
Adaptive monitoring of coral health at Scott Reef where

data exhibit nonlinear and disturbed trends over time

Thilan AWLP1,2,3,9, Fisher R4,5,6, Thompson H1,2,3, Menendez P7,8, Gilmour
J4,6, and McGree JM1,2,3,∗

1School of Mathematical Sciences, Faculty of Science, Queensland
University of Technology (QUT), Australia

2Australian Research Council Centre of Excellence for Mathematical and
Statistical Frontiers (ACEMS), Australia

3Centre for Data Science, QUT, Australia

4Australian Institute of Marine Science, Crawley, Australia

5Oceans Institute, University of Western Australia, Crawley, Australia

6Western Australian Marine Science Institution, Perth, Australia

7Department of Econometric and Business Statistics, Monash University,
Australia

8Australian Institute of Marine Sciences, Townsville, Australia

9Department of Mathematics, University of Ruhuna, Sri Lanka

∗Corresponding author:- Postal address: School of Mathematical Sciences,
Faculty of Science, Queensland University of Technology, 2 George Street,
Brisbane, QLD 4000; Tel: +61(0)410372540; Fax: +61 731382310; Email:

james.mcgree@qut.edu.au

Preprint submitted to Methods in Ecology and Evolution August 3, 2021



ADAPTIVE MONITORING OF CORAL HEALTH

Abstract

Time series data are often observed in ecological monitoring. Frequently such1

data exhibit nonlinear trends over time potentially due to complex relation-2

ships between observed and auxiliary variables, and there may also be sudden3

declines over time due to major disturbances. This poses substantial chal-4

lenges for modelling such data and also for model-based adaptive monitoring.5

We propose novel methods for finding adaptive designs for monitoring when6

historical data show such nonlinear patterns and sudden declines over time.7

This work is motivated by a coral reef monitoring program that has been8

established at Scott Reef; a coral reef off the Western coast of Australia.9

Data collected for monitoring the health of Scott Reef are considered,10

and semiparametric and interrupted time series modelling approaches are11

adopted to describe how these data vary over time. New methods are then12

proposed that enable adaptive monitoring designs to be found based on such13

modelling approaches. These methods are then applied to find future mon-14

itoring designs at Scott Reef and form a set of recommendations for future15

monitoring.16

Through applying the proposed methods, it was found that future in-17

formation gain is expected to be similar across a variety of different sites,18

suggesting that no particular location needed to be prioritised at Scott Reef19

for the next monitoring phase. In addition, it was found that omitting some20

sampling sites/reef locations was possible without substantial loss in expected21

information gain, depending upon the disturbances that were observed.22

The resulting adaptive designs are used to provide recommendations for23

future monitoring in this region, and for reefs where changes to the current24

monitoring practices are being sought. Furthermore, as the methods used25

and developed throughout this study are generic in nature, this research has26

the potential to improve ecological monitoring more broadly where complex27

data are being collected over time.28

Keywords: Ecological monitoring, interrupted time series regression, mass
bleaching events, semiparametric regression, sudden declines in trends.
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ADAPTIVE MONITORING OF CORAL HEALTH

1. Introduction29

Coral reefs are one of the most beautiful and biologically diverse ecosys-30

tems globally. Unfortunately, environmental stressors such as severe cyclones31

and bleaching exposures have had a negative impact on coral reefs (Gilmour32

et al., 2019). As a result, the health of coral reefs are continually being mon-33

itored to estimate the impact of such disturbances and to identify additional34

vulnerabilities to decline.35

In long-term coral reef monitoring, experimental design plays a vital role36

in creating survey designs to collect data for assessing coral health, trends37

over space and time, and to identify vulnerabilities of coral communities to38

different disturbances (Campbell et al., 2001). Broadly, there are two types39

of designs; static and adaptive. Static designs are those that do not change40

over time (e.g. the same sites/reefs are visited each year), and have been41

commonly used within monitoring programs. In contrast, adaptive designs42

can vary over time based on, for example, information from new data, and43

such methods have been proposed recently for determining when and where44

to sample within a coral reef to learn about coral health (Kang et al., 2016).45

In the context of adaptive design, the adaptation is primarily informed46

by a statistical model. The purpose of this model is to extract informa-47

tion contained within the historical data to quantify uncertainties about, for48

example, the model itself, the model parameter values, and the response49

variable of interest, and then utilise this information to guide future surveys.50

For example, in Thilan et al. (2021), a spatial Beta regression model was51
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ADAPTIVE MONITORING OF CORAL HEALTH

developed for coral cover, and used to find future adaptive designs. When52

such designs were compared to those based on a linear model, the importance53

of appropriately capturing trends and variability within historical data was54

highlighted as this led to more informative and therefore efficient designs.55

Ecosystems are subjected to a variety of observed and unobserved impacts56

which may interact in a variety of different ways (Newbold et al., 2020). For57

instance, coral reef ecosystems often exhibit nonlinear trends including sud-58

den shifts due to mass coral bleaching, severe storms, and CoTS outbreaks59

(Done, 1992, McCook, 1999). These nonlinear trends poses significant chal-60

lenges in modelling ecological data (Oddi et al., 2019), and this challenge is61

further exacerbated when there are sudden shifts in the overall trend due to62

disturbances (Scheffer et al., 2001).63

Generally, semiparametric regression modelling approaches provide more64

flexibility than parametric models in describing a variety of relationships be-65

tween (a function of) the mean response and given covariates (Crainiceanu66

et al., 2005). Thus, the development and use of semiparametric regression67

modelling approaches has received attention recently for modelling ecological68

data (Vercelloni et al., 2014, 2017). However, currently no methods exist for69

finding adaptive designs based on such models which limits how such infor-70

mation can be used to guide future reef monitoring. In addition, to account71

for sudden or sharp declines in the mean response due to disturbances such as72

a mass bleaching event, approaches from time-series regression modelling can73

be considered. Within a monitoring program, of further interest is then how74
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the coral reef should be sampled to estimate the impact of such a disturbance.75

In this paper, we propose new methods to find adaptive designs when the76

historical data exhibit nonlinear trends and sudden declines over time. The77

motivation for this research is the improvement of the Scott Reef Research78

Program (SRRP); a monitoring program of a coral reef system off the Western79

coast of Australia. We leverage information from the historical data though80

semiparametric and time series modelling approaches. Methods for finding81

adaptive designs based on such a modelling approach are then proposed, and82

designs are found under future monitoring scenarios at Scott Reef. These83

designs are then evaluated and used to provide recommendations for future84

surveys at Scott Reef and other reef monitoring programs where changes to85

the sampling practices are being contemplated.86

2. Motivating example87

Scott Reef is located 270 kilometres off the current coast of North-Western88

Australia (Gilmour and Smith, 2013) (Figure 1 (a)) and accordingly is iso-89

lated from many human impacts. However, these reefs are frequently exposed90

to cyclones and bleaching events. For example, due to elevated water temper-91

atures over a few months in 1998, Scott Reef experienced a mass bleaching92

event, resulting in a decline of coral up to 80% (Gilmour et al., 2019, Gilmour93

and Smith, 2013) and thus, a complete change in coral cover trends was ob-94

served over time (Figure A.1). Furthermore, such disturbance exposure does95

not seem homogeneous across different survey locations. That is, there were96
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survivors or relatively unharmed, moderately, and severely affected reef lo-97

cations after this severe disturbance event (Figure A.2) (Gilmour and Smith,98

2013). By adequately identifying the impacts of sudden disturbances, vari-99

ations across the reef, and potential causes, it should be possible to develop100

efficient and appropriate monitoring practices that can change/evolve over101

time, and this is the aim of this paper.102

Figure 1: (a) The location of the system of Scott Reef and (b) the long-term monitoring
sites located at South Reef, Central, North Reef, and Seringapatam (Google, n.d.). The
orange points represent sites that have been surveyed since 1994 and the yellow triangles
represent newly added sites after the 2016 bleaching event. “Bright Earth eAtlas basemap
v1.0 (AIMS)”.
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3. Data103

The system of Scott Reef comprises of four separate structures, namely104

North Reef, Central, South Reef, and Seringapatam (Figure 1 (b)). Under the105

SRRP, data have been collected over six habitats called slope, upper slope,106

crest, flat, lagoon, and outcrop from 1994.83 to 2017.92, where decimals107

represent survey times within a given year, i.e. .83 denotes the 10th of 12108

months. Three core sites have been sampled to collect data, which are nested109

within each of seven reef locations (i.e. SL1, SL2, SL3, SL4, SS1, SS2, SS3)110

(Figure 1 (b)). In this study, data collected between 1994.83 and 2016.08111

were considered in accordance with future monitoring objectives at Scott112

Reef (Section 4).113

SRRP surveys are typically conducted in October but variations have114

been observed from year to year (Table A.1). For instance, when there was115

a severe disturbance, AIMS have collected data during, immediately after,116

and then later in the year depending upon the nature of the disturbance.117

In 1998, they conducted such pre- and post-bleaching surveys in January118

and October, respectively, where there was interest in quantifying coral loss119

during this time. When collecting disturbance data, AIMS has recorded120

bleaching exposure (i.e. 0 = No coral bleaching, 1 ≥ 1% coral bleached) and121

cyclone exposure in terms of the number of hours of reef system exposure to122

damaging waves (Puotinen et al., 2016). Additionally, reef location-specific123

cyclone and bleaching impacts have been documented.124
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4. Monitoring objectives125

This study aims to develop recommendations for future monitoring at126

Scott Reef and other reef monitoring programs where changes are being con-127

sidered. We hope to achieve this goal through considering the following two128

questions which form the basis for our two objectives:129

(i) Are some reef locations (i.e. SL1, · · · , SS3) within Scott Reef more130

important than others in providing information on coral health?131

(ii) Which site at each reef location provides the most information about132

coral health?133

5. Design framework134

5.1. Modelling historical data135

Capturing nonlinear trends136

Semiparametric regression approaches can be used to capture nonlinear137

relationships within a regression model, and have been considered previ-138

ously to describe data from coral communities on the Great Barrier Reef139

(GBR) (Vercelloni et al., 2014). To outline our adopted modelling approach,140

assume that ysrt ∼ BIN(n, psrt) where n = 1250 is the number of points141

in a 250m combined length of transects, psrt = 1/(1 + exp(−µsrt)), and142

ysrt (s = 1, 2, 3; r = 1, · · · , 7; t = 1994.83, · · · , 2016.08) denotes the hard143

coral cover at the s-th site, in the r-th reef location at t-th survey time.144
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Then, a semiparametric regression modelling approach can be used to model145

the mean µsrt as µsrt = f(xsrt), where xsrt are the survey times where data146

have been collected from sites that are nested within reef locations, and f is147

a smooth function.148

There are different methods for modelling the smooth function, including149

cubic splines, B-splines, truncated polynomials, radial splines etc (Crainiceanu150

et al., 2005). We consider the low-rank thin-plate splines approach as it re-151

quires fewer parameters to estimate, and also it is insensitive to the choice152

of knots (Wood, 2003). Accordingly, the smooth function can be expressed153

as follows:154

f(xsrt,θ0) = β0 + β1xsrt +

K∑
k=1

δk|xsrt − ηk|3, (1)

where θ0 = (β0, β1, δ1, · · · , δK)T , β0 is the intercept, β1 is the regression155

coefficient for time, δ = (δ1, · · · , δK) are random coefficients, ηk are knots,156

and K is the total number of knots. The values of |xsrt − ηk| are calculated157

based on the sample quantile of xsrt’s (Crainiceanu et al., 2005).158

Extensions to capture hierarchical structures within the data are straight-159

forward via the inclusion of random effects, and such models can be defined160

by considering random effects for sites nested within reef locations as follows:161
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log (psrt/(1− psrt)) = γsr + βtzt + βddr + f(xsrt,θ0), (2)

where γsr represents the corresponding nested random effect that follow a162

distribution p(γsr|λr, logσs) where λr ∼ p(λr|logσr), where logσs and logσr163

are the corresponding site and reef random effects standard deviations in log164

scale, respectively. Wood (2003) describes the extension of such a model to165

accommodate the other potential covariates, and we follow this approach to166

incorporate bleaching exposure and cyclone hours. These covariates vary over167

time for the whole reef system, and thus are hereafter referred to as time-168

varying covariates. In Equation (2), zt represents time-varying covariates169

and βt is the corresponding vector of regression coefficients. Additionally, we170

incorporated three dummy variables to account for cyclone, severe cyclone,171

and bleaching exposures at different reef locations. The corresponding data172

matrix and the vector of regression coefficients are denoted as dr and βd,173

respectively.174

Accounting sudden declines in trends175

Coral cover is often impacted by disturbances such as cyclones and bleach-176

ing events, and some major events will result in sudden declines in coral cover177

trends (De’ath et al., 2012, Osborne et al., 2011). We propose that estimat-178

ing the impact of such major events can be achieved using an interrupted179

time series (ITS) regression approach (Bernal et al., 2017, Linden, 2015). In180
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general, an ITS approach can account for sudden changes in the trend due181

to some intervention introduced or disturbance that has occurred (McDowall182

et al., 2019). When applying ITS, the type of impact due to the distur-183

bance should be hypothesised. This may include a gradual change in slope184

or in both the intercept and slope within the model for the mean response185

(Bernal et al., 2017). In addition, some disturbances may cause an immedi-186

ate change in the trend, but others may have a lag period before any effect187

appears. The reader is referred to Bernal et al. (2017) for more details about188

modelling different types of sudden changes in time-series data.189

Based on coral cover trends over time (Figure A.1), we hypothesised that190

the 1998 mass bleaching event resulted in both changes to the intercept and191

slope when modelling coral cover trajectories. Furthermore, it was proposed192

that the impact existed for years as mortality does not happen completely193

during or a few months after bleaching (Gilmour and Smith, 2013, Baird and194

Marshall, 2002). The model defined previously using Equation (2) can now195

be extended to accommodate such an impact as follows:196

log (psrt/(1− psrt)) =γsr + βtzt + βddr + f(xsrt,θ0) + βlBLE98srt

+ βsTime98srt,

(3)

where BLE98srt represents the bleaching impact, i.e. BLE98srt = 0 before the197

bleaching event happened and otherwise it is equal to 1, βl is the level change198

due to the bleaching impact. Here, Time98srt represents the time before and199
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after the bleaching event, i.e. Time98srt = 0 before the bleaching event200

occurred, and after that, time increases with survey time, and βs represents201

the corresponding slope change.202

In the model, cyclone hours data were count values that varied over a203

large range; thus, the square-root transformation (Weber, 1990) was applied204

before including this covariate into the model. This transformation was also205

applied to ensure a linear relationship was appropriate between cyclone hours206

and log (psrt/(1 − psrt)) (O’Hara and Kotze, 2010). Previous studies have207

considered centring covariates to avoid numerical issues when fitting a given208

model, and we follow this approach for the time-varying covariates (Selig209

et al., 2012, Vercelloni et al., 2014). Furthermore, we calculated |xsrt − ηk|210

by considering the centered time (Crainiceanu et al., 2005).211

Approximating the posterior distribution212

Within a Bayesian framework, we are interested in estimating the joint213

posterior distribution p(θ, ξ | yp, zp,vp,dp) of model parameters and random214

effects, where θ = (β0, β1, βt, βd, βl, βs, δ, logσδ, logσr, logσs) denotes all215

parameters in the model (Equation (3)), ξ is a matrix representation for the216

nested random effects, dp denotes previously used static survey designs at217

Scott Reef, vp represents data matrices related to |xsrt − ηk| and the inter-218

rupted component (i.e. BLE98srt and Time98srt), yp denotes the collected219

coral cover data, and zp is the collected time-varying covariates, where we220

have shifted notation such that all previously collected data will be indexed221
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by p. This will be convenient when considering future monitoring scenarios,222

see later. To estimate the posterior distribution (see Appendix A.3 for more223

details), Markov Chain Monte Carlo (MCMC) methods can be used. For224

this purpose, WinBUGS was used (Lunn et al., 2000).225

Model selection226

To find the most appropriate model to describe the previously collected227

data at Scott Reef, we considered the M−closed perspective of Bernardo228

and Smith (2009). Accordingly, the most appropriate model for the data229

is assumed to be contained within a finite set of L candidate models {m ∈230

1, 2, · · · , L}. We defined the class of models by considering the following com-231

ponents: the nested random effects for sites within reef locations (NRE); a232

smooth component (SC); all the available covariates (ALL COV), i.e. Time,233

Bleaching, Cyclone hours, Interrupted 98 (i.e. BLE98srt and Time98srt),234

location-specific covariates impacts, i.e. Cyclone Loc2 (i.e. Cyclone Loc and235

Severe cyclone Loc) and Bleaching Loc, and the interaction between Bleach-236

ing and Cyclone. The most appropriate model within this class was then237

determined via the deviance information criterion (DIC) with a preference238

for the model with the smallest of these values (Spiegelhalter et al., 2014).239

Prior information was specified to be vague on likely range of values of each240

parameter (Table A.2). In addition, to appropriately capture the nonlinear241

features of the data, a specific number of knots needs to be determined. For242

this, we followed the approach of Ruppert (2002) where the number of knots243
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was increased until there was little to no improvement in model fit. This244

resulted in the use of three knots.245

5.2. Adaptive design246

We consider a Bayesian inference framework for undertaking adaptive de-247

sign as it supports the incorporation of knowledge gained through previously248

collected data to guide future sampling via a prior distribution. The prior249

that was used for this study was the posterior distribution for the model250

that was found to be most appropriate for the collected data. Based on this251

prior information, the value of a design with respect to a given monitoring252

objective can be evaluated as described below.253

Quantifying designs254

Define a design as d = (d1,d2, · · · ,dns), where ns is the number of sites255

appearing in a new design out of all sites (i.e. 7 reef locations × 3 sites = 21256

sites). The usefulness of such a design d can be quantified via what is called257

a utility function which evaluates how much information will be provided258

from data y to address a specific monitoring objective. As it is unknown259

what data will be observed, the expectation of the utility function is taken260

with respect to this and other unknowns as follows:261

E[u(d, z,y|yp, zp,vp,dp)] =

∫
y

u(d, z,y|yp, zp,vp,dp)

p(y|z,d,yp, zp,vp,dp)dy,
(4)
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where z represents specific values of the time-varying covariates which define262

particular future monitoring scenarios. Further details about these scenarios263

will be provided later in this section.264

The choice of a utility function depends on the monitoring objective.265

Here, our goal is to determine the relative importance of survey locations266

for providing information about coral health based on a statistical model.267

This suggests we are interested in the precise estimation of parameters in the268

adopted model so that, for example, we can precisely quantify the impact269

of each disturbance. Thus, we chose the Kullback-Leibler divergence (KLD)270

(Kullback and Leibler, 1951), which is a specific utility for the parameter271

estimation. The KLD utility function can be expressed as follows (Friel and272

Pettitt, 2008):273

u(d,y, z|yp, zp,vp,dp) =

∫
θ

∫
ξ

p(θ, ξ | y, z,yp, zp,vp,d,dp)

× log p(y | θ, ξ, z,yp, zp,vp,d,dp)dξdθ

− log p(y|z, zp,yp,vp,d,dp). (5)

Evaluating this utility thus measures how much the posterior distribution274

diverges from the prior. In terms of designs, a larger deviation for a given275

design d indicates more has been learned from data collected according to276

that design. Thus, we seek a design d that maximises the expectation given277

in Equation (4) where the utility is defined in Equation (5).278
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To find an optimal design, we need to evaluate the expected utility. How-279

ever, typically this expression does not have a closed-form solution. Thus, a280

numerical approximation is required. One can use the Monte Carlo integra-281

tion (Ryan, 2003) for this purpose which can be defined as follows:282

E[u(d,y, z|zp,yp,vp,dp)] ≈
1

J

J∑
j=1

u(d,y(j), z|zp,yp,vp,dp), (6)

where J (≥ 100) is the controlling parameter for Monte Carlo integration.283

Algorithm 1: Approximate the expected utility

1. Initialise d,yp, zp,vp,dp, z, t, J

2. For j = 1 to J do

3. Simulate θ(j), ξ(j) ∼ p(θ, ξ | yp, zp,vp,dp)

4. Simulate y(j) ∼ p(y | θ(j), ξ(j), z,yp, zp,vp,dp) at the next survey time t

based on d via a Taylor series approximation to the mean response

5. Estimate p(θ, ξ | y, z,yp, zp,vp,d,dp) via Laplace approximation

6. Evaluate KLD utility u(d, z,y(j)|zp,yp,vp,dp)

7. Store u(d, z,y(j)|zp,yp,vp,dp)

8. End for

9. Output E[u(d, z,y|zp,yp,vp,dp)] ≈
1

J

∑J
j=1 u(d, z,y(j)|zp,yp,vp,dp)
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Approximating the expected utility284

The approach to approximate the expected utility is outlined in Algorithm285

1, which begins by initialising some parameters (line 1). To approximate the286

expected utility for a given design d, many data sets need to be simulated287

based on the given design (line 2). For this purpose, we simulate parameter288

and random effect values from the prior distribution (line 3). To simulate289

coral cover for the next survey time point t (line 4), we propose the Taylor290

series expansion around the mean at the last survey point, i.e. 2016.08 (Table291

A.6). In such a case, a bivariate Taylor series expansion needs to be applied as292

the regression model includes two time variables following the incorporation293

of the interrupted regression component. For the given model, the Taylor se-294

ries approximation can be described as follows: f(xsrt,Time98srt) ≈ f(a, b)+295

fxsrt(a, b)(xsrt − a) + fTime98srt(a, b)(Time98srt − b), where f(xsrt,Time98srt)296

is the value of the function at the next survey point (i.e. t = 2016.33) and297

(a, b) are values which with the Taylor series is centered (see Appendix A.7298

for extrapolation results). The posterior distribution needs to be approxi-299

mated for each simulated data set (line 5). Given this needs to be performed300

a large number of times, this is a computationally demanding step in the301

algorithm. To address this, a Laplace approximation (Overstall et al., 2018)302

was adopted. Given this approximation to the posterior distribution, the303

KLD utility can be evaluated (see Appendix A.9 for more details) (lines 6-304

7). Finally, an average of KLD utility values is used to approximate the305

expected utility value (line 9).306
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Finding optimal designs307

We are now able to approximate the expected utility of a given design d.308

The next step is to find the optimal design d∗ out of the set of candidate de-309

signs which maximises the expected utility, i.e. d∗ = arg max
d

E[u(d, z,y|zp,310

yp,vp,dp)]. Here, candidate designs need to be formulated in accordance311

with monitoring objectives. As far as Objective (i) is concerned, we will in-312

vestigate whether some reef locations within Scott Reef have greater utility313

than others. Accordingly, seven candidate designs were formulated consid-314

ering all possible combinations where six out of seven reef locations will be315

sampled. The corresponding designs were labelled as SL1, · · · , SS3 where316

for example, design SL1 denotes that no data will be collected from the reef317

location SL1 for the next survey time. As there will be a fixed number of318

potential candidate designs (i.e. seven) under this objective, we will enu-319

merate all possible designs to determine the optimal. Next, under Objective320

(ii), we determine the optimal design consisting of the most informative site321

(out of the three) at each reef location. To locate these optimal designs,322

the coordinate-exchange algorithm was used based on five randomly selected323

initial designs (Meyer and Nachtsheim, 1995).324

To evaluate our adaptive designs, two disturbance scenarios (i.e. two325

different values for z) were considered. These were: (a) actual covariate326

data collected at the next survey time (i.e. 2016.33) and (b) bleaching and327

cyclone impacts including an interaction between them at each reef location328

(see Appendix A.8 for more details). This means that Scenario (a) withdraws329
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the prevailing cyclone exposure while Scenario (b) includes cyclone location330

disturbances and cyclone-bleaching interactions for each reef location. Each331

objective defined previously will be assessed under these two disturbance332

scenarios.333

6. Results334

6.1. Modelling historical data from Scott Reef335

Model selection336

To select the most appropriate model for Scott Reef hard coral cover337

data, we defined the class of models by considering all components described338

in Section 5.1. The corresponding model comparison results based on DIC339

are provided in Table A.3. As the model with a smaller value of DIC is340

preferred, the most appropriate model found for coral cover can be described341

as follows:342

log (psrt/(1− psrt)) =β0 + β1Time + β2Bleachingt + β3Cyclone hourst

+ β4Bleaching× Cyclonert + β5BLE98t + β6Time98t

+ β7Cyclone Locrt + β8Severe cyclone Locrt (7)

+ β9Bleaching Locrt + δ1v1,rst + δ2v2,rst + δ3v3,rst + γsr,

where βi, i = 1, · · · , 9 are the regression coefficients and δ1, δ2, and δ3 are343

random coefficients. The goodness-of-fit of this model was assessed and found344
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to be appropriate, see Appendix A.6 for further details.345

6.2. Adaptive design346

Importance of reef locations347

Under Objective (i), we aim to determine the relative importance of seven348

reef locations at Scott Reef. Firstly, the disturbance Scenario (a) is consid-349

ered. For this evaluation, we formulated seven designs (i.e. SL1, · · · , SS3),350

as described in Section 5.2. To evaluate these designs, the KLD mean ex-351

pected utility values were evaluated. These results are shown in Figure 2 (a),352

where the y-axis represents the efficiency of each design with respect to the353

design where all reef locations were included for survey at the next survey354

time point. These design efficiencies were found with respect to sampling all355

seven reef locations by evaluating the expected utility of each design 20 times,356

and taking the average (see Appendix A.10 for more details). A summary of357

utility evaluations is given in Table 1 to aid in interpretation.358

According to Table 1, SL3 is the optimal design as it has the highest359

mean efficiency. As the missing reef location within this design is SL3, this360

reef location can be considered as the least informative reef location under361

Scenario (a). This suggests that less information is expected to be lost by362

omitting reef location SL3 compared to omitting any other reef locations.363

Similarly, the reef location SL2 can be reported as the most informative reef364

location as omitting this reef location resulted in the largest efficiency reduc-365

tion (Table 1). However, it should be noted that there is very little difference366
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Figure 2: Utility evaluations results under disturbance Scenario (a) and (b) for seven
designs (x-axis). y-axis represents efficiency calculated against the design that included
all seven reef locations.

in the efficiency values between reef locations (Figure 2 (a)). Indeed, some367

of the differences observed could potentially be due to Monte Carlo error.368

Secondly, we evaluate Objective (i) under the disturbance Scenario (b).369

The corresponding utility evaluation results and summary are provided in370

Figure 2 (b) and Table 2, respectively. It is evident from Figure 2 (b) that371

all the reef locations have similar median efficiency values under Scenario372
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Table 1: Summary of utility evaluations for seven designs under Scenario (a) in Objective
(i).

Design
Mean Standard

efficiency (%) deviation

SL1 98.213 1.399

SL2 97.579 1.195

SL3 98.876 1.395

SL4 98.774 1.290

SS1 97.818 1.082

SS2 98.420 1.354

SS3 98.054 1.176

(b). The design SS3 has the highest efficiency; thus, the reef location SS3373

can be reported as the least informative reef location under Scenario (b).374

Furthermore, comparing Figure 2 (a) and (b) shows that there are similar375

efficiency for designs under the two disturbance scenarios considered. This376

suggests that the optimal design is robust to the two scenarios considered377

under Objective (i).378

To explore these design selections, consider that the posterior means θ∗m1
379

will be similar to the prior means θ∗m0
, so this should not particularly con-380

tribute to the optimal design selection under KLD utility function, see Equa-381

tion (A.1). Accordingly, these design selections could be driven by the pos-382

terior variance-covariance of the parameters. Upon investigating this, the383

larger utility values appeared to be related to the estimation of the reef ran-384

dom effect standard deviation parameter (i.e. log σr). This is typically where385
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Table 2: Summary of utility evaluations for seven designs under Scenario (b) in Objective
(i).

Design
Mean Standard

efficiency (%) deviation

SL1 96.708 1.302

SL2 96.205 1.682

SL3 96.775 1.612

SL4 97.064 2.360

SS1 96.699 3.145

SS2 96.663 2.108

SS3 97.474 3.369

the largest change from the prior was observed, and thus could potentially386

be driving the design selection i.e. designs that provide more information on387

the variability of reef locations are being preferred.388

Table 3: Summary of utility evaluations under each disturbance scenario in Objective (ii).

Design
Mean

efficiency (%)

Standard

Deviation

Scenario (a) 86.285 5.492

Scenario (b) 71.184 2.616

Informative sites at each reef location389

Under Objective (ii), we determine the optimal design that consists of390

the most informative site at each reef location subject to two disturbance391
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scenarios. The mean efficiency values of each optimal design are provided392

in Table 3. The selected sites from each reef location into the optimal de-393

signs under the two scenarios are reported in Table A.7. It can be seen394

from the table that the optimal designs contain different site combinations395

under the two scenarios. It was found through investigating these optimal396

designs that the estimation of log σr was a main contributor to these optimal397

design selections. This indicates that the optimal site combination under a398

given disturbance scenario provides more information about the between reef399

variability.400

The optimal designs under the two scenarios have the mean efficiency401

values of 86.285% and 71.184% respectively (Table 3). It is evident from402

these a considerable reduction in mean efficiency under Scenario (b). This403

indicates that if disturbances are similar to previous years, then minimal404

sampling (i.e. one site per reef location) will capture a substantial proportion405

of information. However, when a variety of disturbance combinations are406

observed, then there appears to be more information lost, so there might be407

value to undertaking additional sampling in such cases.408

7. Discussion409

The present study was designed to develop adaptive design methods us-410

ing semiparametric and ITS models and utilised prior knowledge captured411

through such methods to guide future surveys at Scott Reef. We demon-412

strated the use of such a modelling approach in finding adaptive design when413
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data show nonlinear trends with some sudden shifts over time. For this pur-414

pose, it was shown that changes around major environmental disturbances415

in ecological monitoring could be accounted for using an ITS regression mod-416

elling approach. This enabled prior information from historical data to be417

appropriately formed when such data potentially exhibit complex ecological418

relationships.419

We assessed the importance of reef locations under Objective (i) subject420

to two disturbance scenarios. The results showed that there was very little421

difference between the selection of which reef location to omit under any of422

the scenarios. This indicates that the design choice is relatively inconsequen-423

tial. Also, dropping one reef location resulted in very little information loss,424

allowing the survey effort to be reduced without losing a substantial amount425

of information about the parameters in the developed model.426

Under Objective (ii), we found the optimal designs consisting of one site427

at a given reef location based on two disturbance scenarios. This provides428

insight into the most appropriate site to sample from a given reef location429

depending on prevailing disturbance conditions. The differences between the430

optimal designs between these two scenarios suggests that site selection de-431

pends on the disturbances that have been observed, and our methods provide432

a framework with which to make this decision.433

In terms of modelling monitoring data, the Gompertz model has been434

considered recently (MacNeil et al., 2019) for capturing nonlinear relation-435

ships in population growth. However, such a model proved to not be flexible436
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enough to capture nonlinear trends where observations have been collected437

with unequal time gaps. In such circumstances, semiparametric modelling438

approaches can be utilized to capture nonlinear trends, as demonstrated in439

this study. The consideration of such a modelling approach meant that new440

design methods needed to be proposed such that adaptive designs could be441

found in this context. This was demonstrated by considering two future dis-442

turbance scenarios, and assessing the performance of these designs against443

more resource intensive sampling.444

In terms of future research directions, we did not consider uncertainty445

about future disturbances but instead considered how the optimal design446

choice changed depending on the given disturbance conditions. If one were447

to do so, it might yield robust designs over various disturbance patterns. The448

use of this will most likely be dependent on a given year. Indeed, it is likely449

that it will be known if a severe cyclone and mass bleaching has occurred450

at Scott Reef, but data on the occurrence of other disturbances may not be451

readily available.452

Recommendations for future reef monitoring based on findings453

from Scott Reef454

(i) Pre-assessment of the expected information gain by location (e.g. site455

or reef location) can be used to determine if any locations can be pri-456

oritised for data collection. Here, it was found that information gain457

from sites was similar, so no particular location needed to be prioritised458

over another.459
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(ii) After an extensive monitoring period, explore reduced sampling prac-460

tices as there is potential to reduce sampling effort (e.g. drop site or461

reef location) without experiencing significant information loss about462

coral health.463

(iii) Evaluate disturbance patterns at monitoring locations as these can in-464

fluence information gain e.g. here it was shown that more information465

about coral health was obtained when new disturbance patterns were466

experienced when compared to historical disturbance patterns.467

(iv) On-going review of monitoring practices is recommended to assess ef-468

fectiveness of adaptive designs469
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