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Abstract

In a previous paper [L. M. Ladino, E. I. Sabogal, Jose C. Valverde, General functional
response and recruitment in a predator-prey system with capture on both species,
Math. Methods Appl. Sci. 38(2015) 2876-2887], a mathematical model for a predator-
prey model with general functional response and recruitment including capture on both
species was formulated and analyzed. However, the global asymptotic stability (GAS)
of this model was only partially resolved. In the present paper, we provide a rigorously
mathematical analysis for the complete GAS of the predator-prey model. By using
the Lyapunov stability theory in combination with some nonstandard techniques of
mathematical analysis for dynamical systems, the GAS of equilibria of the model is
determined fully. The obtained results not only provide an important improvement for
the population dynamics of the predator-prey model but also can be extended to study
its modified versions in the context of fractional-order derivatives. The theoretical
results are supported and illustrated by a set of numerical examples.
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1. Introduction

Mathematical models describing the population dynamics of predator-prey

systems have played a prominent role in both theory and applications, especially

in biology, ecology as well as interdisciplinary sciences [3, 5, 6, 18]. For many

years, a large number of mathematical studies for predator-prey systems have5

been formulated and analyzed by many mathematicians and ecologists [9, 10,

11, 12, 14, 15, 16, 17, 20, 21, 22, 25, 27, 29, 30, 31, 33, 34, 35]. For predator-prey

models, the global asymptotic stability (GAS) analysis is one of the important
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problems with many useful applications in real-world situations [3, 6, 16, 18, 20,

29, 31, 34].10

In this paper, we revisit a predator-prey model with general functional re-

sponse and recruitment including capture on both species, which was proposed

and analyzed in [22]. The mathematical formulation and dynamical properties

of this model will be recalled in Section 2. In [22], the population dynamics of the

model was systematically established; however, the GAS of the model was only15

partially resolved (see Theorem 1). More clearly, only the GAS of the extinction

equilibrium point was proved, meanwhile, other equilibria (ecological stability

equilibrium point, equilibrium point of extinction of the predator species and

equilibrium point of extinction of the prey species) were only confirmed their

local asymptotic stability. Nevertheless, numerical studies presented in [8, 22]20

suggested that the equilibria may be not only locally asymptotically stable but

also globally asymptotically stable.

Motivated by the above reasons, in the present paper we will provide a rigor-

ously mathematical analysis for the complete GAS of the predator-prey model

(1). By using the Lyapunov stability theory [19, 23, 26] in combination with25

some nonstandard techniques of mathematical analysis for dynamical systems,

the GAS of the equilibria of the predator-prey model is determined fully. The

obtained results not only provide an important improvement for the popula-

tion dynamics of the predator-prey model but also can be extended to study its

modified versions in the context of fractional-order derivatives. Moreover, the30

theoretical results are supported and illustrated by a set of numerical examples.

The paper is organized as follows. In Section 2 we recall from [22] the

mathematical model and population dynamics of the predator-prey model. The

complete GAS of the model is established in Section 3. Section 4 reports two

numerical examples. Some conclusions and open problems are presented in the35

last section.
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2. Mathematical model and its dynamics

In [22], Ladino et al. proposed a mathematical model for a predator-prey

system with general functional response and recruitment including capture on

both species. The model is represented by40

ẋ(t) = x(t)f(x(t), y(t)) = x(t)
[
r(x(t))− y(t)φ(x(t))−m1

]
,

ẏ(t) = y(t)g(x(t), y(t)) = y(t)
[
s(y(t)) + cx(t)φ(x(t))−m2

]
,

(1)

where x(t) and y(t) are prey population and predator population at time t,

respectively; the functions r(x), s(y) and φ(x) satisfy

∀x ≥ 0, r(x) > 0, r′(x) < 0, [xr(x)]′ ≥ 0, and lim
x→∞

r(x) = 0,

∀y ≥ 0, s(y) > 0, s′(y) < 0, [ys(y)]′ ≥ 0, and lim
y→∞

s(y) = 0,

∀x ≥ 0, φ(x) > 0, φ′(x) ≤ 0, and [xφ(x)]′ ≥ 0.

(2)

and

m1 > 0, m2 > 0, 0 < c < 1. (3)

We refer the readers to [22] for more details of the model (1). It is clear that

the region Ω = R2
+ is a positively invariant set of the model (1). Qualitative45

dynamical properties of the model (1) are given in the following results.

Lemma 1. (The existence of equilibria [22, Proposition 1]) The predator-prey

model (1) has four distinct kinds of possible equilibrium points in the set Ω:

(i) A trivial equilibrium point P ∗0 = (x∗0, y
∗
0) = (0, 0), for all the values of the

parameter.50

(ii) An equilibrium point of the form P ∗1 = (x∗1, y
∗
1) = (K, 0), with r(K) = m1,

if and only if m1 < r(0).

(iii) An equilibrium point of the form P ∗2 = (x∗2, y
∗
2) = (0,M), with s(M) = m2,

if and only if m2 < s(0).
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(iv) An equilibrium point of the form P ∗3 = (x∗3, y
∗
3) = (x∗, y∗), where x∗ satis-

fies the equation

cx∗φ(x∗) + s
(r(x∗)−m1

φ(x∗)

)
−m2 = 0,

and y∗ is given, as a function of x∗, by

y∗ =
r(x∗)−m1

φ(x∗)
,

if and only if (m1,m2) verifies m1 < r(0) − Mφ(0) and m2 < s(0) or55

m1 < r(0) and s(0) < m2 < s(0) + cKφ(K).

Theorem 1. (Stability analysis [22])

(i) If m1 > r(0) and m2 > s(0), then the extinction equilibrium point P ∗0 =

(0, 0) is locally asymptotically stable, and unstable otherwise.

(ii) If m1 ≥ r(0) and m2 ≥ s(0) then the extinction equilibrium point P ∗0 is60

globally asymptotically stable.

(iii) If m1 < r(0) and m2 > s(0) + cKφ(K), then the equilibrium point of the

form P ∗1 = (K, 0) is locally asymptotically stable, and unstable otherwise.

The equilibrium point (K, 0) is called the equilibrium point of extinction of

the predator species.65

(iv) If m1 > r(0) −Mφ(0) and m2 < s(0), then the equilibrium point of the

form P ∗2 = (0,M) is locally asymptotically stable, and unstable otherwise.

The equilibrium point (0,M) is called the equilibrium point of extinction

of the prey species.

(v) If an equilibrium point of the form P ∗3 = (x∗, y∗) belongs to Ω, then it is70

locally asymptotically stable. This equilibrium point (x∗, y∗) is called the

ecological stability equilibrium.

In the next section, we will analyze the GAS of the equilibrium points P ∗1 ,

P ∗2 and P ∗3 .
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3. Global asymptotic stability analysis75

In this section, the GAS of the model (1) will be analyzed. For each case

of the parameters for the model (1), we denote by E(P ∗) the set containing

possible equilibrium points but not P ∗. For example, when m1 < r(0)−Mφ(0)

and m2 < s(0) the model (1) has four equilibrium points, which are P ∗0 , P
∗
1 , P

∗
2

and P ∗3 . Hence,

E(P ∗0 ) = {P ∗1 , P ∗2 , P ∗3 },

E(P ∗1 ) = {P ∗0 , P ∗2 , P ∗3 },

E(P ∗2 ) = {P ∗0 , P ∗1 , P ∗3 },

E(P ∗3 ) = {P ∗0 , P ∗1 , P ∗2 }.

3.1. GAS analysis for the equilibrium point of extinction of the predator species

Note that the condition for the existence of the equilibrium point of extinc-

tion of the predator species P ∗1 = (K, 0) is m1 < r(0), where K is the unique

positive solution of the equation r(x) = K.

Lemma 2. Consider the model (1) in the case m1 < r(0). Then80

(i) The set

ΩK =
{

(x, y) ∈ Ω
∣∣x ≤ K, y ≥ 0

}
is a positively invariant set of the model (1).

(ii) In addition, if m2 > s(0) + cKφ(K) then P ∗1 = (K, 0) is globally asymp-

totically stable with respect to the set ΩK − E(P ∗1 ).

Proof. Proof of Part (i). In order to show ΩK is a positively invariant set

of the model (1) we need to show that
(
x(t), y(t)

)
∈ Ωk for all t > 0 whenever85 (

x(0), y(0)
)
∈ ΩK , which is equivalent to x(t) ≤ K and y(t) ≥ 0 for all t > 0.

Note that Ω is a positively invariant set of the model (1); hence, y(t) ≥ 0 for all

t > 0.
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We introduce a new variable z(t) := K − x(t) for t ≥ 0. From (1) we obtain

a new system for z and y90

ż = −(K − z)
[
r(K − z)− yφ(K − z)−m1

]
,

ẏ = y
[
s(y(t)) + c(K − z)φ(K − z)−m2

]
,

(4)

which implies that

ż|z=0 = −K[r(K)− yφ(K)−m1] = Kyφ(K) +K[m1 − r(K)] = Kyφ(K) ≥ 0,

ż|y=0 = 0.

Hence, by Proposition B.7 in [32], we have that z(t) ≥ 0 and y(t) ≥ 0 whenever

z(0) ≥ 0 and y(0) ≥ 0. Consequently, x(t) ≤ K for all t > 0.

Proof of Part (ii). First, the assumption m2 > s(0) + cKφ(K) implies that

m2 > s(0) ≥ s(y) for all y ≥ 0. Since [xφ(x)]′ ≥ 0, for all (x, y) ∈ ΩK we have

g(x, y) = s(y) + cxφ(x)−m2 ≤ s(0) + cKφ(K)−m2 < 0. (5)

To show the GAS of P ∗1 with respect to ΩK under the condition m2 > s(0) +95

cKφ(K) we consider a Lyapunov function V : ΩK → R+ given by

V (x, y) =
1

2
y2. (6)

It is clear that V (x, y) is continuously differentiable and positive definite. More-

over, the derivative of V (x, y) along solutions of (1) is

dV

dt
= yẏ = y2g(x, y).

By (5), we conclude that dV /dt ≤ 0 for all (x, y) ∈ ΩK and

E :=
{

(x, y) ∈ ΩK |V̇ (x, y) = 0
}
≡
{

(x, y) ∈ ΩK |y = 0
}
.

Let us denote by ME the largest invariant set in E. Then ME = E. In ME , it

is sufficient to consider the sub-system of the system (1)

ẋ = x
[
r(x)−m1

]
. (7)

Since r′(x) < 0 and m1 < r(0), the equation (7) has a unique positive equilib-

rium point x∗ = K. Consider a Lyapunov function defined by100

L(x) = x−K −K ln
x

K
. (8)
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Then

L̇(x) =
x−K
x

ẋ = (x−K)
[
r(x)−m1

]
.

Because r′(x) < 0, L̇(x) < 0 for all x ≥ 0 except for x = K, where L̇(x) = 0.

Consequently, by the Lyapunov stability theorem we have x∗ = K is globally

asymptotically stability. Hence, limt→∞ x(t) = K.

Now using LaSalle invariant principle [23, 19] and the local asymptotic sta-

bility of P ∗1 , we conclude that P ∗1 is globally asymptotically stable.105

Lemma 3. Consider the model (1) in the case m1 < r(0). If m2 > s(0) +

cKφ(K), then the equilibrium point P ∗1 is globally asymptotically stable with

respect to the set ΩK − E(P ∗1 ), where ΩK is defined by

ΩK =
{

(x, y) ∈ Ω
∣∣x ≥ K, y ≥ 0

}
. (9)

Proof. From Case (iii) of Theorem 1, we only need to show that P ∗1 = (K, 0) is

globally attractive with respect to ΩK − E(P ∗1 ), i.e, for any
(
x(0), y(0)

)
∈ ΩK

the solution
(
x(t), y(t)

)
satisfies limt→∞

(
x(t), y(t)

)
= (K, 0). Indeed, we con-

sider two following cases.

Case 1. There exists a positive number t0 > 0 such that x(t0) < K.

In this case
(
x(t0), y(t0)

)
∈ ΩK . Then, by resetting the initial data at

(
x(t0), y(t0)

)
and using Lemma 2 we obtain limt→∞ x(t) = K and limt→∞ y(t) = 0.

Case 2. x(t) ≥ K for all t > 0.

In this case, we have
(
x(t), y(t)

)
∈ ΩK for all t > 0. Then, for any t > 0

ẋ = x[r(x)− yφ(x)−m1] ≤ x[r(K)−m1]− xyφ(x) = −x(t)y(t)φ(x(t)) ≤ 0,

which implies that x(t) is decreasing and bounded from below by K. On the

other hand, if we set u(t) = x(t) + y(t), then

u̇ = ẋ+ ẏ = x[r(x)−m1] + y[s(y)−m2] + (c− 1)xyφ(x)

≤ x[r(K)−m1] + y[s(0)−m2] + (c− 1)x(t)y(t)φ(x)

= y[s(0)−m2] + (c− 1)xyφ(x)

< y[s(0) + cKφ(K)−m2] + (c− 1)xyφ(x) ≤ 0.

7



Hence, u(t) is also decreasing and bounded from below.

Since x(t) and u(t) = x(t) + y(t) are bounded and decreasing functions,110

limt→∞ x(t) and limt→∞ y(t) exist. Assume that limt→∞(x(t), y(t)) = (e1, e2).

Obviously, (e1, e2) must be an equilibrium point of the model (1).

We recall that if m1 < s(0) and m2 > s(0) + cKφ(K) then the equilibrium

point (0, 0) is unstable and there exists a unique equilibrium point of the form

(K, 0) which is locally asymptotically stable. In this case, the model (1) has115

no equilibrium points of the form (0,M) or (x∗, y∗). However, x(t) is bounded

from below by K. So, (e1, e2) 6= (0, 0). This implies that (e1, e2) = (K, 0).

From Theorem 1, P ∗1 = (K, 0) is locally asymptotically stable if m1 < s(0)

and m2 > s(0) + cKφ(K). Combining this with the global attraction of P ∗1 , we

obtain its GAS.120

Because Ω = ΩK
⋃

Ωk, from Lemmas 2 and 3 we obtain the complete GAS

of P ∗1 .

Theorem 2. The equilibrium point of extinction of the predator species P ∗1 is

locally asymptotically stable with respect to the set Ω−E(P ∗1 ) if m1 < s(0) and

m2 > s(0) + cKφ(K).125

3.2. GAS analysis for the equilibrium point of extinction of the predator species

We recall that P ∗2 = (0,M) exists only if m2 < s(0), where M is the unique

positive solution of the equation s(M) = K.

Lemma 4. Consider the model (1) in the case m2 < s(0). Then

(i) The set

ΩM =
{

(x, y) ∈ Ω
∣∣x ≥ 0, y ≥M

}
is a positively invariant set of the model (1).130

(ii) Additionally, if m1 > s(0) −Mφ(0) then P ∗2 = (K, 0) is globally asymp-

totically stable with respect to the set ΩM − E(P ∗2 ).
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Proof. Proof of Part (i). In order to show ΩM is a positively invariant set of

the model (1), we need to show that
(
x(t), y(t)

)
∈ ΩM for all t > 0 whenever(

x(0), y(0)
)
∈ ΩM . Since Ω is a positively invariant set of the model (1), x(t) ≥ 0135

for all t > 0.

Set v(t) := y(t)−M for t ≥ 0. The system (1) implies that

ẋ = x
[
r(x)− (v +M)φ(x)−m1

]
,

v̇ = (v +M)
[
s(v +M) + cxφ(x)−m2

]
.

(10)

Consequently,

ẋ|x=0 = 0,

v̇|v=0 = M
[
s(M) + cxφ(x)−m2

]
= cxφ(x) ≥ 0.

Proposition B.7 in [32] implies that v(t) ≥ 0 for all t > 0 if v(0) ≥ 0. Therefore,

y(t) ≥M for all t ≥ 0.

Proof of Part (ii). Since m1 > r(0) −Mφ(0), fx(x, y) < 0 and fy(x, y) < 0,140

for (x, y) ∈ ΩM we have

f(x, y) = r(x)− yφ(x)−m2 ≤ f(0, y)

= r(0)− yφ(0)−m1 ≤ r(0)−Mφ(0)−m1 < 0.
(11)

To prove the GAS of P ∗2 with respect to ΩM under the assumption m1 >

r(0)−Mφ(M) we consider a Lyapunov function V : ΩK → R defined by

V (x, y) =
1

2
x2. (12)

The derivative of V (x, y) along solutions of (1) is

dV

dt
= xẋ = x2f(x, y).

The estimate (11) imply that V̇ (x, y) ≤ 0 for all (x, y) ∈ ΩM and V̇ = 0 if and

only if x = 0.145

Repeating the proof of Part (ii) of Lemma 2, it suffices to consider the

following sub-system of (1)

ẏ = y
[
s(y)−m2

]
. (13)
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Since m2 < s(0) and s′(y) < 0, the equation (13) has a unique positive equilib-

rium y∗ = M and it is globally asymptotically stable. Hence, limt→∞ y(t) = M .

Then, by using LaSalle invariant principle [23, 19] and the local asymptotic150

stability of P ∗2 , we conclude that P ∗2 is globally asymptotically stable.

Lemma 5. Consider model (1) in the case m2 < s(0). If m1 > r(0)−Mφ(0),

then the equilibrium point P ∗2 is globally asymptotically stable with respect to the

set ΩM − E(P ∗2 ), where ΩM is defined by

ΩM =
{

(x, y) ∈ Ω
∣∣x ≥ 0, y ≤M

}
.

Proof. Thanks to Part (iv) of Theorem 1, it is sufficient to prove that P ∗2 is

globally attractive with respect to ΩM − E(P ∗2 ). We need to show that for

any
(
x(0), y(0)

)
∈ ΩM , the solution

(
x(t), y(t)

)
satisfies limt→∞ x(t) = 0 and

limt→∞ y(t) = M . Indeed, consider two following cases.

Case 1. There exists t0 > 0 for which y(t0) > M .

In this case
(
x(t0), y(t0)

)
∈ ΩM . Then by resetting the initial data at

(
x(t0), y(t0)

)
and using Lemma 4 we obtain limt→∞ x(t) = 0 and limt→∞ y(t) = M .

Case 2. y(t) ≤M for all t > 0.

In this case (x(t), y(t)) ∈ ΩM for all t > 0. Consequently,

ẏ = y[s(y) + cxφ(x)−m2] ≥ y[s(M)−m2] + cxyφ(x) = cx(t)yφ(x) ≥ 0,

which implies that y(t) is increasing and bounded from above by M . Hence,

limt→∞ y(t) exists. We will prove that limt→∞ x(t) also exists. Consider the

following sub-cases.

(i) If m1 ≥ r(0), then

ẋ = x[r(x)− yφ(x)−m1] ≤ x[r(0)−m1 − yφ(x)] ≤ −xyφ(x) ≤ 0,

which means that x(t) is decreasing and bounded from below. Hence,155

limt→∞ x(t) exists.

(ii) If m1 < r(0), then the equilibrium point P ∗1 = (K, 0) exists. By Lemma

2, ΩK is a positively invariant set of (1); consequently, if x(0) ≤ K then
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x(t) ≤ K for all t > 0 and hence,

ẋ+
1

c
ẏ = x

[
r(x)− yφ(x)−m1

]
+

1

c
y
[
s(y) + cxφ(x)−m2

]
= x

[
r(x)−m1

]
+

1

c

[
s(y)−m2

]
> x[r(K)−m1] +

1

c
[s(M)−m2] = 0.

Hence, x(t) +
1

c
y(t) is increasing and bounded from below by K +

M

c
.

This implies that the function x(t) +
1

c
y(t) has a finite limit as t → ∞.

Therefore, limt→∞ x(t) and limt→∞ y(t) exist.

Otherwise, if x(0) > K then it is sufficient to consider x(t) ≥ K for all

t > 0 (*). Then,

ẋ = x[r(x)− yφ(x)−m1] ≤ x[r(K)−m1 − yφ(x)] = −xyφ(y) ≤ 0.

Hence, x(t) is decreasing and bounded from below by K. Consequently,160

limt→∞ x(t) exists.

So, we have proved that x(t) and y(t) have finite limits as t → ∞. Suppose

limt→∞(x(t), y(t)) = (e1, e2). Obviously, (e1, e2) must be an equilibrium point

of (1).

It is important to note that if m2 < s(0) and r(0)−Mφ(0) < m1 < r(0) then the165

equilibrium point (0, 0) is unstable and there exist a unique equilibrium point

of the form (K, 0) and a unique equilibrium point of the form (0,M) both in

Ω being (K, 0) unstable and (0,M) locally asymptotically stable. In this case,

the system (1) has no equilibrium point of the form (x∗, y∗) ∈ Ω. Since y(t) is

increasing and bounded from above by M , (e1, e2) 6= (K, 0) and (e1, e2) 6= (0, 0).170

On the other hand, if m1 > r(0) and m2 < s(0), then the extinction equilibrium

point (0, 0) is unstable and also there exists a unique equilibrium point of the

form (0,M), which is locally asymptotically stable. In this case, the system (1)

has no equilibrium point of the form (K, 0) or (x∗, y∗) in Ω. Thus, (e1, e2) 6=

(0, 0).175

Hence, we conclude that (e1, e2) = (0,M) is globally attractive. This is the

desired conclusion.
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Remark 1. In (∗) we supposed that x(t) ≥ K for all t > 0 to show that

limt→∞ x(t) exists. However, we also concluded that if limt→∞ x(t) exists then

limt→∞ x(t) = 0. Hence, (∗) cannot occur, i.e, there is no solution x(t) satisfy-180

ing x(t) ≥ K for all t > 0.

Since Ω = ΩM
⋃

ΩM , combining Lemmas 4 and 5 we obtain the complete

GAS of P ∗2 .

Theorem 3. The equilibrium point of extinction of the predator species P ∗2 =

(0,M) is globally asymptotically stable with respect to the set Ω − E(P ∗2 ) if185

m2 < s(0) and m2 > s(0) + cKφ(K) .

3.3. Global asymptotic stability of the ecological stability equilibrium

In this subsection, the GAS of the equilibrium point P ∗3 is analyzed. Gen-

erally, it is very difficult to investigate the GAS of P ∗3 with general functional

response and recruitment; hence, we will consider an essential case for the func-190

tional response and recruitment. More precisely, we assume that a recruitment

of the form Beverton-Holt for both species and a predator functional response

Holling type II. In this sense, the functions representing the per capita recruit-

ment rates of prey and predators and the predator functional response are given

by [22]195

xr(x) =
α1x

β1 + x
, α1, β1 > 0,

xφ(x) =
α2x

β2 + x
, α2, β2 > 0,

ys(y) =
α3y

β3 + y
, α3, β3 > 0,

(14)

respectively. In [22], a specific case of (14) was considered for numerical simula-

tions. Importantly, the GAS of P ∗3 for this case was also confirmed by numerical

studies in [8, 22].

Theorem 4. Consider the predator-prey model (1) with a recruitment of the

form Beverton-Holt for both species and a predator functional response Holling200
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type II:

ẋ = x

(
α1

β1 + x
− α2y

β2 + x
−m1

)
,

ẏ = y

(
α3

β3 + y
+ c

α2x

β2 + x
−m2

)
.

(15)

Then the ecological stability equilibrium point P ∗3 = (x∗, y∗) is globally asymp-

totically stable with respect to the set Ω− E(P ∗3 ) whenever it exists.

Proof. Since P ∗3 = (x∗, y∗) is the positive equilibrium point, we have

m1 =
α1

β1 + x∗
− α2y

∗

β2 + x∗
,

m2 =
α3

β3 + y∗
+ c

α2x
∗

β2 + x∗
.

(16)

Consequently, the model (15) can be written in the form205

ẋ = x

(
α1

β1 + x
− α2y

β2 + x
− α1

β1 + x∗
+

α2y
∗

β2 + x∗

)
,

ẏ = y

(
α3

β3 + y
+ c

α2x

β2 + x
− α3

β3 + y∗
− c α2x

∗

β2 + x∗

)
,

(17)

or equivalently to

ẋ = x

[(
α1

(β1 + x)(β1 + x∗)
− α2y

∗

(β2 + x)(β2 + x∗)

)
(x∗ − x)− α2β2 + α2x

∗

(β2 + x)(β2 + x∗)
(y − y∗)

]
,

ẏ = y

[
cα2β2

(β2 + x)(β2 + x∗)
(x− x∗)− α3

(β2 + x)(β2 + x∗)
(y − y∗)

]
.

(18)

Consider a Lyapunov function of the form

V (x, y) = τ1

(
x− x∗ − x∗ ln

x

x∗

)
+ τ2

(
y − y∗ − y∗ ln

y

y∗

)
, (19)

where τ1 and τ2 are undetermined positive real numbers. From (18) and (19),

13



the derivative of V along solutions of (14) satisfies

V̇ =
x− x∗

x
ẋ+

y − y∗

y
ẏ

=

[(
α1

(β1 + x)(β1 + x∗)
− α2y

∗

(β2 + x)(β2 + x∗)

)
(x∗ − x)− α2β2 + α2x

∗

(β2 + x)(β2 + x∗)
(y − y∗)

]
(x− x∗)

+

[
cα2β2

(β2 + x)(β2 + x∗)
(x− x∗)− α3

(β2 + x)(β2 + x∗)
(y − y∗)

]
(y − y∗)

= −τ1
[

α1

(β1 + x)(β1 + x∗)
− α2y

∗

(β2 + x)(β2 + x∗)

]
(x∗ − x)2 − τ2

α3

(β2 + x)(β2 + x∗)
(y − y∗)2

+

[
− τ1

α2β2 + α2x
∗

(β2 + x)(β2 + x∗)
+ τ2

cα2β2
(β2 + x)(β2 + x∗)

]
(x− x∗)(y − y∗).

(20)

If τ1 and τ2 satisfy

τ1(α2β2 + α2x
∗) = τ2cα2β2,

then210

V̇ = −τ1
[

α1

(β1 + x)(β1 + x∗)
− α2y

∗

(β2 + x)(β2 + x∗)

]
(x− x∗)2

− τ2
α3

(β2 + x)(β2 + x∗)
(y − y∗)2.

(21)

From the hypothesis fx(x, y) = r′(x)− yφ′(x) < 0 for all x, y ≥ 0 we obtain

α1

(β1 + x)(β1 + x∗)
− α2y

∗

(β2 + x)(β2 + x∗)
> 0.

This implies that the function V satisfies the Lyapunov stability theorem. Con-

sequently, the GAS of P ∗3 is confirmed.

Remark 2. The GAS of the model (1) with general functional response and

recruitment can be established similarly to Theorem 4. Numerical examples in

the next section will show the GAS of the model (1) with some general functional215

response and recruitment.

4. Numerical examples

In this section, we report two numerical examples to illustrate the theoretical

results.

14



Example 1 (The predator-prey model with a recruitment of the form Bever-220

ton-Holt for both species and a predator functional response Ivlev type).

Consider the predator-prey model (1) with a recruitment of the form Beverton-

Holt for both species and a predator functional response Ivlev type

xr(x) =
15x

x+ 10
, ys(y) =

5y

y + 10
, xφ(x) =

1− e−x

30
,

with c = 0.003 and 6 cases of the parameters of m1 and m2 which correspond

to 6 cases listed in Corollary 1 and Figure 2 in [22]. We use the classical fourth-

order Runge-Kutta method [4] with step size h = 10−5 to solve the model (1)

on the interval t ∈ [0, 500].225
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Phase planes for the predator-prey model that correspond to 6 cases of

(m1, m2) are depicted in Figures 1-6, respectively. In all the figures, each

blue curve represents a phase plane corresponding to a specific initial data,

the green circle represents the globally asymptotically stable equilibrium point

(GAS equilibrium point) and the red arrows represent the evolution of two230

species (predator x and prey y).

It is clear that all the solutions are stable and converge to the GAS equilib-

rium points. In other words, the GAS of the predator-prey (1) is confirmed in

this example.
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Figure 1: The phase planes of the predator-prey for Case 1 of Example 1.
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Figure 2: The phase planes of the predator-prey model for Case 2 of Example 1.
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Figure 3: The phase planes of the predator-prey model for Case 3 of Example 1.
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Figure 4: The phase planes of the predator-prey model for Case 4 of Example 1.
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Figure 5: The phase planes of the predator-prey model for Case 5 of Example 1.
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Figure 6: The phase planes of the predator-prey model for Case 6 of Example 1.

Example 2 (The predator-prey model with a recruitment of the form Bever-235

ton-Holt for both species and a predator functional response Holling type III).

Consider the model (1) with a recruitment of the form Beverton-Holt for

both species and a predator functional response Holling type III

xr(x) =
15x

x+ 10
, ys(y) =

5y

y + 10
, xφ(x) =

x2

x2 + 30
,

with c = 0.003 and 5 cases of the parameters m1 and m2 given in Table 2.
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Phase planes for the predator-prey model that correspond to 5 cases of

(m1, m2) are depicted in Figures 7-11, respectively. Similarly to Example 1,240

the GAS of the predator-prey model is shown in this example. Hence, Exam-

ples 1 and 2 provide good illustrations for the theoretical results, especially for

the GAS of the predator-prey model.

It is important to note that Examples 1 and 2 suggest that the ecological sta-

bility equilibrium point may be globally asymptotically stable for general cases245

of the recruitment and predator functional response. Therefore, it is reasonable

to give the following conjecture.

Conjecture 1. The ecological stability equilibrium point of the predator-prey

model (1) is globally asymptotically stable whenever it exists.
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Figure 7: The phase planes of the predator-prey model for Case 1 of Example 2.
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Figure 8: The phase planes of the predator-prey model for Case 2 of Example 2.
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Figure 9: The phase planes of the predator-prey model for Case 3 of Example 2.
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Figure 10: The phase planes of the predator-prey model for Case 4 of Example 2.
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Figure 11: The phase planes of the predator-prey model for Case 5 of Example 2.

5. Some conclusions and open problems250

In this work, a rigorously mathematical analysis for the complete GAS of the

predator-prey model (1) has been performed. By using the Lyapunov stability

theory in combination with some nonstandard techniques of mathematical anal-

ysis for dynamical system, we have fully determined the GAS of equilibria of the

predator-prey. The obtained results not only improve the results constructed255

in the benchmark work but also provide an important study for the population

dynamics of the predator-prey model. Furthermore, the theoretical results are

30



supported by a set of numerical examples.

Although Theorem 4 only demonstrated the GAS of the ecological stability

equilibrium point of the predator-prey model with the recruitment of the form260

Beverton-Holt for both species and the predator functional response Holling type

II (the model (15)), the numerical examples showed the GAS of the model in

some general cases. This suggests that the model may be globally asymptotically

stable in general cases of the recruitment and predator functional response (see

Conjecture 1).265

The approach used in this work can be extended to study extensions of the

predator-prey model (1) under fractional-order derivatives. For example, we

can consider the model (1) in the context of the Caputo fractional derivative:

dαx(t)

dt
= x(t)f(x(t), y(t)) = x(t)

[
r(x(t))− y(t)φ(x(t))−m1

]
,

dαy(t)

dt
= y(t)g(x(t), y(t)) = y(t)

[
s(y(t)) + cx(t)φ(x(t))−m2

]
,

(22)

where α ∈ (0, 1) and dαf(t)/dt stands for the fractional Caputo derivative of the

function f(t) [7]. After that, the GAS of the model (22) can be analyzed by using270

comparison results [24, 28] and the Lyapunov stability theorem for fractional-

order dynamical systems [1, 2, 13]. The GAS problem for the predator-prey

model in the context of other fractional-order derivatives can be studied by the

same approach.

In the near future, we will analyze the GAS of the model (1) in general cases275

of recruitment and predator functional response (Conjecture 1). Population

dynamics of extended versions of the model predator-prey model (1) in the

context of fractional-order derivatives and their applications will be also studied.
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