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Abstract

It is difficult to prove a capable sufficient condition for the exact controllability of
systems containing nonlinearities and randomness. As a result, scientists are inves-
tigating the concept of approximate controllability for such systems. In this paper,
we handle the so-called C-controllability, which was suggested as a weaker analog
of the exact controllability at the beginning of the period when controllability issue
oversteps to stochastic systems. We prove a sufficient condition of C-controllability
for a semilinear stochastic system driven by a Wiener process. This sufficient condi-
tion is verified on examples. Two ways of improvement of this sufficient condition
are discussed.
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1 INTRODUCTION

The concept of controllability was defined by Kalman1 in 1960 for finite dimensional deterministic control systems. The moti-
vation was to find conditions under which control systems are able to move any point to any point in the state space for a finite
time. This is very important in engineering applications. A simple example is a robot which has to move an object in some area
to some another location in the same area. Such a robot is functional if the control system, describing the movement of its arm,
is controllable. Another example is a network which has to communicate every input to every output.
Further studies in the area of controllability demonstrated that it is suitable to consider stronger and weaker versions of

controllability called, respectively, exact and approximate controllability. The reason for this was the fact that many infinite
dimensional control systems are not exactly controllable although they are approximately controllable2,3. The necessary and
sufficient conditions of exact and approximate controllability for deterministic linear systems are almost completely studied and
presented in books4,5,6,7,8.
Many applied control systems are nonlinear. Just sufficient conditions of controllability have been studied for different kinds

of nonlinear systems including first order9,10,11, second order12,13,14,15, fractional order16,17, impulsive18,19,20, constrained21,
with memory22, etc., systems. Different fixed-point theorems form a basic method of study for deterministic nonlinear
systems23,24,25,26,27.
The extension of controllability concepts to stochastic systems adds a new element to the issue. Now, the terminal states are

random. Therefore, two factors lead up to the wideness of the attainability set. The first one is the wideness of the state space as
in the deterministic case and the second one is the randomness of the values. Some authors raise both these factors and define
exact controllability of a stochastic system, subject to the filtration {t ∶ 0 ≤ t ≤ T }, as steering of any 0-measurable L2-
random variable to any T -measurableL2-random variable for a finite time T . At first glance, such a definition looks acceptable.
But unlike quantum physics in which positions of electrons are naturally random, engineering deals with objects which have
well-determined positions in nature so that a possible randomness is due to the luck of knowledge. On the example of the control
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system describing the motion of the robot’s arm, mentioned at the beginning, consider a possible random state � which has
two different values a and b with the equal probabilities 1/2. We can raise the following question: Is it important to know that
the robot is able to steer an initial state to �? What is wanted from the robot’s arm is reaching all possible nonrandom values
including a and b with probability 1, but reaching � is a completely needless ability. This example clearly demonstrates that in
the stochastic case, the wideness of the state space should be raised while the randomness damped.
Another argument supporting this idea is an example28,29, which demonstrates that a linear stochastic control system driven

by a Wiener process never steers every 0-measurable L2-random variable to every T -measurable L2-random variable for a
finite time T unless the system remains essentially stochastic (does not reduce to deterministic equation in which 0 and T are
trivial). This fact essentially extends to nonlinear stochastic systems because their controllability significantly depends on the
controllability of their linear part.
Note that damping the randomness in the definitions of controllability was considered previously as well. In such a way, theC-

andS-controllability concepts were defined as extensions of the exact and approximate controllability, respectively, to stochastic
systems30,31 . Partial versions of these concepts have also been investigated29,32. In this paper, we handleC-controllability. Fixed-
point theorems are not appropriate for dealing with this concept because they require coerciveness of stochastic controllability
operator, which is non-coercive indeed unless the system remains essentially stochastic28,29. Therefore, we apply an alternative
method, avoiding fixed-point theorems. The basic idea of this method is a construction of steering controls piece-wisely based on
the properties of linear systems. Originally, this method was introduced for deterministic systems33 and was successfully applied
in the context of approximate controllability18,19,20,28. A modification of this method to the context of exact controllability has
already been done for deterministic systems34. In this paper, we use a combination of the piecewise construction method in the
both contexts and prove the C-controllability of a stochastic semilinear system under consideration.
The rest of the paper is organised as follows. In the next section, we introduce general notation used in this paper. Section 3 con-

tains a description of the stochastic semilinear control system under consideration. In Section 4, we discuss theC-controllability.
We prove a sufficient condition of C-controllability for the stochastic system under consideration in Section 5. Finally, Section
6 discusses this sufficient condition on examples and Section 7 concludes the paper.

2 NOTATION

One major notation is that we prefer to write the arguments of functions in subscripts, for example, xt instead of x(t). This
allows to make shorter long mathematical expressions. ℝ denotes the system of real numbers. The norm and scalar product in
all Hilbert and Banach spaces will be denoted by ‖ ⋅ ‖ and ⟨⋅, ⋅⟩, respectively. In ambiguous cases, we will mention shortly the
space, to which they correspond.
Let X and Y be separable Hilbert spaces. We denote by (X, Y ) the space of all bounded linear operators, and by 2(X, Y )

the space of all Hilbert–Schmidt operators from X to Y . If X = Y , then we use the short symbols (X) and 2(X) for them.
The space (X, Y ) is a Banach space and 2(X, Y ) is a Hilbert space. I and 0 are identity and zero operators, respectively. The
adjoint of a linear operator A is denoted by A∗.
If Q ∈ (X) is such that Q∗ = Q and ⟨Qx, x⟩ ≥ 0 for all x ∈ X, then we write Q ≥ 0. Note that for Q ≥ 0, Q1∕2 exists. If

Q ∈ (X) is such thatQ∗ = Q and ⟨Qx, x⟩ > 0 for all x ∈ X with x ≠ 0, then we writeQ > 0. Note that forQ > 0,Q−1 exists
but maybe unbounded linear operator. If Q ∈ (X) is such that Q∗ = Q and there exists c > 0 satisfying ⟨Qx, x⟩ ≥ c‖x‖2

for all x ∈ X, then Q is said to be coercive. If Q is coercive with the preceding inequality, then Q−1 exists as a bounded linear
operator and ‖Q−1

‖ ≤ 1∕c.
For a nuclear operator W on X with W ≥ 0, we denote by W (X, Y ) the collection of all (bounded or unbounded) linear

operators A from the range ofW 1∕2 to Y such that AW 1∕2 ∈ 2(X, Y ). Note that W (X, Y ) is a Hilbert space with

⟨A,B⟩W (X,Y ) = ⟨AW 1∕2, BW 1∕2
⟩2(X,Y ).

We assume that a complete probability space (Ω,Σ,P) is given. E� denotes the expectation of �. A Wiener process w over
this probability space is called standard if w0 = 0, Ewt = 0 and covwt = W t, whereW is a nuclear operator if w takes values
in an infinite-dimensional Hilbert space andW = I if w is finite dimensional.
C(0, T ;X) denotes the space of continuous functions from [0, T ] to X. L2(0, T ;X) is the space of measurable and square

integrable in the Lebesque sense X-valued functions on [0, T ]. L2(Ω, X) is the space of Σ-measurable and square integrable
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X-valued random variables. For a sub-�-field Σ0 of Σ, we let
L2(Ω,Σ0, X) = {� ∈ L2(Ω, X) ∶ � is Σ0-measurable}.

For a given filtration  = {t ∶ 0 ≤ t ≤ T }, we denote
L
2 (0, T ;X) = {x ∈ L2(0, T ;L2(Ω, X)) ∶ x is t-adapted},

and
C (0, T ;X) = {x ∈ C(0, T ;L2(Ω, X)) ∶ x is t-adapted}.

3 DESCRIPTION OF THE SYSTEM

Consider the stochastic semilinear control system
dxt = (Axt + Btut + f (t, ut)) dt + g(t, xt, ut) dwt (1)

on the interval [0, T ] with T > 0, where x and u are state and control processes. We assume that the following conditions hold.
(A) X, Y , and U are separable Hilbert spaces.
(B) A is a closed linear operator onX with the dense domainD(A) ⊆ X, generating a strongly continuous semigroup eAt, t ≥ 0.
(C) B ∈ (U,X).
(D) w is a Y -valued standard Wiener process on [0, T ] with covwt = W t, 0 ≤ t ≤ T , generating a complete and continuous

filtration  = {t ∶ 0 ≤ t ≤ T }.
(E) f ∶ [0, T ] × U → X and g ∶ [0, T ] ×X × U → W (Y ,X) are functions with properties

• f and g are Lebesgue measurable in t,
• g are Lipschitz continuous in x,
• f and g are continuous in u,
• f and g are bounded.

We let Uad = L
2 (0, T ;U ) and call it as a set of admissible controls. The above conditions imply that for every initial state

x0 ∈ L2(Ω,0, X) and control u ∈ Uad, the equation

xt = eAtx0 +

t

∫
0

eA(t−s)(Bus + f (s, us)) ds +

t

∫
0

eA(t−s)g(s, xs, us) dws (2)

admits a unique solution in C (0, T ;X)35,36. This solution is called a mild solution of (1). Note that if x� is given for 0 ≤ � < T ,
then (2) can also be written as

xt = eA(t−�)x� +

t

∫
�

eA(t−s)(Bus + f (s, us)) ds +

t

∫
�

eA(t−s)g(s, xs, us) dws (3)

for all � ≤ t ≤ T . We will denote by x�,u the mild solution of (1) corresponding to the initial state x0 = � ∈ L2(Ω,0, X) and
the control u ∈ Uad.
If f (t, u) = 0 and g(t, x, u) = 0, then the system (1) becomes linear. The controllability operatorQt associated with this linear

system is defined by
Qt =

t

∫
0

eAsBB∗eA∗s ds, 0 ≤ t ≤ T . (4)

In addition to (A)–(E), we will need in the following condition as well:
(F) The operator Qt, defined by (4), is coercive for all 0 < t ≤ T and there exists 0 ≤ � < 1 such that t1+�‖Q(t)−1‖ is bounded

on (0, T ].



4 BASHIROV

4 C-CONTROLLABILITY

TheC-controllability is an analog of exact controllability for stochastic systems on the basis of raising wideness of the state space
and damping randomness30,31. It was defined for partially observable systems. Since the system in (1) is completely observable,
we will adapt the definition of C-controllability to this case.
Definition 1. Let x�,u be the state process of the stochastic control system (1), corresponding to the initial value � ∈ L2(Ω,0, X)
and the control u ∈ Uad. Denote

C�
T =

⋂

">0, 0≤p<1
{� ∈ X ∶ ∃u ∈ Uad such that Ex�,u = �

and P (‖x�,uT − �‖2 > ") ≤ 1 − p}.

The system in (1) is said to be
• C-controllable (for the time T ) if C�

T = X for all � ∈ L2(Ω,0, X);
• C-controllable to D(A) (for the time T ) if D(A) ⊆ C�

T for all � ∈ L2(Ω,0, X).
For a substantial discussion of C-controllability, we refer to30, noticing the result29 that the system (1) is C-controllable if

and only if for every � ∈ L2(Ω,0, X) and � ∈ X, there is a sequence of controls {un} in Uad such that
• x�,unT converges to � with probability 1;

• Ex�,unT = � for all n.
In other words, {un} should provide a sequence {x�,unT } of terminal random values which converges to � with probability 1 being
centralized on the limit. If the second item drops, then the system is called S-controllable which is an analog of approximate
controllability for stochastic systems. So, the second itemmoves the controllability from the approximate level to the exact level.
Here, C is the abbreviation of the word "combined". Letting f (t, u) = 0 and g(t, x, u) = 0 in (1), we obtain a linear sys-

tem, which can be decomposed into the sum of two linear systems: deterministic and purely stochastic. Then C-controllability
becomes a combination of exact controllability of the deterministic component and approximate null-controllability of the purely
stochastic component in the sense of convergence with probability 1. At the same time, the term "exact" in the stochastic case is
used for a controllability in the sense of moving every x0 ∈ L2(Ω,0, X) to every � ∈ L2(Ω,T , X). Whilst it fails for stochastic
systems29, there are many past papers devoting to this concept. In order to remove a possible confusion, we prefer the term "C-
controllability" although "exact controllability" suites Definition 1 better. The arguments supporting C- and S-controllability
as sustainable extensions of exact and approximate controllability to stochastic systems are coming from the linear stochastic
systems. According to30, a linear stochastic system is

• C-controllable for the time T for every T > 0 if and only if its deterministic component is exactly controllable for the
time T for every T > 0;

• S-controllable for the time T for every T > 0 if and only if its deterministic component is approximately controllable for
the time T for every T > 0.

A sufficient condition of S-controllability for semilinear stochastic systems has already been proved28. The same problem for
C-controllability is still open because it is difficult to prove a sufficient condition of C-controllability for semilinear systems.
In this paper, we prove a sufficient condition of C-controllability to D(A) for the system (1). In applications, we are mostly

interested in reaching the points from D(A). The points from X ⧵ D(A) are secondary, that is, reaching these points is not an
important ability of the systems. The methods of study of the exact controllability by fixed-point theorems, require so strong
conditions that they cover the points inD(A) together with the points ofX ⧵D(A). In this paper. we use a delicate proof method
which differentiates the points ofD(A) andX ⧵D(A). This method is a combination of two previously developed methods. The
first one was suggested for a construction of a control steering any point inX to any point inD(A) for a deterministic semilinear
system34. The second one was initiated for proving approximate controllability of deterministic semilinear systems33 and then
it was extended to stochastic semilinear systems for proving S-controllability28.
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5 MAIN RESULT

The following theorem states the main result of this paper.
Theorem 1. Under the conditions (A)–(F), the stochastic system (1) is C-controllable to D(A) on the interval [0, T ].

Proof. Our proof consists of three steps.
Step 1: This step points out a well-known controllability result, which will be used in the next step. Letting f (t, u) = 0 and

g(t, x, u) = 0 in (3), we obtain the linear system

yt = eA(t−�)y� +

t

∫
�

eA(t−s)Bvs ds, 0 ≤ � ≤ t ≤ T . (5)

Under the conditions (A)–(C), the linear system (5) is exactly controllable on the interval [�, T ] if and only if QT−� is coercive.
Moreover, a control steering the initial state y� = � ∈ X to the final state � ∈ X can be defined by

vt = B∗eA
∗(T−t)Q−1

T−�(� − e
A(T−�)�), � ≤ t ≤ T . (6)

If � ∈ L2(Ω,� , X), then v defined by (6) belongs to L2(�, T ;L2(Ω,� , U )) and steers the random variable � to nonrandom
� ∈ X. For � ∈ X, this theorem is proved in many sources4. Then for � ∈ L2(Ω,� , X), it is immediate.
Step 2: Now, we let just g(t, x, u) = 0 in (3) and obtain the system

zt = eA(t−�)z� +

t

∫
�

eA(t−s)(Bvs + f (t, vs)) ds, 0 ≤ � ≤ t ≤ T . (7)

It is already proved34 that for every z� = � ∈ X and � ∈ D(A), there exists a control v ∈ L2(0, T ;U ) steering � to � along
the system in (7). We claim that every � ∈ L2(Ω,� , X) can be steered to every nonrandom � ∈ D(A) by some control
v ∈ L2(�, T ;L2(Ω,� , U )). The proof is essentially based on the proof method from34. We will go over basic items of this proof.
Fix � ∈ L2(Ω,� , X) and � ∈ D(A) and construct a control v steering � to � along the system in (7) in the following recursive

way. Let t0 = �, let �k = (T − �)∕2k, and let
tn = � +

n
∑

k=1
�k, n = 1, 2,…

Clearly, � = t0 < t1 <⋯ < tn <⋯ < T with limn→∞ tn = T . Consider the system (7) on [t0, t1]. According to Step 1, the control
v1t = B

∗eA∗(t1−t)Q−1
�1
eA�1(� − �), t0 ≤ t ≤ t1,

steers � at the instant t0 to eA�1� at the instant t1 along the system in (5). Therefore,

eA�1� = eA�1� +

t1

∫
t0

eA(t1−s)Bv1s ds.

We let vt = v1t for t0 ≤ t ≤ t1. Clearly, vt is �-measurable for all t0 ≤ t ≤ t1 since � has the same property. Then

z1 = z
�,v
t1
= eA�1� +

t1

∫
t0

eA(t1−s)f (s, vs) ds ∈ L2(Ω,� , X),

where z�,v is defined by (7) for the initial value z� = � and control v.
Next, assume that v is defined on [t0, tn−1] with zn−1 = z�,vtn−1 ∈ L2(Ω,� , X) and continue v to (tn−1, tn] by letting

vnt = B
∗eA∗(tn−t)Q−1

�n
eA�n(� − zn−1), tn−1 ≤ t ≤ tn. (8)

According to Step 1, vn steers zn−1 at the instant tn−1 to eA�n� at the instant tn so that

eA�n� = eA�nzn−1 +

tn

∫
tn−1

eA(tn−s)Bvns ds.
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Define v on the interval (tn−1, tn] as vt = vnt . Then

zn = z
�,v
tn
= eA�n� +

tn

∫
tn−1

eA(tn−s)f (s, vs) ds ∈ L2(Ω,� , X).

Thus, the function v ∶ [�, T ) → L2(Ω,� , U ) is defined by recursion. We can let vT be any value because it does not change
anything in (7). So, v is defined on [�, T ].
For estimation purposes, introduce the constants

K = sup
[0,T ]

‖eAt‖, M = sup
[0,T ]×U

‖f (t, v)‖.

Then
‖zn − �‖ ≤ ‖eA�n� − �‖ +

‖

‖

‖

‖

tn

∫
tn−1

eA(tn−s)f (s, vs) ds
‖

‖

‖

‖

≤ ‖eA�n� − �‖ +KM�n.

Here, the right side is nonrandom and converges to 0 since limn→∞ �n = 0. So, limn→∞ zn = � uniformly, which implies the
convergence in the mean square sense as well.
Let us prove that v ∈ L2(�, T ;L2(Ω,� , U )). By construction, v takes values in L2(Ω,� , U ). Moreover, by (8),

tn

∫
tn−1

E ‖vnt ‖
2 dt =

tn

∫
tn−1

E ‖B∗eA∗(tn−t)Q−1
�n
eA�n(� − zn−1)‖2 dt

=

tn

∫
tn−1

E ⟨eA(tn−t)BB∗eA∗(tn−t)Q−1
�n
�n, Q

−1
�n
�n⟩ dt

= E ⟨�n, Q
−1
�n
�n⟩ ≤ K2

‖Q−1
�n
‖E ‖zn−1 − �‖2

≤ 2K2
‖Q−1

�n
‖(‖eA�n−1� − �‖2 +K2M2�2n−1),

where �n = eA�n(� − zn−1). Therefore,
T

∫
0

E‖vt‖2 dt =
∞
∑

n=0

tn+1

∫
tn

E‖vn+1t ‖

2 dt

≤ 2K2
∞
∑

n=0
‖Q−1

�n+1
‖(‖eA�n� − �‖2 +K2M2�2n)

≤ 2K2
∞
∑

n=0
�1+�n+1‖Q

−1
�n+1

‖

(

�n
�n+1

)1+�

�1−�n

(

‖

‖

‖

‖

eA�n� − �
�n

‖

‖

‖

‖

2
+K2M2

)

.

Here, �1+�n+1‖Q
−1
�n+1

‖ is bounded by condition (F), (�n∕�n−1)1+� = 21+� and K2M2 are constants and ‖(eA�n� − �)∕�n‖ is also
bounded since � ∈ D(A) and its limit exists. Then, there is c > 0 such that

T

∫
0

E‖vt‖2 dt ≤ c
∞
∑

n=0
�1−�n = c(T − �)

∞
∑

n=0

(

1
21−�

)n

. (9)

Since 0 < 1 − � ≤ 1, the geometric series in the right side of (9) converges, proving that v ∈ L2(�, T ;L2(Ω,� , U )).
Consequently, z�,v ∈ C(�, T ;L2(Ω,� , X)). Therefore, we can calculate z�,vT as

z�,vT = lim
t→T

z�,vt = lim
n→∞

zn = �,

where both limits are in the mean square sense.
Step 3: Finally, we consider the system (1) (or (2)) by itself. To construct a sequence {un} of controls in L

2 (0, T ;U ) forproving its C-controllability, we employ method from33.
Take any � ∈ L2(Ω,0, X) and � ∈ D(A). Let {Tn} be a strictly increasing sequence in [0, T ] with limn→∞ Tn = T . Define

un on [0, Tn] to be constant, say unt = 0, 0 ≤ t ≤ Tn. Denote xn = x�,unTn
and complete the definition of un, selecting it on (Tn, T ]
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as a control which steers xn to � along the system (7) with � = Tn. The existence of such a control is proved in Step 2, according
to which ut is 0-measurable for t ∈ [0, Tn] and Tn-measurable for t ∈ (Tn, T ]. So, un ∈ L

2 (0, T ;U ). Then

� = eA(T−Tn)xn +

T

∫
Tn

eA(T−t)(Bunt + f (t, u
n
t )) dt.

Therefore,
x�,u

n

T = � +

T

∫
Tn

g(t, unt , x
�,un
t ) dwt.

This implies

E x�,u
n

T = � + E
(

T

∫
Tn

g(t, unt , x
�,un
t ) dwt

)

= �, n = 1, 2, …

and

E‖x�,u
n

T − �‖2 = E
‖

‖

‖

‖

T

∫
Tn

g(t, unt , x
�,un
t ) dwt

‖

‖

‖

‖

2

≤

T

∫
Tn

E‖g(t, unt , x
�,un
t )‖2W dt ≤ L2(T − Tn)→ 0, n→∞.

Here,L is a positive constant coming from the boundedness of g. Thus, x�,unT converges to � in the mean square sense. Therefore,
x�,u

n

T converges to � in probability. Finally, there is {nk} such that {x�,unkT } converges to � with probability 1.
This completes the proof of the theorem.

Remark 1. One can observe that the method of construction of un in the proof of Theorem 1 accepts not only � ∈ D(A), but
also � ∈ L2(Ω,T1 , D(A)), where T1 maybe arbitrarily close to T but T1 < T . Consequently, if {t} is left-continuous at T , that
is ⋃0≤t<T t = T , which is the case for a Wiener process if {t} is its natural filtration, this proof is valid for more general
C ′-controllability as defined next: The system (1) is said to be C ′-controllable to D(A) on [0, T ] if for every � ∈ L2(Ω,0, X)
and � ∈ L2(Ω,T , D(A)), there is a sequence of controls {un} in L

2 (0, T ;U ) such that
• x�,unT converges to � with probability 1;
• Ex�,unT = E� for all n.

With all that, it should be noted that this is not a steering of any initial � ∈ L2(Ω,0, X) to any final � ∈ L2(Ω,T , X), which
is indeed not possible unless the system remains essentially stochastic.

6 EXAMPLES

The concept of C-controllability toD(A) is mostly suitable for the cases withD(A) = X. These are cases when A is a bounded
linear operator, for example, A is an integral operator or X = ℝn.
Consider the following simple one-dimensional semilinear stochastic system

dxt = (axt + ut + f (t, ut))dt + g(t, xt, ut)dwt (10)
with a ≠ 0. Its controllability operator, which turns to be a real-valued function, has the form

Qt =

t

∫
0

e2as ds = e2at − 1
2a

.

We calculate
‖Qt‖ =

e2at − 1
2a

> 0 and ‖Q−1
t ‖ = 2a

e2at − 1
.
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Since
lim
t→0+

t‖Q−1
t ‖ = lim

t→0+

2at
e2at − 1

= 1,

t‖Q−1
t ‖ is bounded on (0, T ]. So, the condition (F) holds with � = 0. If f and g satisfy condition (E), the system described by

(10) is C-controllable by Theorem 1.
Consider a delay version of the system in (10):

dxt = (axt + bxt−" + ut + f (t, xt, ut))dt + g(t, xt, ut)dwt, (11)
where " > 0 and b ≠ 0. Although the process x in (11) is one-dimensional, the system (11) in the whole is infinite dimensional
because of the presence of a delay and governed by a first order partial differential equation. To demonstrate this issue, assume
the initial conditions

x0 = �1 and x� = �2� , −" ≤ � < 0,
and consider the state space X = ℝ × L2(−", 0;ℝ). Define the linear operator A by

A
[

�1

�2

]

=

[

a�1 + b�2−"
d
d�
(�2 − �1)

]

,

with the domain
D(A) =

{[

�1

�2

]

∈ X ∶ d
d�
�2 ∈ L2(−", 0;ℝ), �2(0) = �1

}

.

Now extend the solution x if (11) in the form
x̃t =

[

xt
x̄t

]

,

where x̄ is the "-past of x defined by
[x̄t]� =

{

xt+� if t + � > 0,
�2t+� if t + � ≤ 0.

Then
dx̃t = (Ax̃t + But + F (t, ut))dt + G(t, xt, ut)dwt, (12)

where
x̃0 =

[

�1

�2

]

, B =
[

1
0

]

, F (t, u) =
[

f (t, u)
0

]

, G(t, x̃, u) =
[

g(t, x, u)
0

]

.

Therefore, the system (11) is completed to the form (12) without delay and fits to the form of (1).
C-controllability of (11) can be deduced without referring to (12) as well. Consider the greatest integer n with n" < T . It

suffices to manage the system (11) on [n", T ]. On this interval, xt−" is a known function of t. We can add it to the nonlinear drift
term f and obtain a new nonlinear drift term

f1(t, u) = xt−" + f (t, u),
noticing that f1 is still independent on x. If f is a bounded function of t and u then so is f1 because x is continuous on the compact
interval [(n− 1)", n"] implying boundedness of x on that interval. So, the function f1 satisfies condition (F) if so is f . Then the
system (11) on [n", T ] becomes C-controllable since the system (10) has the same property. This implies its C-controllability
in the wider interval [0, T ].
Following to the second example, C-controllability of the finite dimensional impulsive systems with delays or not can be

proved under the conditions (A)–(F). Theorem 1 is not applicable to semilinear systems governed by heat equation because the
coercivity of Qt drops. Calculations demonstrate that for semilinear systems governed by wave equation, the boundedness of
t3‖Q−1

t ‖ in condition (F) is required. In this regard, Theorem 1 does not cover such systems as well.

7 CONCLUSION

In this paper, a sufficient condition for C-controllability of a semilinear stochastic control system is proved. C-controllability
is an analog of exact controllability for stochastic systems, suggested at the beginning of the period when controllability issue
oversteps to stochastic systems. Generally speaking, it is difficult to prove sufficient conditions of exact controllability or its
analogs for systems containing nonlinearity and randomness although it is relatively easy for approximate controllability. This is
the reason that there is no any capable sufficient condition of exact controllability or its analogs proven in the existing literature
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for such systems. The sufficient condition from this paper covers many systems, but still needs improvements. It does not cover
important second order systems as it was mentioned at the end of Section 6. Also, the independence on x of the nonlinear drift
term f in (1) could be considered as a point for improvement. It should be noted in the deterministic case, that is, if g(t, x, u) = 0,
the dependence of f on x does not create any difficulty34. Summarizing, we see essentially two points for improvement of the
conditions of Theorem 1:

• The condition (F) requires the boundedness of t1+�‖Q−1
t ‖, 0 < t ≤ T , for 0 ≤ � ≤ 1. In order to cover important second

order systems, this condition should be weakened up to boundedness of t3‖Q−1
t ‖, 0 < t ≤ T .

• The independence of f on xwas used in the third step of proof of Theorem 1. It seems there should be a way of modifying
this proof for the case when f depends on x as well. An argument, supporting this idea, comes from the deterministic case.
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37. Bashirov AE, Uǧural S. Analysing wide-band noise processes with application to control and filtering. IEEE Trans Automat

Control. 2002;47(2):323-327.
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