REFERENCES
1. Finsterer J, C Stollberger, and JA Towbin, Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 2017; 14: 224-237.
2. Engberding R, et al, Isolated non-compaction cardiomyopathy. Dtsch Arztebl Int 2010; 107: 206-13.
3. Chebrolu LH, AM Mehta, and NC Nanda, Noncompaction cardiomyopathy: The role of advanced multimodality imaging techniques in diagnosis and assessment. Echocardiography 2017; 34: 279-289.
4. Stollberger C, C Wegner and J Finsterer, Fetal Ventricular Hypertrabeculation/Noncompaction: Clinical Presentation, Genetics, Associated Cardiac and Extracardiac Abnormalities and Outcome. Pediatr Cardiol 2015; 36: 1319-26.
5. Hoedemaekers YM, et al, Prenatal ultrasound diagnosis of MYH7 non-compaction cardiomyopathy. Ultrasound Obstet Gynecol 2013;41: 336-9.
6. Nomura Y, et al, A novel MYH7 gene mutation in a fetus with left ventricular noncompaction. Can J Cardiol 2015; 31:103 e1-3.
7. Delplancq G, et al, Cardiomyopathy due to PRDM16 mutation: First description of a fetal presentation, with possible modifier genes. Am J Med Genet C Semin Med Genet 2020; 184:129-135.
8. Zahavich L et al, Novel Association of a De Novo CALM2 Mutation With Long QT Syndrome and Hypertrophic Cardiomyopathy. Circ Genom Precis Med 2018; 11: 002255.
9. Pipilas DC, et al, Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm 2016; 13: 2012-9.
10. Makita N, et al, Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet 2014; 7: 466-74.
11. Clur SB, et al, Left Ventricular Isovolumetric Relaxation Time Is Prolonged in Fetal Long-QT Syndrome. Circ Arrhythm Electrophysiol 2018; 11: 005797.