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Summary

The Euler-Poisson equations can be used to describe the important physical phe-
nomena in many areas, such as semiconductor modeling and plasma physics. In this
paper, we show the singularity formationmechanism for the solutions of the pressure-
less Euler-Poisson equations with time-dependent damping for the attractive forces
in ℝn (n ≥ 1) and the repulsive forces in ℝ. We obtain the blow up of the derivative
of the velocity under the appropriate assumptions.
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1 INTRODUCTION AND MAIN RESULTS

The compressible Euler-Poisson equations with time-dependent damping in ℝn can be written as following:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

�t + ∇ ⋅ (�U ) = 0,
�[Ut + U ⋅ ∇U ] + ∇p = −��∇� − �

(1+t)�
�U,

−Δ�(t, x) = �,
t = 0 ∶ � = �0(x), U = U0(x),

(1)

where U = U (t, x), � = �(t, x) ≥ 0, p(t, x), � = �(t, x) are the velocity, the density, pressure and potential function respectively.
�

(1+t)�
with � ≥ 0, � > 0 is frictional coefficient and � is a scaled physical constant.

When � = 0, the system (1) is the standard isentropic compressible Euler-Poisson equations. Furthermore, if � = 1, the
Euler-Poisson equations can be used as semiconductor model with repulsive forces8. If � = −1, the system can be used to model
the gaseous stars in astrophysics with attractive forces3,7,10. Jang, Li and Zhang11 constructed smooth global solutions for the
two dimensional isentropic compressible Euler-Poisson system. Tadmor and Wei19 proved that the one dimensional isentropic
compressible Euler-Poisson system admits global solutions for a large class of initial data. Yuen21 obtained the n dimensional
isentropic compressible non-trivial solutions in radial symmetry of the Euler-Poisson equations with repulsive forces (� = 1)
will blow up on or before the finite time T = R3

2H0
under the condition that the initial data has a compact support in [0, R] and

H0 = ∫ R
0 rV0dr > 0. Hereafter, Yuen22 studied the blowup problem of the non-trivial classical solutions in radial symmetry

of the n dimensional isentropic compressible Euler-Poisson system with attractive forces under the condition that the initial
configurations have a compact support. Wang20 obtained the finite time blow-up solutions of high dimensions full Euler-Poisson
equations for n ≥ 3 and the singularity of the isentropic Euler-Poisson equations for a large class of initial data, which is not
required the initial data has a compact support.

†This is an example for title footnote.
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When � ≠ 0, � ≠ 0, the system (1) is the isentropic compressible Euler-Poisson equations with time-dependent damping. Li et
al15 used the time-weighted energymethod to get the global smooth solutions of the one dimensional compressible Euler-Poisson
equations with time-dependent damping effect − �

(1+t)�
for −1 < � < 1.

In this paper, we will consider the blowup results of the isentropic pressureless Euler-Poisson equations with time-dependent
damping. The pressureless Euler-Poisson equations with time-dependent damping in ℝn is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�t + ∇ ⋅ (�U ) = 0,
�[Ut + U ⋅ ∇U ] = −��∇� − �

(1+t)�
�U,

−Δ�(t, x) = �,
t = 0 ∶ � = �0(x), U = U0(x).

(2)

When � = 0, Liu and Tadmor18 provided a complete description of the critical threshold phenomenon and gave precise
explicit formula for the global solution and finite-time breakdown of two dimensional restricted Euler-Poisson equations. Chae
and Tadmor5 obtained that the C1 solutions of the n-dimensional isentropic pressureless Euler-Poisson equations with attractive
forces will break down if the initial data (�0, U0) satisfies

 ∶= {x0 ∈ ℝn
| �0(x0) > 0,Ω0(x0) = 0, divU0(x0) +

√

−n�c < 0} ≠ ∅,

where the rescaled vorticity matrix Ω = (Ωij),Ωij ∶=
1
2
()iU j − )jU i), i, j = 1, 2, ..., n and the background constant c =

∫ �0(x)dx. Later, Cheng and Tadmor9 improved the results and obtained that the C1 solutions of n dimensional isentropic
pressureless Euler-Poisson equations will breakdown in the condition of divU0(x) < sgn(�0(x) − 1)

√

nF (�0(x)). Chae6 also
showed the blowup results of the n dimensional isentropic pressureless Euler-Poisson equations for the C1 solutions under
the condition that the initial data satisfies  = {x0 ∈ ℝn

| Ω0(x0) = 0,−divU0(x0) ≥
√

2��0(x0)
3

> 0} ≠ ∅. Kwong and
Yuen12 applied the generalized Hubble transformation to obtain the blowup of C2 solutions for the isentropic pressureless
Euler-Poisson system with attractive forces and repulsive forces for ℝn (n ≥ 1). Lee13 proved that Riccati system which is a
two dimensional isentropic pressureless Euler-Poisson system with attractive forcing has global smooth solutions for a large
set of initial configurations. Later, Lee14 studied the global smooth solutions for the two dimensional isentropic pressureless
Euler-Poisson equations with either attractive or repulsive forces under the appropriate assumptions of initial data.
When � ≠ 0, Carrillo and Choi4 studied the one dimensional isentropic pressureless Euler-Poisson equations with linear

damping (� = 0) and non-local interaction forces to get the time-asymptotic behavior of classical solutions with the initial
data in the subcritical region. Liu and Fang17 obtained the blowup results of the solutions to the n dimensional isentropic
pressureless Euler-Poisson equations with damping for attractive Poisson forcing under the assumption of initial data satisfying a
set of conditions. Bhatnagar and Liu1 studied the one dimensional isentropic pressureless Euler-Poisson equations with variable
background and damping under attractive forces to get the sufficient conditions of the global solutions and blowup results
respectively. Furthermore, they also studied the critical threshold phenomenon for one dimensional damped, pressureless Euler-
Poisson equations with electric forces to obtain that if the initial data is within the threshold region, the systemwill have a smooth
solution, otherwise it will blowup2. Liu and Fang16 applied the generalized Hubble transformation to obtain the blow up results
to the solution of the n dimensional isentropic pressureless Euler-Poisson equations with damping. In this paper, we further study
the blowup mechanism for the solutions of the isentropic pressureless Euler-Poisson equations with time-dependent damping
(2) with attractive forces in ℝn(n ≥ 1) and the repulsive forces in ℝ. The main results are as follows.

Theorem 1 (� = −1, n ≥ 1). Denote the set  = {x0 ∈ ℝn
| �0(x0) > 0, Ω0(x0) = 0} ≠ ∅, where Ω0(x0) is the vorticity matrix

defined by Ω0ij(x0) =
1
2
[)iU

j
0 (x0) − )jU

i
0(x0)], and let divU0(x0) =

nȧ(0)
a(0)

≜ na1
a0
, where a0 > 0 and a1 < 0.

(1) When � > 1, if � > 0, then divU (t, x0(t)) will blow up on or before the finite time T0 = −
a0
a1
e

�
�−1 .

(2) When � = 1,
1◦ if 0 < � < 1, then divU (t, x0(t)) will blow up on or before the finite time T0 = [1 −

a0(1−�)
a1

]
1
1−� − 1.

2◦ if � = 1, then divU (t, x0(t)) will blow up on or before the finite time T0 = e
− a0
a1 − 1.

3◦ if� > 1 and divU0(x0) =
na1
a0
< n(1−�), then divU (t, x0(t))will blow up on or before the finite time T0 = [1−

a0(1−�)
a1

]
1
1−�−1.

(3) When 0 ≤ � < 1, if � > 0, and divU (x0) =
na1
a0
< − n�

1−�
e

�
1−� , x0 ∈ , then divU (t, x0(t)) will blow up on or before the finite

time T0 = −
1−�
�
ln[ a0�

a1(1−�)
+ e−

�
1−� ] − 1.
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For the pressureless Euler-Poisson equations with time-dependent damping and the repulsive forces, we have the following
result.

Theorem 2 (� = 1, n = 1). Denote the set  = {x0 ∈ ℝ| �0(x0) > 0} ≠ ∅, let divU0(x0) =
ȧ(0)
a(0)

≜ a1
a0

with a0 > 0 and a1 < 0.

(1) When � > 1, if � > 0, and divU0(x0) ≤ −
√

2�0(x0)e
3�
�−1 , x0 ∈ , then divU (t, x0(t)) will blow up on or before the finite

time T1 =
−a1e

− �
�−1 −

√

a21e
− 2�
�−1 −2�0(x0)a20e

�
�−1

�0(x0)a0e
�
�−1

.
(2) When � = 1,

1◦ if � = 1, and for any given T0 > 0, divU0(x0) ≤ −
1+ 1

(�+1)
�0(x0)(T0+

T 20
2
)

ln(1+T0)
, x0 ∈ ,

2◦ if � ≠ 1, and for any given T0 > 0, divU0(x0) ≤ −
[1+ 1

(�+1)
�0(x0)(T0+

T 20
2
)](1−�)

(1+T0)1−�−1
, x0 ∈ ,

then the C1 solutions of the pressureless Euler-Poisson equations with time-dependent damping (2) will blow up on or before
the finite time t = T0.

(3) When 0 ≤ � < 1, if � > 0, and for any given T0 > 0, divU0(x0) ≤ −
�(1+( 1−�

�
)2�0(x0)e

�
1−� (1+T0))

(1−�)(e−
�
1−� −e−

�
1−� (1+T0))

, x0 ∈ ,
then the C1 solutions of the pressureless Euler-Poisson equations with time-dependent damping (2) will blow up on or before
the finite time t = T0.

Remark 1. In this paper, we give the blowup mechanism of pressureless Euler-Poisson equations for the case of zero background
with time-dependent damping. For the case of nonzero background −Δ�(t, x) = � − c, where c is given by the average mass
c = ∫ �(t, x)dx = ∫ �0(x)dx, we can get the blow up result in the case with � = 1, n = 1 similarly.

2 THE PROOF OF OUR MAIN RESULTS

In this section, we will use the Hubble transformation to prove the blowup results of the pressureless Euler-Poisson equations
with time-dependent damping. By the first equation of the system (2), we obtain

D�
Dt

+ �∇ ⋅ U = 0, (3)

where D
Dt
= )

)t
+

n
∑

i=1
U i )

)xi
is the material derivative. Then, for the C1 solutions, taking x0 ∈ , we obtain

�(t, x0(t)) = �0(x0)e− ∫ t
0 div U (s,x0(s))ds > 0. (4)

The second equation of system (2) can be recasted as

Ut + (U ⋅ ∇)U = −�∇� −
�

(1 + t)�
U. (5)

Taking a partial derivative of (5), we have

)tV + (U ⋅ ∇)V + V 2 = −�Φ −
�

(1 + t)�
V , (6)

where V = ()iU j), and Φ = ()i)j�) is the Hessian of �. The symmetric part and the skew-symmetric part of (6) satisfy

D
Dt

 = −2 − A2 − �Φ −
�

(1 + t)�
, (7)

and
D
Dt
A = −A − A −

�
(1 + t)�

A, (8)

where  = 1
2
(V + V T ), A = 1

2
(V − V T ) = 1

2
Ω. We consider evolution along the particle trajectory {x = X(t, x0)}, which is

defined by the solution of the following ODE,
)
)t
X(t, x0) = U (t, X(t, x0)), X(0, x0) = x0 ∈ .

Noting (8), we have
D
Dt

|A| ≤ 2|||A| +
�

(1 + t)�
|A|,
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where we used the matrix norm, |M| ∶=

√

n
∑

i,j=1
M2

ij . Then we obtain

|A(t, X(t, x0))| ≤ |A0(x0)|e
∫ t
0 2||+ �

(1+�)�
d� .

Since A0(x0) =
1
2
Ω(x0) = 0, x0 ∈ , then along the particle trajectory {x = X(t, x0)}, we have A(t, X(t, x0)) = 0. Hence,

taking the trace of (7), we have
D
Dt
(tr()) = −tr(2) − �Δ� −

�
(1 + t)�

tr().

we observe that tr() = divU (t, x), hence
D
Dt
divU (t, x0(t)) = −tr(2) − �Δ� −

�
(1 + t)�

divU (t, x0(t)) (9)

Using the spectral dynamics techniques5,9,12 and Schwarz inequality, we obtain
D
Dt
div U (t, x0(t)) +

1
n
[div U (t, x0(t))]2 ≤ ��(t, x0(t)) −

�
(1 + t)�

div U (t, x0(t)). (10)

By (4), we have
D
Dt
div U (t, x0(t)) +

1
n
[div U (t, x0(t))]2 ≤ ��0(x0)e− ∫ t

0 div U (s,x0(s))ds −
�

(1 + t)�
div U (t, x0(t)). (11)

By the generalized Hubble transformation div U (t, x0(t)) =
nȧ(t)
a(t)

, we can get

D
Dt

nȧ(t)
a(t)

+ 1
n
[
nȧ(t)
a(t)

]2 ≤ ��0(x0)e
− ∫ t

0
nȧ(s)
a(s)

ds −
�

(1 + t)�
nȧ(t)
a(t)

. (12)

It is not difficult to get
nä(t)
a(t)

≤ �
�0(x0)a(0)n

a(t)n
−

�
(1 + t)�

nȧ(t)
a(t)

. (13)

Note that the initial data satisfies a(0) = a0 > 0 and ȧ(0) = a1 =
a0div U0(x0)

n
< 0. In the following, we set � ∶= �0(x0)a(0)n

n
,

which is a positive number. Therefore, the inequality (13) becomes

ä(t) +
�

(1 + t)�
ȧ(t) ≤ �

�0(x0)a(0)n

na(t)n−1
=

��
a(t)n−1

. (14)

Then we can get a(t) > 0 for all t ∈ ℝ+. Otherwise, if there exists a finite time T0 > 0, such that a(T0) ≤ 0. Since a(t) is a
continuous function, then there exists a finite time T1 > 0, such that a(T1) = 0. Thus, div U (t, x0(t)) will blow up on t = T1.
In the following, we will give the proof of the singularity formation for system (2) case by case.

The proof of Theorem 1. For the case of attractive forces (� = −1) and n ≥ 1, multiplying (14) by e∫
t
0

�
(1+s)�

ds, we have

(e∫
t
0

�
(1+s)�

dsȧ(t))⋅ ≤ −e∫
t
0

�
(1+s)�

ds �
a(t)n−1

≤ 0. (15)

By integrating the above inequality, we can get
ȧ(t) ≤ a1e

− ∫ t
0

�
(1+s)�

ds. (16)
(1) When � > 1, � > 0. Since

e−
�
�−1 ≤ e− ∫ t

0
�

(1+s)�
ds = e−

�
1−�

[(1+t)1−�−1] ≤ 1.
Thus

ȧ(t) ≤ a1e
− ∫ t

0
�

(1+s)�
ds ≤ a1e

− �
�−1 . (17)

Integrating the above inequality, we can get
a(t) ≤ a1e

− �
�−1 t + a0. (18)

Therefore, divU (t, x0(t)) will blow up on or before the finite time T0 = −
a0
a1
e

�
�−1 .

(2) When � = 1, � > 0, since
e− ∫ t

0
�

(1+s)
ds = e−� ln(1+t) = (1 + t)−�.

Thus
ȧ(t) ≤ a1(1 + t)−�. (19)
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Integrating the above inequality, we obtain

a(t) ≤ a1

t

∫
0

(1 + s)−�ds + a0. (20)

1◦ When � = 1, we have a(t) ≤ ln(1 + t)a1 + a0.
Therefore, divU (t, x0(t)) will blow up on or before the finite time T0 = e

− a0
a1 − 1.

2◦ When 0 < � < 1, we have a(t) ≤ a1
1−�
(1 + t)1−� − a1

1−�
+ a0.

Therefore, divU (t, x0(t)) will blow up on or before the finite time T0 = [1 −
a0(1−�)
a1

]
1
1−� − 1.

3◦ When � > 1, we have a(t) ≤ a1
1−�
(1 + t)1−� − a1

1−�
+ a0.

Therefore, if divU0(x0) =
na1
a0
< n(1 −�), then divU (t, x0(t)) will blow up on or before the finite time T0 = [1−

a0(1−�)
a1

]
1
1−� −1.

(3) When 0 ≤ � < 1, � > 0, we have
e−

�
1−�

(1+t) ≤ e− ∫ t
0

�
(1+s)�

ds ≤ 1.
Thus

ȧ(t) ≤ a1e
− �
1−�

(1+t). (21)
Integrating the above inequality, we can get

a(t) ≤ a1
1 − �
�

[e−
�
1−� − e−

�
1−�

(1+t)] + a0. (22)

Therefore, if divU (x0) =
na1
a0
< − n�

1−�
e

�
1−� , then divU (t, x0(t)) will blow up on or before the finite time T0 = −

1−�
�
ln[ a0�

a1(1−�)
+

e−
�
1−� ] − 1.

Then, we can get the conclusion of the system (2) with the attractive force.

The proof of Theorem 2. For the case of repulsive forcing (� = 1) and n = 1, by inequality (10), we can get
D
Dt
div U (t, x0(t)) + [div U (t, x0(t))]2 ≤ �(t, x0(t)) −

�
(1 + t)�

div U (t, x0(t)). (23)

Then, we have
D
Dt

ȧ(t)
a(t)

+ [
ȧ(t)
a(t)

]2 ≤ �0(x0)e
− ∫ t

0
ȧ(s)
a(s)
ds −

�
(1 + t)�

ȧ(t)
a(t)

. (24)

Hence, we can get
ä(t) +

�
(1 + t)�

ȧ(t) ≤ �0(x0)a0. (25)

Multiplying (25) by weight function e∫
t
0

�
(1+s)�

ds to get

(e∫
t
0

�
(1+s)�

dsȧ(t))⋅ ≤ �0(x0)a0e
∫ t
0

�
(1+s)�

ds. (26)

Integrating the above inequality, we have

e∫
t
0

�
(1+s)�

dsȧ(t) ≤ �0(x0)a0

t

∫
0

e∫
s
0

�
(1+�)�

d�ds + a1. (27)

(1) For � > 1, � > 0, we have
e∫

t
0

�
(1+s)�

ds = e
�
1−�

(1+t)1−�− �
1−� ≤ e

�
�−1 .

Then we can get
ȧ(t) ≤ �0(x0)a0e

�
�−1 t + a1e

− �
�−1 . (28)

Thus
a(t) ≤ 1

2
�0(x0)a0e

�
�−1 t2 + a1e

− �
�−1 t + a0. (29)

Therefore, as long as divU0(x0) ≤ −
√

2�0(x0)e
3�
�−1 , then divU (t, x0(t)) will blow up on or before the finite time T0 =

−a1e
− �
�−1 −

√

a21e
− 2�
�−1 −2�0(x0)a20e

�
�−1

�0(x0)a0e
�
�−1

.
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(2) For � = 1, � > 0, since

e∫
s
0

�
(1+�) d� = (1 + s)�,

t

∫
0

(1 + s)�ds ≤ 1
1 + �

(1 + t)1+�.

From inequality (27), we have
ȧ(t) ≤ 1

1 + �
�0(x0)a0(1 + t) + a1(1 + t)−�. (30)

Then

a(t) ≤ 1
(� + 1)

�0(x0)a0(t +
t2

2
) + a1

t

∫
0

(1 + s)−�ds + a0. (31)

1◦ If � = 1, then a(t) ≤ 1
(�+1)

�0(x0)a0(t +
t2

2
) + a1 ln(1 + t) + a0.

Therefore, for any given time T0 > 0, as long as divU0(x0) =
a1
a0

≤ −
1+ 1

(�+1)
�0(x0)(T0+

T 20
2
)

ln(1+T0)
, then a(T0) ≤ 0. Hence, divU (t, x0(t))

will blow up on or before the finite time T0.
2◦ If � ≠ 1, we have a(t) ≤ 1

(�+1)
�0(x0)a0(t +

t2

2
) + a1

1−�
[(1 + t)1−� − 1] + a0.

Therefore, for any given time T0 > 0, as long as divU0(x0) =
a1
a0

≤ −
[1+ 1

(�+1)
�0(x0)(T0+

T 20
2
)](1−�)

(1+T0)1−�−1
, then a(T0) ≤ 0. Hence,

divU (t, x0(t)) will blow up on or before the finite time T0.
(3) For 0 ≤ � < 1, � > 0, we have

e∫
s
0

�
(1+�)�

d� = e
�
1−�

[(1+s)1−�−1] ≤ e
�
1−�

(1+s),
t

∫
0

e
�
1−�

(1+s)ds ≤ 1 − �
�

e
�
1−�

(1+t).

Then
ȧ(t) ≤ 1 − �

�
�0(x0)a0e

�
1−�

(1+t) + a1e
− �
1−�

(1+t). (32)

Integrating inequality (32), we can get

a(t) ≤ [1 − �
�

]2�0(x0)a0e
�
1−�

(1+t) + a1
1 − �
�

[e−
�
1−� − e−

�
1−�

(1+t)] + a0. (33)

Therefore, for any given time T0 > 0, as long as divU0(x0) =
a1
a0

≤ −
�(1+( 1−�

�
)2�0(x0)e

�
1−� (1+T0))

(1−�)(e−
�
1−� −e−

�
1−� (1+T0))

, then a(T0) ≤ 0. Hence, divU (t, x0(t))
will blow up on or before the finite time T0.
In conclusion, we can get the proof of the Theorem 2.
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