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Abstract. Discrete wavelet transform and discrete periodic wavelet transform have been widely used

in image compression and data approximation. Due to discontinuity on the boundary of original data, the

decay rate of the obtained wavelet coefficients is slow. In this study, we use the combination of polynomial

interpolation and one-dimensional/two-dimensional discrete periodic wavelet transforms to mitigate boundary

effects. The decay rate of the obtained wavelet coefficients in our improved algorithm is faster than that of

traditional two-dimensional discrete wavelet transform. Moreover, our improved algorithm can be extended

naturally to the higher-dimensional case.
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1. Introduction

Discrete wavelet transform and discrete periodic wavelet transform have been widely used in signal process-

ing and data compression [1-6]. For a discrete data {xm,n}n1,n2=0,1,...,2J−1 , one can pad {xm,n}n1,n2=0,1,...,2J−1

with zeros and do the discrete wavelet transform, or one can extend {xm,n}n1,n2=0,1,...,2J−1 into a periodic

data and then do the discrete periodic wavelet transform. Due to discontinuity on the boundary (i.e., n1 =

0, 2J−1 or n2 = 0, 2J−1), the decay rate of the obtained wavelet coefficients is very slow.

In this study, we will improve discrete (periodic) wavelet transform in order to mitigate boundary effects.

∗This research was partially supported by European Commissions Horizon2020 Framework Program No 861584 and Taishan
Distinguished Professor Fund.
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The core idea of our algorithm is to decompose the discrete data {xn1,n2}n1,n2=0,1,...,2J−1 as

xn1,n2 = y(2)
n1,n2

− y(1)
n1,n2

+ zn1,n2 , (1.1)

where

y
(1)
n1,n2 = x0,0(1− 2n1

2J )(1− 2n2
2J ) + x0,2J−1(1− 2n1

2J )( 2n2
2J ) + x2J−1,0( 2n1

2J )(1− 2n2
2J ) + x2J−1,2J−1( 2n1

2J )( 2n2
2J ),

y
(2)
n1,n2 = x0,n2(1− 2n1

2J ) + x2J−1,n2(
2n1
2J ) + xn1,0(1− 2n2

2J ) + xn1,2J−1( 2n2
2J ).

The computation of y
(1)
n1,n2 depends on the values {x0,0}, {x0,2J−1}, {x2J−1,0} and {x2J−1,2J−1}. The computation

of y
(2)
n1,n2 depends on the boundary data {xn1,0}, {xn1,2J−1}, {x0,n2} and {x2J−1,n2} which is further decomposed

as
xn1,0 = x0,0(1− 2n1

2J ) + x2J−1,0( 2n1
2J ) + w0

n1
,

xn1,2J−1 = x0,2J−1(1− 2n1
2J ) + x2J−1,2J−1( 2n1

2J ) + w1
n1

,

x0,n2 = x0,0(1− 2n2
2J ) + x0,2J−1( 2n2

2J ) + v0
n2

,

x2J−1,n2 = x2J−1,0(1− 2n2
2J ) + x2J−1,2J−1( 2n2

2J ) + v1
n2

,

(1.2)

After that, we do an odd extension and then periodic extension for the data {w0
n1
}, {w1

n1
}, {v0

n2
}, {v1

n2
} and

{zn1,n2}. By (1.1) and (1.2), it follows that for n1 = 0, 2J−1 or n2 = 0, 2J−1

zn1,n2 = 0, w0
n1

= 0, w1
n1

= 0, v0
n2

= 0, v1
n2

= 0,

so the above odd and periodic extension guarantees continuity and differentiability on the boundary of original

data. Finally we do one-dimensional and two-dimensional discrete wavelet transform for these extension data,

and the obtained wavelet coefficients decay fast. When the original data is smooth (e.g. CMIP6 data [13,14]),

Formulas (1.1)-(1.2) will be replaced by (4.2)-(4.4) and (4.7) (see Algorithms in Section 4). Moreover, our

improved wavelet algorithm can be extended naturally to the higher-dimensional case.

This paper is organized as follows. In Section 2, we state core theory on one- and two-dimensional

biorthonomal wavelets and related discrete wavelet transform/discrete periodic wavelet transform. In Section

3, in order to explain the advantages of our algorithm over traditional wavelet methods, we discuss continuous

version of our improved algorithm. Finally, in Section 4, we propose our improvement for traditional discrete
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wavelet transform/discrete periodic wavelet transform.

2. Preliminaries

In this section, we will state known results on one- and two-dimensional biorthonomal wavelets [1-2, 7-12].

Let ψ(t) and ψ̃(t) be a pair of smooth real-valued biorthonomal wavelets in L2(R) generated by real-valued

smooth scaling functions ϕ(t) and ϕ̃(t). Take the tensor product of ϕ(t) and ψ(t):

ϕ0(t1, t2) = ϕ(t1)ϕ(t2), ψ1(t1, t2) = ϕ(t1)ψ(t2),

ψ2(t1, t2) = ψ(t1)ϕ(t2), ψ3(t1, t2) = ψ(t1)ψ(t2).
(2.1)

Similarly, taking the tensor products of ϕ̃(t) and ψ̃(t), we get ϕ̃(t1, t2), ψ̃1(t1, t2), ψ̃2(t1, t2), and ψ̃3(t1, t2). Then

{ψµ(t1, t2)}µ=1,2,3 and {ψ̃µ(t1, t2)}µ=1,2,3 are a pair of two-dimensional biorthonomal wavelets of L2(R2).

Denote

ψµ,m,n(t) =: 2mψµ(2mt− n) = 2mψµ(2mt1 − n1, 2mt2 − n2) (t = (t1, t2), n = (n1, n2)).

Any smooth function f ∈ Cl(R2) can be expanded into a biorthonomal periodic wavelet series:

f(t) =
∑
n

cw
m,nϕ̃0,m,n(t) +

3∑
µ=1

+∞∑
m=0

∑
n

dw
µ,m,nψ̃µ,m,n(t),

where

cw
m,n =

∫
R

∫
R f(t)ϕ0,m,n(t) dt, dw

µ,m,n =
∫
R

∫
R f(t)ψµ,m,n(t) dt. (2.2)

Proposition 2.1.[1-2] If ϕ, ϕ̃, ψ and ψ̃ are real-valued and compactly supported, and ϕ, ϕ̃, ψ, ψ̃ ∈ Cl(R),

then for any smooth function f ∈ Cl(R2), the following estimate holds

dw
µ,m,n = O(2−m(l+1))

Denote wavelet filter banks by {hk} and {τk}:

hk =
√

2
∫
R ϕ(t)ϕ̃(2t− k)dt,

τk =
√

2
∫
R ψ(t)ϕ̃(2t− k)dt.

(2.3)
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The one-dimensional wavelet coefficients satisfy [1]:

cw
m−1,k =

∑
n

hn−2kcw
m,n,

dw
m−1,k =

∑
n

τn−2kcw
m,n,

(2.4)

and the two-dimensional wavelet coefficients satisfy [1]

cw
m−1,k1,k2

=
∑

n1,n2

hn1−2k1 hn2−2k2c
w
m,n1,n2

,

dw
1,m−1,k1,k2

=
∑

n1,n2

hn1−2k1 τn2−2k2c
w
m,n1,n2

,

dw
2,m−1,k1,k2

=
∑

n1,n2

τn1−2k1 hn2−2k2c
w
m,n1,n2

,

dw
3,m−1,k1,k2

=
∑

n1,n2

τn1−2k1 τn2−2k2c
w
m,n1,n2

,

(2.5)

Formulas (2.4)-(2.5) are called the one-dimensional and two-dimensional Discrete Wavelet Transform, respec-

tively [1-2].

Next, we discuss biorthonomal periodic wavelets. Denote the periodization of any function h(t) by

hper(t) =:
∑

k∈Z2

h(t + k).

The families generated by the periodization of ϕ, ψ, ϕ̃ and ψ̃

ψper = {ϕper
0 }⋃{ψper

µ,m,n, µ = 1, 2, 3, m = 0, 1, 2, ..., n1, n2 = 0, 1, ..., 2m − 1},

ψ̃per = {ϕ̃per
0 }⋃{ψ̃per

µ,m,n, µ = 1, 2, 3, m = 0, 1, 2, ..., n1, n2 = 0, 1, ..., 2m − 1}

are a pair of biorthonomal periodic wavelet basis for L2([− 1
2 , 1

2 ]2) [1-2]. Any periodic function f ∈ Cl([− 1
2 , 1

2 ]2)

can be expanded into biorthonomal periodic wavelet series:

f(t) = c0,0 +
3∑

µ=1

∞∑
m=0

2m−1∑
n1,n2=0

dµ,m,nψ̃per
µ,m,n(t),

where

cm,n =
∫ 1

2
− 1

2

∫ 1
2
− 1

2
f(t)ϕper

0,m,n(t) dt, dµ,m,n =
∫ 1

2
− 1

2

∫ 1
2
− 1

2
f(t)ψ

per

µ,m,n(t) dt. (2.6)

Similar to the proof of Proposition 2.1, we can deduce
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Proposition 2.2. If ϕ, ϕ̃, ψ and ψ̃ are real-valued and compactly supported, and ϕ, ϕ̃, ψ, ψ̃ ∈ Cl(R),

then for any smooth periodic function f ∈ Cl([− 1
2 , 1

2 ]2)
⋂

Cl(R2), the following estimate holds

dµ,m,n = O(2−m(l+1)).

Since ϕ(t) and ϕ̃(t) are compactly supported, by (2.3), we can assume that for a positive integer N ,

hk = τk = 0 (|k| ≥ N).

Take 2m0−1 > N . Define 2m0−periodic sequences {h∗n} and {τ∗n} such that

h∗k = hk, τ∗k = τk (|k| ≤ 2m0−1),

h∗k+2m0 = h∗k, τ∗k+2m0 = τ∗k (k ∈ Z).

For m ≥ m0, the one-dimensional periodic wavelet coefficients satisfy [1]:

cm−1,k =
2m−1∑
n=0

h∗n−2kcm,n,

dm−1,k =
2m−1∑
n=0

τ∗n−2kcm,n,

(2.7)

and the two-dimensional periodic wavelet coefficients satisfy [1]

cm−1,k1,k2 =
2m−1∑

n1,n2=0
h∗n1−2k1

h∗n2−2k2
cm,n1,n2 ,

d1,m−1,k1,k2 =
2m−1∑

n1,n2=0
h∗n1−2k1

τ∗n2−2k2
cm,n1,n2 ,

d2,m−1,k1,k2 =
2m−1∑

n1,n2=0
τ∗n1−2k1

h∗n2−2k2
cm,n1,n2 ,

d3,m−1,k1,k2 =
2m−1∑

n1,n2=0
τ∗n1−2k1

τ∗n2−2k2
cm,n1,n2 ,

(2.8)

Formulas (2.7) and (2.8) are said to be one-dimensional and two-dimensional Discrete Periodic Wavelet Trans-

form, respectively [1-2]. Since the convolution of finite length data is always computed approximately by circular

convolution in signal processing and data analysis [15], there is no big difference between (2.4)-(2.5) and (2.7)-

(2.8).
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3. Continuous version of our improved algorithm

In order to explain the advantages of our algorithm over traditional wavelet methods, we discuss continuous

version of our improved wavelet algorithm. Denote D(α,β)f = ∂α+β

∂tα
1 ∂tβ

2
f . If D(α,β)f is continuous on the region

Ω for all α, β ≤ l, we say f ∈ Cl(Ω). Let the fundamental polynomial pm(t) be a univariate polynomial of

degree 2m + 1 satisfying

D(2λ)pm(0) = 0, D(2λ)pm(1) = δλ,m, (3.1)

where δλ,m = 0 (λ 6= m) and δλ,m = 1 (λ = m). Then pm(t) can be represented as follows:

pm(t) =
1

(2m + 1)!
t2m+1 +

m−1∑

k=0

ckt2k+1,

where the coefficients {ck}k=0,...,m−1 satisfy

m−1∑

k=j

(2k + 1)!
(2k − 2j + 1)!

ck = − 1
(2m− 2j + 1)!

(j = 0, 1, ..., m− 1),

For any function f ∈ Cl([0, 1
2 ]), define its interpolation polynomial of f at the nodes 0 and 1

2 :

h(t) =
n∑

k=0

1
22k

(
D(2k)f(0)pk(1− 2t) + D(2k)f

(
1
2

)
pk(2t)

)
(0 ≤ t ≤ 1

2
).

where n = [ l
2 ] and [·] represents the integral part. Then h(t) satisfies

D(2j)h(0) = D(2j)f(0), D(2j)h(
1
2
) = D(2j)f(

1
2
) (j = 0, 1, ..., n).

Let r(t) = f(t)− h(t) (t ∈ [0, 1
2 ]). Then

r(2j)(0) = r(2j)(
1
2
) = 0 (j = 0, 1, ..., n). (3.2)

For r(t), we do odd extension, denoted by ro(t). Again do 1-periodic extension of ro(t), we get r̃(t). By (3.2),

it follows that r̃ ∈ Cl(R), i.e., the univariate function f ∈ Cl([0, 1
2 ]) can be decomposed as:

f(t) = h(t) + r̃(t),
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where h(t) is the interpolation polynomial of f at the nodes 0 and 1
2 , and r̃(t) is a 1-periodic odd function and

r̃ ∈ Cl(R).

For a bivariate smooth function f ∈ Cl([0, 1
2 ]2), denote t = (t1, t2) and n =

[
l
2

]
. Define τ1(t) as the

interpolation polynomial of f at vertices of [0, 1
2 ]2:

τ1(t) =
n∑

α,β=0

2−2α−2β [D(2α,2β)f(0, 0)pα(1− 2t1)pβ(1− 2t2)

+D(2α,2β)f(0, 1
2 )pα(1− 2t1)pβ(2t2)

+D(2α,2β)f( 1
2 , 0)pα(2t1)pβ(1− 2t2)

+D(2α,2β)f( 1
2 , 1

2 )pα(2t1)pβ(2t2) ],

(3.3)

such that for 0 ≤ α, β ≤ n and (t1, t2) = (0, 0), (0, 1
2 ), ( 1

2 , 0), ( 1
2 , 1

2 ),

D(2α,2β)τ1(t1, t2) = D(2α,2β)f(t1, t2).

Define
τ2(t) =

n∑
α=0

1
22α [D(2α,0)f(0, t2)pα(1− 2t1) + D(2α,0)f( 1

2 , t2)pα(2t1)]

+
n∑

β=0

1
22β [D(0,2β)f(t1, 0)pβ(1− 2t2) + D(0,2β)f(t1, 1

2 )pβ(2t2)].

(3.4)

Theorem 3.1. Let f ∈ Cl([0, 1
2 ]2). Then the following decomposition formula holds:

f(t) = τ2(t)− τ1(t) + r(t) (t ∈ [0,
1
2
]2), (3.5)

and r(t) can be extended into a 1-periodic odd function r̃(t) and r̃ ∈ Cl(R2).

Proof. By (3.1), we know that D(2µ)pα(1) = δα,µ and D(2µ)pα(0) = 0. Again by (3.3), for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)(τ1(0, t2)) =
n∑

β=0

[D(2µ,2β)f(0, 0)D(2ν)pβ(1− 2t2) + D(2µ,2β)f(0,
1
2
)D(2ν)pβ(2t2) ].

By (3.4), we deduce that for 0 ≤ µ, ν ≤ n and 0 ≤ t2 ≤ 1
2 ,

D(2µ,2ν)(τ2(0, t2)) = D(2µ,2ν)f(0, t2) +
n∑

β=0

[D(2µ,2β)f(0, 0)D(2ν)pβ(1− 2t2) + D(2µ,2β)f(0,
1
2
)D(2ν)pβ(2t2) ].

Therefore, for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)(τ2(0, t2)− τ1(0, t2)) = D(2µ,2ν)f(0, t2) (0 ≤ t2 ≤ 1
2
).
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By (3.5), it means that for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)r(0, t2) = 0 (0 ≤ t2 ≤ 1
2
).

Similarly, we can deduce that for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)r( 1
2 , t2) = 0 (0 ≤ t2 ≤ 1

2 ),

D(2µ,2ν)r(t1, 0) = D(2µ,2ν)r(t1, 1
2 ) = 0 (0 ≤ t1 ≤ 1

2 ).

Finally

D(2µ,2ν)r(t) = 0 (t ∈ ∂([0,
1
2
]2), 0 ≤ µ, ν ≤ n). (3.6)

For r, we do odd extension, denoted by ro,

ro(t1, t2) = r(t1, t2) (t ∈ [0, 1
2 ]2),

ro(−t1, t2) = ro(t1,−t2) = −ro(t1, t2) (t ∈ [− 1
2 , 1

2 ]2).

From this and (3.6), it follows that ro ∈ C(l)([− 1
2 , 1

2 ]2). Again, do periodic extension, denoted by r̃,

r̃(t + m) = ro(t) (t ∈ [−1
2
,
1
2
]2, m ∈ Z2),

so r̃ is a 1-periodic odd function and r̃ ∈ Cl(R2), and can be reconstructed well by its two-dimensional periodic

wavelet coefficients.

By Propositions 2.1-2.2, the periodic wavelet coefficients of r̃ decays as fast as O(2−m(l+1)). Compared

with this, if we directly compute traditional (periodic) wavelet coefficients of f ∈ Cl([0, 1
2 ]2), due to discontinuity

on the boundary ∂([0, 1
2 ]2), the obtained (periodic) wavelet coefficients decays as fast as O(2−m).

By (3.4), τ2(t) is determined by four derivative functions of f on the boundary of [0, 1
2 ]2:

{D(2α,0)f(0, t2)}α=0,1...,n, {D(2α,0)f(
1
2
, t2)}α=0,1,...,n,

{D(0,2β)f(t1, 0)}β=0,1,...,n, {D(0,2β)f(t1,
1
2
)}β=0,1,...,n.
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Similarly to the above process, these four functions can be decomposed as

D(2α,0)f(0, t2) =
n∑

β=0

1
22β ( D(2α,2β)f(0, 0)pβ(1− 2t2) + D(2α,2β)f(0, 1

2 )pβ(2t2) ) + uα(t2),

D(2α,0)f( 1
2 , t2) =

n∑
β=0

1
22β ( D(2α,2β)f( 1

2 , 0)pβ(1− 2t2) + D(2α,2β)f( 1
2 , 1

2 )pβ(2t2) ) + vα(t2),

D(0,2β)f(t1, 0) =
n∑

α=0

1
22α ( D(2α,2β)f(0, 0)pα(1− 2t1) + D(2α,2β)f( 1

2 , 0)pα(2t1)) + wβ(t1),

D(0,2β)f(t1, 1
2 ) =

n∑
α=0

1
22α ( D(2α,2β)f(0, 1

2 )pα(1− 2t1) + D(2α,2β)f( 1
2 , 1

2 )pα(2t1) ) + γβ(t1).

(3.7)

From this, we have

u
(2β)
α (0) = u

(2β)
α ( 1

2 ) = 0, v
(2β)
α (0) = v

(2β)
α ( 1

2 ) = 0,

w
(2α)
β (0) = w

(2α)
β ( 1

2 ) = 0, γ
(2α)
β (0) = γ

(2α)
β ( 1

2 ) = 0 (α, β = 0, 1, ..., n).

After odd extensions and then 1-periodic extensions for uα, vα, wβ , and γβ , we get four 1-periodic smooth odd

functions u∗α, v∗α, w∗β , γ∗β ∈ Cl(R). Similarly to the argument of Proposition 2.2, the one-dimensional periodic

wavelet coefficients of these four periodic functions decay as fast as O(2−m(l+1)). So τ2(t) can be reconstructed

well by the value of the derivative of f on four vertices of [0, 1
2 ]2 and one-dimensional periodic wavelet coefficients.

By (3.3), τ1(t) is can be reconstructed by the value of the derivative of f on four vertices of [0, 1
2 ]2. Therefore,

f can be reconstructed well by the value of the derivative of f on four vertices of [0, 1
2 ]2 and one-dimensional

and two-dimensional fast decaying periodic wavelet coefficients.

4. Discrete Version of our Improved Algorithm

In this section, we will improve traditional discrete wavelet transform such that boundary effects can be

mitigated well. Our improvement of discrete (periodic) wavelet transform is stated as follows:

For f ∈ Cl([0, 1
2 ]2), assume that the sampling of f on [0, 1

2 ]2 is given:

xn1,n2 = f
(n1

2J
,
n2

2J

)
(n1, n2 = 0, 1, ..., 2J−1),
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The derivatives on the boundary of the square is denoted by

x(α,β)
n1,n2

= D(2α,2β)f
(n1

2J
,
n2

2J

)
(n1 = 0, 2J−1 or n2 = 0, 2J−1; α, β = 0, 1, ..., [l/2]). (4.1)

By (3.3) and (3.4), define y
(1)
n1,n2 and y

(2)
n1,n2 as

y
(1)
n = τ1( n

2J ) =
n∑

α,β=0

1
22α+2β [x(α,β)

0,0 pα(1− 2n1
2J )pβ(1− 2n2

2J ) + x
(α,β)

0,2J−1pα(1− 2n1
2J )pβ( 2n2

2J )

+x
(α,β)

2J−1,0
pα( 2n1

2J )pβ(1− 2n2
2J ) + x

(α,β)

2J−1,2J−1pα( 2n1
2J )pβ( 2n2

2J )]

(n = (n1, n2), n1, n2 = 0, 1, ..., 2J−1),

(4.2)

y
(2)
n = τ2( n

2J ) =
n∑

α=0

1
22α [x(α,0)

0,n2
pα(1− 2n1

2J ) + x
(α,0)

2J−1,n2
pα( 2n1

2J )]

+
n∑

β=0

1
22β [x(0,β)

n1,0 pβ(1− 2n2
2J ) + x

(0,β)

n1,2J−1pβ( 2n2
2J )]

(n = (n1, n2), n1, n2 = 0, 1, ..., 2J−1).

(4.3)

The discrete data xn1,n2 can be decomposed as follows:

xn1,n2 = y(2)
n1,n2

− y(1)
n1,n2

+ zn1,n2 (n1, n2 = 0, 1, ..., 2J−1). (4.4)

By (4.2)-(4.4), we have

zn1,n2 = 0, (n1 = 0, 2J−1 or n2 = 0, 2J−1)

We do an odd extension for the data {zn1,n2} as follows:

zo
2J−1+k,n2

= −z2J−1−k,n2 , zo
n1,2J−1+k = −zo

n1,2J−1−k, zo
2J−1+k,2J−1+k = zo

2J−1−k,2J−1−k (4.5)

where n1, n2 = 0, 1, ..., 2J−1, k = 1, ..., 2J−1 − 1. After that we do the 2J−periodic extension for {zo
n1,n2

} and

get {z∗n1,n2
}.

Proposition 4.1. For a large J , the periodic wavelet coefficients cJ,n of r̃ satisfy

cJ,n ≈ λ

2J
z∗n (n1, n2 = 0, 1, ..., 2J − 1),

where λ = (
∫
R ϕ(t)dt)2 and r̃ is stated in Theorem 3.1.
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Proof. Comparing (3.5) and (4.4), it follows that {z∗n1,n2
} is just the sampling of r̃. Noticing that

ϕper
0,J,n(t) =

∑
k∈Z2 ϕ0,J,n(t + k), by (2.6), it follows that

cJ,n =
∫

[− 1
2 , 1

2 ]2
r̃(t)

∑

k∈Z2

ϕ0,J,n(t + k)dt =
∑

k∈Z2

∫

[− 1
2 , 1

2 ]2+k

r̃(t)ϕ0,J,n(t)dt =
∫

R2
r̃(t)ϕ0,J,n(t)dt.

Denote the compact support of ϕ0 by Ω. Noticing that ϕ0,J,n(t) = 2Jϕ0(2Jt− n) and r̃ ∈ Cl(R2), we have

cJ,n = 2J
∫
R2 r̃(t)ϕ0(2Jt− n)dt = 2−J

∫
R2 r̃(2−Ju)ϕ0(u− n)du

= 2−J
∫
R2 r̃(2−J(u + n))ϕ0(u)du = 2−J

∫
Ω

r̃(2−J(u + n))ϕ0(u)du

= 2−J
(
r̃(2−Jn)

∫
R2 ϕ0(u)du +

∫
Ω
(r̃(2−J(u + n))− r̃(2−Jn))ϕ0(u)du

)

= 2−J(λr̃(2−Jn) + O(2−J)),

i.e.,

cJ,n ≈ λ

2J
r̃(2−Jn) =

λ

2J
z∗n (n1, n2 = 0, 1, ..., 2J−1),

where

λ =
∫

R2
ϕ0(u)du =

∫

R2
ϕ0(u1, u2)du1du2 =

∫

R2
ϕ(u1)ϕ(u2)du1du2 =

(∫

R
ϕ(t)dt

)2

.

¤

By (2.8), {cJ,n} (n = (n1, n2), n1, n2 = 0, 1, ..., 2J − 1) can be used further to compute two-dimensional

periodic wavelet coefficients in finer resolution levels:

{cm0,k1,k2}k1,k2=0,1,...,2m0−1, {dµ,m,k1,k2}µ=1,2,3,k1,k2=0,1,...,2m−1, m=m0,m0+1,...,J−1. (4.6)

Theorem 4.2. Suppose that ϕ and ϕ̃ are symmetric at t = 0 and ψ and ψ̃ are symmetric at t = 1
2 and

t = − 1
2 , respectively. Then periodic wavelet coefficients in (4.6) are symmetric:

cm,2m−k1,k2 = −cm,k1,k2 , cm,k1,2m−k2 = −cm,k1,k2 ,

d1,m,2m−k1,k2 = −d1,m,k1,k2 , d1,m,k1,2m−k2−1 = −d1,m,k1,k2 ,

d2,m,2m−k1−1,k2 = −d2,m,k1,k2 , d2,m,k1,2m−k2 = −d2,m,k1,k2 ,

d3,m,2m−k1−1,k2 = −d3,m,k1,k2 , d3,m,k1,2m−k2−1 = −d3,m,k1,k2 .

11



Proof. Since ϕ and ϕ̃ are symmetric at t = 0 and ψ and ψ̃ are symmetric at t = 1
2 and t = − 1

2 ,

respectively, by (2.3), it follows that

h∗−n = h∗n, τ∗1+n = τ∗1−n.

Again by (2.8) and (4.5), we easily get the symmetry property of wavelet coefficients. ¤

In (4.3), {y(2)
n } is determined by four sequences {x(α,0)

0,n2
}, {x(α,0)

2J−1,n2
}, {x(0,β)

n1,0 } and {x(0,β)

n1,2J−1} which will

be decomposed further as:

x
(α,0)
0,n2

=
n∑

β=0

1
22β ( x

(α,β)
0,0 pβ(1− 2n2

2J ) + x
(α,β)

0,2J−1pβ( 2n2
2J ) ) + uα,n2 ,

x
(α,0)

2J−1,n2
=

n∑
β=0

1
22β ( x

(α,β)

2J−1,0
pβ(1− 2n2

2J ) + x
(α,β)

2J−1,2J−1pβ( 2n2
2J ) ) + vα,n2 ,

x
(0,β)
n1,0 =

n∑
α=0

1
22α (x

(α,β)
0,0 pα(1− 2n1

2J ) + x
(α,β)

2J−1,0
pα( 2n1

2J )) + wβ,n1 ,

x
(0,β)

n1,2J−1 =
n∑

α=0

1
22α (x

(α,β)

0,2J−1pα(1− 2n1
2J ) + x

(α,β)

2J−1,2J−1pα( 2n1
2J ) ) + γβ,n1 ,

(4.7)

After odd extensions and then 1-periodic extensions for uα,n2 , vα,n2 , wβ,n1 , γβ,n1 , we get four 2J -periodic smooth

sequences u∗α,n2
, v∗α,n2

, w∗β,n1
, γ∗β,n1

. Again by (2.7), we can get one-dimensional periodic wavelet coefficients of

u∗α,n2
, v∗α,n2

, w∗β,n1
, γ∗β,n1

:

{cu
m0,k}k=0,1,...,2m0−1, {du

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cv
m0,k}k=0,1,...,2m0−1, {dv

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cw
m0,k}k=0,1,...,2m0−1, {dw

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cγ
m0,k}k=0,1,...,2m0−1, {dγ

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

(4.8)

Similar to Theorem 4.2, the above periodic wavelet coefficients are also symmetric.

Finally, we summarize our improvement of discrete (periodic) wavelet transform for {xn1,n2}n1,n2=0,1,...,2J−1 ,

as follows:

Decomposition Algorithm.

Step 1. By (4.2)-(4.4), we can get {zn1,n2}n1,n2=0,1,...,2J−1 . After that, we do an odd extension and a

periodic extension for {zn1,n2}n1,n2=0,1,...,2J−1 and get {z∗n1,n2
}n1,n2∈Z2 . Finally, by Proposition 4.1 and (2.8),

12



we can compute two-dimensional periodic wavelet coefficients in (4.6). Again by Theorem 4.2, the number of

non-zero two-dimensional periodic wavelet coefficients that we need to store is (2J−1 − 1)2.

Step 2. By (4.7), we can get uα,n2 , vα,n2 , wβ,n1 , γβ,n1 . After odd extensions and then periodic extensions,

we get four 2J -periodic smooth sequences u∗α,n2
, v∗α,n2

, w∗β,n1
, γ∗β,n1

. Again by (2.7), we can get one-dimensional

periodic wavelet coefficients in (4.7). Similar to Theorem 4.2, due to symmetric property of periodic wavelet

coefficients, the number of non-zero two-dimensional periodic wavelet coefficients that we need to store is

4× (2J−1 − 1).

Step 3. The following 4(n + 1)2 values are stored:

{x(α,β)
0,0 }, {x(α,β)

0,2J−1}, {x(α,β)

2J−1,0
}, {x(α,β)

2J−1,2J−1} (α, β = 0, 1, ..., n),

Reconstruction Algorithm.

Step 1. By (4.2), using 4(n + 1)2 values:

{x(α,β)
0,0 }, {x(α,β)

0,2J−1}, {x(α,β)

2J−1,0
}, {x(α,β)

2J−1,2J−1} (α, β = 0, 1, ..., n),

we get {y(1)
n1,n2}n1,n2=0,1,...,2J−1 .

Step 2. By 4(n + 1)2 values in Step 1, (4.7)-(4.8) and one-dimensional inverse discrete periodic wavelet

transform, we can get

{x(α,0)
0,n2

}, {x(α,0)

2J−1,n2
} (n2 = 0, 1, ..., 2J−1, α = 0, 1, ..., n)

{x(0,β)
n1,0 }, {x(0,β)

n1,2J−1} (n1 = 0, 1, ..., 2J−1, β = 0, 1, ..., n),

by (4.3), we get {y(2)
n1,n2}n1,n2=0,1,...,2J−1 .

Step 3. By (4.6) and the two-dimensional inverse discrete periodic wavelet transform, we get {z∗n1,n2
}. It

means that {zn1,n2}n1,n2=0,1,...,2J−1 is computed

Step 4. By (4.2), we can reconstruct f :

xn1,n2 = y(2)
n1,n2

− y(1)
n1,n2

+ zn1,n2 (n1, n2 = 0, 1, ..., 2J−1).
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Remark. Assume that {xn1,n2}n1,n2=0,1,...,2J−1 , are sampled from f ∈ Cl([0, 1
2 ]2). By Propositions

2.1-2.2, due to smooth extension in our algorithm, the one-dimensional and two-dimensional periodic wavelet

coefficients in our algorithm decay as fast as O(2−m(l+1)). Compared with this, if we apply traditional discrete

(periodic) wavelet transform for f ∈ Cl([0, 1
2 ]2), due to discontinuity on the boundary, the corresponding wavelet

coefficients of f decays as fast as O(2−m). Even when we consider the simplest version n = 0 in our algorithm,

where no any derivative is involved, the corresponding wavelet coefficients in our algorithm still decay as fast

as O(2−3m), better than that of traditional discrete (periodic) wavelet transform (i.e., O(2−m)). Full version

of our algorithm can be applied to compress smooth data, e.g. CMIP6 data [14]. The size of CMIP6 data

is increasing sharply at the petabyte scale [13], but by now there is no good algorithm to compress it. Since

CMIP6 data are output data from numerical solutions of fluid equations and energy equations governing the

Earth’s climate system [14], CMIP6 data is smooth and the needful derivative values on the data boundary are

easily estimated, so our algorithm can compress this kind of data well.
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