 2, . . . , S species. This observation, over the five pantrap replicates at each165

7



site, is Binomially distributed with probability zij × pijk, where pijk is the detection probability and zij is the166

true state of species j at site i (that is, Xijk ∼ Binomial(5, zij × pijk)).167

2.3.2 Sub-model for group count data168

Having defined the intensity of species j at location i (equations (1) and (2)), the intensity for the group counts169

will be a sum of all the intensities of the species that make up that taxonomic level. This is because we assume170

the group counts are made up of all the species in the pantrap data, and the sum of realisations from Poisson171

point processes is also a Poisson point process with an intensity equal to the sum of the intensities of the172

individual components (Harremoës, 2001; Jacod, 1975).173

Let Yik be the observed count of individuals on the kth survey (across all species in the group). We174

modelled the counts with a negative binomial distribution (to allow for extra variation in the count data)175

with parameters θ and γ = θ
θ+λg

i
, where λgi =

∑S
j λij is the intensity of the group counts at site i (that176

is, Yik ∼ NB(θ, γ)). The parameter θ is the overdispersion parameter, which allows us to model the extra177

variation in the group count data. Note that as θ →∞, the negative binomial distribution converges upon the178

Poisson distribution.179

We present the various joint likelihood structures defined in section (2.2) and the sub-models for each180

PoMS dataset defined in section (2.3) in Figure 1.181

2.4 Community Diversity Indices182

The community alpha diversity was estimated using the Shannon-Wiener diversity index. This is the most183

commonly used index from the Hills indices (Hill, 1973), and it places equal weights on rare and dominant184

species. We acknowledge that the Shannon-Wiener diversity index may have some limitations (Lande, 1996;185

Morishita, 1996; Itô, 2007; Gatti et al., 2020; Chao and Jost, 2015; O’hara, 2005), in which case other indices186

such as Simpson index may be preferable. However, we use the Shannon-Wiener diversity index to show187

how alpha diversity can be estimated using our proposed IDM and how all the models capture the true alpha188

diversity. For real-world applications, we urge caution about the choice of the index. Moreover, the Hills189

indices are all functions of the relative abundance proportion, so the method developed for one index can be190
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Figure 1: Flowchart showing the integrated distribution model process for the PoMS survey data. To fit
the IDM, we used two joint likelihood links in this study: shared formulation (section 2.2.1) and covariate
formulation (section 2.2.2). The state variables models are defined by equations (1) and (2). The sub-models
for each dataset: the group count model (GCM) and species occupancy model (SOM) have been defined as
the observation process of abundance and occupancy respectively (sections 2.3.2 and 2.3.1 respectively). The
IDM combines the SOM and GCM for each joint likelihood link used. All the parameters in this flowchart are
defined in sections 2.2 and 2.3. In addition to the intercept and covariate effect, we add a species interaction
effect η in this flowchart.

easily extended to the others. The Shannon-Wiener diversity index was calculated as:191

H1 = −
S∑
j=1

rij log(rij), (4)

where rij = λij∑S

j=1
λij

is the relative abundance of a species j at location i.192

2.5 Evaluating model performance193

We fitted five models to the PoMS survey data in this study: IDM and group count model (GCM) with the194

shared formulation of the joint likelihood defined in section 2.2.1 which we will refer to as IDMSH and195

GCMSH respectively, the IDM and GCM with covariate formulation of the joint likelihood defined in section196

9



2.2.2 which we will refer to as IDMCO and GCMCO respectively, and the species occupancy model (SOM).197

The two IDMs (IDMSH and IDMCO) fitted a joint likelihood model with both the occupancy and group count198

data; the two GCMs (GCMSH and GCMCO) fitted the negative binomial regression model to the group count199

data with the two joint likelihood formulations, and SOM fitted the sub-model for the species occupancy200

data (section 2.4.1). We note that the alpha diversity estimates from the GCMs are strongly driven by the201

priors assigned to the parameters of λij . In the absence of information in the data to contradict this prior, we202

anticipate that GCMs will estimate the local alpha diversity very poorly. We recognise that this model is not203

something that community ecologists would choose to fit, but the comparison with other models is informative.204

These models are summarised in Table 2.205

Model Model description Type Data used Predictor
IDMSH IDM with shared structure defined in

equation (1) Integrated GC and SO β0j + β1j × lati

IDMCO IDM with shared structure defined in
equation (2)

β0j + β1j × lati
ω0 + β1j × lati

GCMSH GCM with shared structure defined in
equation (1) Single GC β0j + β1j × lati

GCMCO GCM with shared structure defined in
equation (2)

ω0 + β1j × lati

SOM species occupancy model Single SO β0j + β1j × lati
Table 2: Models fitted in this study, their descriptions, predictors, type and data used to fit them. Two integrated
models: IDMSH and IDMCO, and three single models: GCMSH, GCMCO and SOM, are fitted. The data
used are from the UK PoMS survey: FIT counts (GC) and Pantrap species occupancy (SO) data. The cloglog
link was used for the occupancy model and the log link was used for the group count model. The definitions of
the parameters used in the predictor column are described in section (2.3), with lat referring to the latitudinal
gradient slope.

2.5.1 Fitting the models206

We fitted the models in a Bayesian framework. We obtained samples of the parameters using the Markov207

chain Monte Carlo (MCMC) approach and estimated posterior summaries of model parameters using the208

NIMBLE package (de Valpine et al., 2017) in R (R Core Team, 2022). We chose a normal distribution with209

zero mean and variance of 100 as the prior for the mean hyperparameters of the state variables and an inverse210

gamma distribution with scale parameter 2 and shape parameter 1 as the prior distribution for the variance211
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hyperparameters. We ran three chains with 300000 iterations for all the models, and 200000 were discarded212

as burn-in samples. We keep a twentieth of the left-over samples to reduce the hard disk space used by our213

analysis. The convergence of the fitted model was checked by estimating Gelman-Rubin R-hat statistic (Brooks214

and Gelman, 1998) using the ggmcmc package (Fernández-i Marín, 2013) and rejected the models with R-hat215

greater than 1.1.216

2.5.2 Simulation study217

We performed simulation studies to assess which of the five models (described in Table 2) better estimated218

the true alpha diversity. We simulated 30 data replicates using the IDM framework for each latent variable219

formulation used in this study (i.e. using both the covariate and the shared formulation). We used the same220

number of sites and visits from the PoMS surveys but used 20 species for the simulations due to computational221

expensiveness in running the models for more species.222

The true values for the hyperparameters defined in sections 2.2 were chosen as follows: µβ0 = 0,223

σβ0 = 0.2, µβ1 = −2, σβ1 = 1, σω0 = 0.2, σζ = 0.3, σν = 1 and σρ = 2. We also randomly selected 25224

sites for each visit in the group count and occupancy model and assigned them NAs to reflect missing species225

identifications and group counts in the PoMS data.226

We fitted the five study models defined in Table 2 to the 30 simulated datasets for each joint likelihood227

formulation. By this, we employed a cross-design to ascertain the effect of fitting a wrong model in this study.228

For example, when the IDMCO or GCMCO is fitted to the dataset simulated under the shared formulation,229

we can infer the effect of fitting a covariate-formulated model ("wrong model") to the dataset. We assessed230

this effect by estimating the mean bias and precision of Shannon estimates at each site across the replicated231

datasets. That is, for each site i, we obtain the metrics:232

Mean bias = 1
30

30∑
k=1

(Ĥ ′
(k)
i −H ′

(k)
i ),

Mean precision = 1
30

30∑
k=1

1

SD

(
Ĥ ′

(k)
i

)2 ,
(5)

where Ĥ ′
(k)
i is the posterior mean of the Shannon index for dataset k, H ′(k)

i is the true Shannon index obtained233

from simulating dataset k and SD(Ĥ ′
(k)
i ) is the posterior standard deviation of the Shannon index for dataset234
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k. The fitted models with mean bias closer to 0 and the highest mean precision are indicated to perform best.235

2.5.3 Model Validation and Assessment236

Model predictive performance237

We performed two-fold cross-validation to ascertain the model’s ability to predict new data. The same238

folds are used for all the models under study, and the log pointwise predictive density (Nicenboim et al.,239

2021; Gelman et al., 2014) was used to measure the cross-validation’s predictive accuracy. The log pointwise240

predictive density (lppd) is defined as:241

lppd = 1
K

K∑
k=1

N∑
n=1

log(P (yn,k|y−n,k, θ̂,M)) (6)

where log(P (yn,k|y−n,k, θ̂,M)) is the log predictive density of the withheld data samples yn,k in fold k under242

model M , which was trained with data samples y−n,k in fold k to obtain estimated model parameters θ̂ with n243

being the number of samples in each fold and N is the number of samples of each fold. Larger values of the244

metric indicate better performance.245

It must be pointed out that the withheld samples used in IDMSH and IDMCO have both species occupancy246

(X) and group count (Y ) samples in their training and validation sets. Therefore, we estimated the lppd for247

the validation samples from the pantrap and group count data separately after we had estimated the model248

parameters θ̂ with both datasets in the training samples. Since the log predictive density is additive (Gelman249

et al., 2014), the log predictive density of the integrated model was obtained by summing the lppd of each250

dataset.251

Information provided by each dataset252

We also ascertained the information contributed to the IDM by each data type. This was done by comparing253

the log-likelihoods of the single models (SOM and GCMs) to that of the IDMs (where both single and integrated254

models being compared share the same joint likelihood structure), following Zulian et al. (2021). Since there255

are two data types in this study: pantrap data and FIT count data, including a data type that informs the256

IDMs should lead to better predictions (higher prediction accuracy) of the other data types. For example, by257

comparing the predictive log-likelihoods of the GCMCO to IDMCO for group count data, one can assess258

whether the pantrap occupancy data improves the predictive performance of IDMCO on the group count data.259
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We shall refer to this approach as the ’marginal contribution’ of a data type in the rest of this paper. Negative260

values of the marginal contribution indicate that the data type did not contribute to the IDM.261

It must be stated that the marginal contribution can only indicate whether a data type provides information.262

Due to differences in the data types (occupancy and count data) and sample sizes, it is unfeasible to compare263

the marginal contribution of the data types to ascertain which one provides the most information.264

3 Results265

The estimates of the mean bias and precision of Shannon diversity estimates over all 30 replicated simulated266

datasets are presented in Figure 2. The log-predictive density from the two-fold cross-validation and average267

Shannon index across all the study sites are summarised in Table 3. The site-specific precision estimates of the268

Shannon indices for each insect group and the model used to fit the data are presented in Figure 3. All other269

figures and tables referred to in this section are presented in Supplementary Information 2.270

3.1 Simulation study271

Figure 2 shows the distribution of the mean bias and precision of the Shannon indices at the 74 sites estimated272

from the five study models fitted to the simulated data described in section 2.5.2. Whether the data were273

simulated under the shared or covariate formulations, the mean bias of the Shannon index from the integrated274

models (irrespective of their joint likelihood structure) was similar to that from SOM, with the median bias275

around 0 with small variation across sites. This suggested that the integrated models and SOM well captured276

the true Shannon index across all the study sites.277

As expected, the Shannon indices were poorly estimated the GCMs. Alpha diversity was consistently278

overestimated by the GCMCO model and underestimated by GCMSH (Figure 2), and both models have much279

lower precision than other models. As explained in the Methods, this is expected because the only information280

about species identities in these models derives from the priors.281

Although the mean bias of the Shannon indices from the integrated models and SOM are similar, the282

Shannon indices were estimated with higher precision in the integrated models than in SOM (blue bars in283

Figure 2). When the data was simulated under the covariate formulation (red bars), the precision of Shannon284

diversity estimates from the integrated models was similar to that of SOM.285
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Figure 2: Mean bias and precision of Shannon index from the five study models fitted to the simulated data.
The boxplot shows the distribution of the mean bias and precision for the 74 sites. The five models: two
integrated models (IDMSH and IDMCO), two group count models (GCMSH and GCMCO) and a species
occupancy model (SOM) were fitted to data simulated under the shared structure (coloured in blue) and those
simulated under the covariate structure (red).

3.2 Analysis of PoMS dataset286

3.2.1 Estimation of Shannon index (H’)287

Shannon diversity is expected to be higher for communities with a comparatively higher number of species288

(Roswell et al., 2021) and/or evenness (Nagendra, 2002). It is, therefore, not surprising that the Shannon289

indices were highest for hoverflies (n = 79 species) and lowest for bumblebees (n = 17 species; Tables 1 and 3).290

The estimates of H ′ from the five models showed consistencies in the estimated diversity pattern for each291

insect group, as we observe in Table 3 and Supplementary information 2 Figure S2-1. Firstly, there was a292

negative latitudinal effect on the estimates of the Shannon indices (that is, the Shannon index decreased with293

the latitudinal gradient; Figure S2-2). The community intercept (µω0 ) estimated from GCMCO and IDMCO294

were relatively the same, but the estimated latitudinal and species effect (µβ1 and µβ0 respectively) from the295

integrated models lies between those estimated from the group count and species occupancy models (Figure296
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Shannon index log predictive density Marginal Contribution
Insect group Model Mean SD All dataset Pantrap FIT count Pantrap FIT count
Bumblebees GCMSH 2.79 0.02 - - −239.90 - -

GCMCO 2.78 0.06 - - −290.15 - -
SOM 1.08 0.17 - −3649.25 - - -

IDMSH 2.29 0.07 −3561.26 - 3322.39 −238.90 326.86 1.0
IDMCO 1.86 0.08 −3489.85 −3250.97 − 238.87 398.28 1.03

Hoverflies GCMSH 4.34 0.014 - - −517.49 - -
GCMCO 4.32 0.05 - - −513.62 - -

SOM 3.98 0.13 - −35118.55 - - -
IDMSH 4.01 0.08 −36195.10 −35715.74 −479.36 38.14 −597
IDMCO 4.03 0.09 -32275.90 −31716.42 −559.48 −45.86 3402

Solitary bees GCMSH 4.10 0.08 - - −150.51 - -
GCMCO 4.08 0.18 - - −446.05 - -

SOM 3.04 0.40 - - 14372.42 - - -
IDMSH 3.25 0.33 - 11341 −11165.97 - 175.39 3206.45 -24.88
IDMCO 3.27 0.31 −11464.48 −11285.78 −178.70 3086.64 −28.19

Table 3: Log predictive density from the two-fold cross-validation, the marginal contribution of each dataset
and the Bayesian p-values from the posterior predictive checks of all the models fitted to the PoMS dataset. For
each insect group, the marginal contribution of pantrap data was estimated as lppdSOM − lppdIDMSH and
lppdSOM− lppdIDMCO; and the marginal contribution of FIT count data was estimated as the lppdGCMSH−
lppdIDMSH and lppdGCMCO − lppdIDMCO.

S2-2). Additionally, the group count models (GCMSH and GCMCO) had the highest average H ′ estimates297

(Table 3), followed by the integrated models (IDMSH and IDMCO) and finally, the species occupancy model298

(SOM). These observations suggested that the integrated models serve as the average model for the species299

occupancy and group count models.300

We have already established from the simulation study that the priors strongly affect the Shannon indices301

estimated from the GCM models. Narrowing our observations to the site-specific precision estimates of the302

Shannon indices from the integrated models and SOM, we observed the estimates from the integrated models303

were more precise than those from SOM (Figure 3). This precision was also higher for the sites with higher304

Shannon diversity estimates (compare Figure 3 to Supplementary information 2 Figure S2-1).305

3.2.2 Predictive Performance and information provided306

Table 3 shows the two-fold cross-validation log-predictive density estimated from the five study models for307

the three insect groups: bumblebees, solitary bees and hoverflies. For bumblebees, we find that both IDMs308

outperform the single-dataset models in predicting both the pantrap and FIT count data. For hoverflies, the309
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Figure 3: Precision of the Shannon diversity (H’) estimates for each of the 74 PoMS sites from the five models
in this study summarised in Table (2) for each of the insect groups: A) bumblebees, B) hoverflies and C)
solitary bees.
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best fitting model in each case is an IDM, with the covariate formulated model (IDMCO) performing best for310

pantrap data and the shared formulated model performing best for the FIT counts. For solitary bees, we find311

that both IDMs outperform the SOM for predicting the pantrap data, but that one of the group count models is312

the best predictor of the FIT count data. These results show that the IDMs outperformed the single models in313

the prediction accuracy of new data for bumblebees and hoverflies and at least as well for the solitary bees. In314

other words, the inclusion of FIT Count data from has added information to the models.315

Table 3 also shows the marginal contribution of each dataset to the integrated models. For the models fitted316

to the bumblebees and hoverflies, both pantrap and FIT count data contributed to the IDM (with a positive317

marginal contribution), but the contribution was higher in IDMCO than IDMSH. For solitary bees, the marginal318

contribution of the FIT count was negative for both IDMCO and IDMSH (indicating they do not provide319

information into the IDM) and the marginal contribution of the pantrap data was positive, indicating that the320

FIT count data did not inform the IDMs. This was expected since the average FIT counts of bumblebees and321

hoverflies (1.11± 5.18 and 2.74± 10.92 respectively), were significantly higher than that of the solitary bees322

(0.29± 1.62; Table 1). There was much information from this count data to inform the IDMs to predict the323

pantrap data better for bumblebees and hoverflies.324

4 Discussion325

Many data types are available in community ecology, and many modelling techniques are available to analyse326

data types separately. In some cases, multiple datasets are available that differ in taxonomic resolution. We327

developed an integrated distribution model that combined data from different taxonomic levels to estimate328

alpha diversity in a community. Using a combination of simulations and analysis of empirical data, we showed329

that integrated models can produce useful estimates of community ecology parameters from datasets that lack330

the information to do so if analysed separately. In addition, the IDMs performed better than the single models331

in most cases.332

Previous studies have shown that IDMs perform better than single models in estimating state variable333

parameters and prediction accuracy of new datasets (Strebel et al., 2022; Pacifici et al., 2017; Doser et al., 2022;334

Miller et al., 2019). Although Miller et al. (2019) noted that IDMs present opportunities to model community335

dynamics and diversity from multiple datasets, our study is the first to implement this by combining data336
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from different taxonomic levels (species and group level). Our simulation and case studies showed that the337

IDMs outperform the single models in producing precise alpha diversity estimates in a community if both338

datasets share information between them (Figure 2, Supplementary information 2 Figure S2-1 and Table 3).339

The information from each dataset was shared through the joint likelihood framework, and the information340

sharing process has been noted in the literature to be the benefit of using IDMs (Isaac et al., 2020; Miller et al.,341

2019).342

Furthermore, the proposed IDMs outperform the single models’ prediction accuracy of new datasets for343

some insect groups. From our model assessment of the PoMS data using two-fold cross-validation, IDMs344

outperformed the single models in predicting new data for all insect groups, except the solitary bees FIT count345

data (Table 3). The out-performance is evident from the information provided by each dataset into the IDM to346

inform the estimation of the model parameters directly. This observation is well noted in literature (Zulian347

et al., 2021). For instance, when modelling the solitary bees dataset, pantrap data did not inform the IDM to348

predict the FIT count data better, and as such the group count model outperforms the IDMs (Table 3).349

In this study, we explored two IDM variants with different joint likelihood formulations. The covariate350

and shared formulations had very similar performance in terms of predictive performance and alpha diversity351

estimation but differed in how well they fit the two datasets. The shared joint likelihood structure ensured352

that all state variables were shared between both datasets. The covariate structure allowed some flexibility in353

sharing the state model definition by allowing each dataset to have a unique intercept. Previous studies on354

IDMs, using either covariate and shared joint likelihood structures, have all shown that IDMs have higher355

prediction accuracy than single models (Koshkina et al., 2017; Zulian et al., 2021; Fletcher Jr et al., 2019;356

Fletcher et al., 2016; Pacifici et al., 2017; Simmonds et al., 2020; Adde et al., 2021; Ahmad Suhaimi et al.,357

2021). These methods have been used to model species distributions and turnover using multiple data types358

from the same taxonomic levels. Just a few of these studies (such as Chevalier et al., 2021) exist that explore359

various joint likelihood structures for their IDMs. Our study showed that the choice of structure has little effect360

on the IDM’s predictive performance over the single models since all the IDMs outperform the single models,361

except for solitary bees FIT count data (Table 3). Additionally, the pattern of estimated Shannon diversity and362

the precision of the estimates was invariant to the choice of the joint likelihood structure (Figures 2 and 3 and363

Table 3). This indicates the choice of the joint likelihood formulation is inconsequential to the performance of364

IDMs, and any alternative can be chosen to model alpha diversity.365
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The UK PoMS protocols are specifically designed to produce datasets with different taxonomic resolutions.366

New monitoring technologies create many situations in which analysts might encounter datasets that differ367

in taxonomic resolution. For example, data on the abundance of aquatic macroinvertebrates, such as those368

collected by kick-sampling for Water Framework Directive reporting, are typically reported at the genus level369

or higher (Haase et al., 2023). Modern DNA (meta)barcoding makes it possible to identify specimens in these370

samples to species level, but typically only as presence-absence data (Bohan et al., 2017). Another promising371

use case is the combination of traditional field surveys with data identified from images using computer vision:372

algorithms often have low confidence in the species identity, but high confidence in the Genus. Our model373

provides a ready-made solution for estimating community parameters in such situations.374

Other situations might arise in which mixed taxonomic resolution is an unwanted byproduct of the data375

generation process. A good example would be a citizen science projects where participants differ in their376

taxonomic skill levels, such that some report counts at species level but others report at a coarser level. Our377

approach provides a way to use all the data at the resolution at which it was captured. Thus, our proposed378

model further extends the range of applications for IDMs in ecology and conservation to help researchers and379

conservationists make the most of available data, in order to provide better evidence and understanding about380

biodiversity.381
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