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Abstract. Discrete wavelet transform and discrete periodic wavelet transform have been widely used
in image compression and data approximation. Due to discontinuity on the boundary of original data, the
decay rate of the obtained wavelet coefficients is slow. In this study, we use the combination of polynomial
interpolation and one-dimensional/two-dimensional discrete periodic wavelet transforms to mitigate boundary
effects. The decay rate of the obtained wavelet coeflicients in our improved algorithm is faster than that of
traditional two-dimensional discrete wavelet transform. Moreover, our improved algorithm can be extended
naturally to the higher-dimensional case.
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1. Introduction

Discrete wavelet transform and discrete periodic wavelet transform have been widely used in signal process-
ing and data compression [1-6]. For a discrete data {@, n}n, no=0.1,....27-1, one can pad {Zm n}n, no=0,1,... 271
with zeros and do the discrete wavelet transform, or one can extend {Zyn}n, ny—01,.,27-1 into a periodic
data and then do the discrete periodic wavelet transform. Due to discontinuity on the boundary (i.e., ny =
0,2771 or ny = 0,2771), the decay rate of the obtained wavelet coefficients is very slow.

In this study, we will improve discrete (periodic) wavelet transform in order to mitigate boundary effects.

*This research was partially supported by European Commissions Horizon2020 Framework Program No 861584 and Taishan
Distinguished Professor Fund.



The core idea of our algorithm is to decompose the discrete data {@n, n, ny np=01,..27-1 as

Tnine = yr(i),ng - y'l('L]i)nQ + Zni,nos (1-1)
where
yf(wll),nz = @oo(l— %Lf)(l - 22L12) + 20,27-1(1 — 22*1)(22*) + Xgs-1 0(22L)(1 2n2) + XTgi-1 97— 1(22#)(22#)7
y£L21),n2 = 1’07”2(1 - 22L71) +x2‘7*1,n2(2gi) +xn1, (1 - 22L72) + mn1,2J*1(22#)'

The computation of y,(zll)ﬂ12 depends on the values {x,0}, {xg 27-1}, {271 o} and {xg7-1 551 }. The computation
(2) Lo
of yny n, depends on the boundary data {x,, o}, {Z,, 27-1}, {Zon, } and {@9s-1 ,,, } which is further decomposed

as

Tny,0 = z0,0(1— 22%) + x2117170(22%) + w?m
— 2711 2n1 1
xn1,2J*1 = {EO’QJ—l( ) + ToJ—1 2J 1(27]) + wnl,
1.2
Z0,n, = 360,0(1 - %) + $0,21*1(22*) + Unga ( )
— 2712 2n9 1
{L'QJ—l,nz = {EQJ—l}O( ) + ToJ—1 2J 1(27]) + ’U,nz,

After that, we do an odd extension and then periodic extension for the data {w§ }, {w} }, {v9,}, {vi,} and

{#ny.ns}- By (1.1) and (1.2), it follows that for n; = 0,2/71 or ny = 0,271
Znyng = Oa wO = 07 wl = 0, 'UO = 0, 'Ul = 0,

so the above odd and periodic extension guarantees continuity and differentiability on the boundary of original
data. Finally we do one-dimensional and two-dimensional discrete wavelet transform for these extension data,
and the obtained wavelet coefficients decay fast. When the original data is smooth (e.g. CMIP6 data [13,14]),
Formulas (1.1)-(1.2) will be replaced by (4.2)-(4.4) and (4.7) (see Algorithms in Section 4). Moreover, our
improved wavelet algorithm can be extended naturally to the higher-dimensional case.

This paper is organized as follows. In Section 2, we state core theory on one- and two-dimensional
biorthonomal wavelets and related discrete wavelet transform/discrete periodic wavelet transform. In Section
3, in order to explain the advantages of our algorithm over traditional wavelet methods, we discuss continuous

version of our improved algorithm. Finally, in Section 4, we propose our improvement for traditional discrete



wavelet transform/discrete periodic wavelet transform.

2. Preliminaries
In this section, we will state known results on one- and two-dimensional biorthonomal wavelets [1-2, 7-12].
Let 4 (t) and ¢(t) be a pair of smooth real-valued biorthonomal wavelets in L%(R) generated by real-valued

smooth scaling functions (t) and $(t). Take the tensor product of ¢(t) and ¥(t):
po(ti t2) = @(t1)p(tz), Yt t2) = o(t1)(t2),

Va(t1, t2) = P(t1)p(t2), Y3(ty, t2) = Y(t1)Y(ta).

(2.1)

Similarly, taking the tensor products of @(t) and J(t), we get @(t1,t2), 121 (t1,t2), 1Z2<t1, t2), and 153(751, ts). Then
{hu(t1,t2) Y =123 and {4, (1, 2)}u=1.2.3 are a pair of two-dimensional biorthonomal wavelets of L2(R?2).

Denote
wufmﬂ‘l(t) =: Qm’(/)M(th — n) = 2mwu(2mt1 — N, 2mt2 — TLQ) (t = (tl,tg), n-= (nl,ng)).

Any smooth function f € C!(R?) can be expanded into a biorthonomal periodic wavelet series:

t):ZC%,nQO,mn +Zzzd,umn¢#mﬂ )

pu=1 m=0 n

where
fR fR 900 m,n ) dt7 N m,n I]R fR H m,n(t) dt. (2'2)

Proposition 2.1.[1-2] If ¢, @, ¥ and ¢ are real-valued and compactly supported, and ¢, @, 1, ¢ € CY(R),

then for any smooth function f € C'(R?), the following estimate holds

dv _ O(Q_m(l+1))

,m,n

Denote wavelet filter banks by {h} and {71 }:
hie = V2 [ o(t)@(2t — k)dt,

T = V2 [ Y(H)F(2t — k)dt.



The one-dimensional wavelet coefficients satisfy [1]:

w _ w
Cmfl,k - Z hn—chm,n7
n

(2.4)
w — w
dm—l,k - ETH—Qka,n’
n
and the two-dimensional wavelet coefficients satisfy [1]
w — w
Cm—1,k1 ks = Z hn1*2k1 hnz*kacm,nl,nz’
ni,n2
w — w
dl,mfl,kl,k2 = Z hn1—2k1 Trna—2k2Cmny ,no s
n1,n2
(2.5)
w — w
d2,m71,k1,k2 = Z Trny—2k hn2—2kzcm,n1,n27
ni,n2
w — w
dS,m—l,kl,kg - Z Tn1—2k1 Tna—2k2Cmongny>
ny,n2

Formulas (2.4)-(2.5) are called the one-dimensional and two-dimensional Discrete Wavelet Transform, respec-

tively [1-2].
Next, we discuss biorthonomal periodic wavelets. Denote the periodization of any function h(t) by
WP (t) =: ) h(t +K).
keZ2

The families generated by the periodization of ¢, ¥, ¢ and QZ

,Ll)per = {(p;ﬁer} U{ ,:Zer”;z n = 1’2737 m = 07 1723 ceey N1, N2 = Oa 1, 72m - 1},
P = {@h YU 0y 1 =1,2,3, m=0,1,2,..., ny,na =0,1,..,2" — 1}

are a pair of biorthonomal periodic wavelet basis for L?([—3, $]%) [1-2]. Any periodic function f € C'([—3, 3]*)

can be expanded into biorthonomal periodic wavelet series:

3 oo 2Mm—1
FO) =coot+ Y. D D dumntlialt),

p=1 m=0 ny,n2=0

where

S f 1 F(6)P0 . (t) dt, Ay = [ f St YD () dt. (2.6)

Similar to the proof of Proposition 2.1, we can deduce



Proposition 2.2. If ¢, ¢, ¥ and 1; are real-valued and compactly supported, and ¢, @, ¥, QZ € CYR),

then for any smooth periodic function f € C'([—3, 1]2) N C!(R?), the following estimate holds
e = 027D,
Since ¢(t) and ¢(t) are compactly supported, by (2.3), we can assume that for a positive integer N,
hy =71, =0 (|k| > N).

Take 2m°~1 > N. Define 2™° —periodic sequences {h}} and {7} such that
k=, Tk = T (k] < 2mo7 1),
hiyome = hy, Thyomo = Th (k eZ).

For m > my, the one-dimensional periodic wavelet coefficients satisfy [1]:

2Mm—1
*
Cm-1k = 2. hy_opCmn,
n=0

2™m—1
dm-1k = 22 Ty _okCmm,
n=0

and the two-dimensional periodic wavelet coefficients satisfy [1]

2M—1
_ * *
Cm—1,k1,k2 - Z hn172k1 hn272kgcm7n1ﬂlza
n1,m2=0
om _1
_ * *
dl,mfl,kh’% = Z hn1—2k1 Tna—2ks Cmoni,nas
nl,’I’LQ:O
2M—1
_ * *
d2)m—1,/€17k2 = Z Ty —2k; ng—2k,Cmony,nas
7L1,'I’L2=O
2Mm—1
_ * *
d3m—1ki ks = 22 Tpi—oky Tng—2ksCmniinas
n1,n2=0

(2.8)

Formulas (2.7) and (2.8) are said to be one-dimensional and two-dimensional Discrete Periodic Wavelet Trans-

form, respectively [1-2]. Since the convolution of finite length data is always computed approximately by circular

convolution in signal processing and data analysis [15], there is no big difference between (2.4)-(2.5) and (2.7)-

(2.8).



3. Continuous version of our improved algorithm

In order to explain the advantages of our algorithm over traditional wavelet methods, we discuss continuous

8a+5
B
ot Oty

version of our improved wavelet algorithm. Denote D(®#) f = f. If D(@P) f is continuous on the region
Q for all a, B < I, we say f € C'(Q). Let the fundamental polynomial p,,(t) be a univariate polynomial of
degree 2m + 1 satisfying

DNy, (0) =0, D®Vp (1) = 6xm, (3.1)

where 03, =0 (XA # m) and ), = 1 (A =m). Then p,,(¢) can be represented as follows:

m—1

1 2
- t) = t m—+1 t2k+1
Pm(?) 2m + 1) + kZ:O kb
where the coefficients {cj }r=o,... m—1 satisfy
2k + 1) 1
Z Csz . (j:0717"'7m71)5
P (2k—2j+1)! (2m—2j+1)!

For any function f € C'([0, 3]), define its interpolation polynomial of f at the nodes 0 and 3:

n

b0 =3 g3z (DO =20+ 07 (F)mezn) ) 0 <e< ),

k=0

where n = [£] and [] represents the integral part. Then h(t) satisfies
D@D p(0) = D) f(0), D(Zj)h(%) = D(Qj)f(%) (j=0,1,....,n).
Let r(t) = f(t) — h(t) (t € [0, 3]). Then
r(29)(0) :r(Qj)(%) =0(j=0,1,...n). (3.2)

For r(t), we do odd extension, denoted by r°(¢). Again do 1-periodic extension of r°(t), we get 7(¢). By (3.2),

it follows that 7 € C'(R), i.e., the univariate function f € C'([0, 2]) can be decomposed as:



where h(t) is the interpolation polynomial of f at the nodes 0 and %, and 7(¢) is a 1-periodic odd function and

7€ CY(R).

For a bivariate smooth function f € C'([0,1]?), denote t = (t1,t2) and n = [L]. Define 71(t) as the

interpolation polynomial of f at vertices of [0, 1]2:

)2

m(t) = > 2720728 D20) £(0,0)p, (1 — 2t1)ps(1 — 2t2)
a,B=0

+D228) £(0, Dpo (1 — 2t1)ps(2ts)

(3.3)
+DC28) £(£,0)pa (2t1)ps(1 — 2t2)
+D(2e Qﬁ)f(% $)Pa(2t1)ps(2t2) ],
such that for 0 < o, f < n and (t1,t2) = (0,0), (0, 3), (3,0, (3, 3),
DC 7 (11, 19) = DP*2D) f(ty,19).
Define .
7a(t) = 3 5= [DPUY F(0, t2)pa(l — 2t1) + DE*O) (L t2)pa(2t1)]
a=0
(3.4)
Z 535 (D020 f(t1,0)pg(1 — 2t2) + DO f(ty, §)ps(2ta)].
=0
Theorem 3.1. Let f € C'([0, 1]?). Then the following decomposition formula holds:
1
f) =m(t) —n(t) +r(t)  (t€[0,5]%), (3.5)

and r(t) can be extended into a 1-periodic odd function 7(t) and 7 € C*(R?).

Proof. By (3.1), we know that D) p, (1) = §,,, and D®"p, (0) = 0. Again by (3.3), for 0 < p,v < n,

n

1
D) (71(0,12)) = D [ D2V £(0,0) D) pg(1 = 2t5) + D) £(0, 5) DE s (21) ]
£=0

By (3.4), we deduce that for 0 < p,v <nand 0 < t; < 1,

n

1
D2 (73(0,13)) = D2 £(0,13) + 3 [ D29 £(0,0) D (1 — 23) + D29 (0, 2) D py(212) .
B=0

Therefore, for 0 < p,v < n,

DCH) (10, 12) — 71(0,82) = D) f(0,1) (0 <t

[\v}
IN
N | =
N—



By (3.5), it means that for 0 < p,v < n,
(2p,2v) 1
Dt T(O,tg) =0 (O <ty < 5)

Similarly, we can deduce that for 0 < pu,v <mn,

D@m2)p(L 1)) =0 (0<t < 1y,
DER2)p(1),0) = DE2)p(1y L) = 0 (0<t < D).
Finally
DE2p(t) =0 (b€ (0,517, 0< v <n). (36)

2

For r, we do odd extension, denoted by 7°,
ro(t1,t2) = 7(t1,t2)  (t €0, 3]%),
ro(—t1,ta) = ro(ty, —t2) = —r°(t1,t2) (t € [—3,3]?).

From this and (3.6), it follows that r° € C()([—3, 2]?). Again, do periodic extension, denoted by T,

Fe+m) =) (b5, " me?),

so 7 is a 1-periodic odd function and 7 € C*(R?), and can be reconstructed well by its two-dimensional periodic
wavelet coeflicients.

By Propositions 2.1-2.2, the periodic wavelet coefficients of 7 decays as fast as O(2~"(+1)), Compared
with this, if we directly compute traditional (periodic) wavelet coefficients of f € C*([0, 3]?), due to discontinuity
on the boundary 9([0, 1]?), the obtained (periodic) wavelet coefficients decays as fast as O(27™).

By (3.4), 72(t) is determined by four derivative functions of f on the boundary of [0, 1]?:

1
{D(Qa,O)f(()’ t2)}a:0,1..4,n7 {D(2a70)f(§7 tQ)}oc:O,l,.“,nv

1
{D(O’Qﬁ)f(th 0)}ﬁ:0,17.‘.,n7 {D(Ogﬁ)f(tl? 5)},@:0,1,...,71‘



Similarly to the above process, these four functions can be decomposed as

NE!

DO F(0, 1) = 3 (D28 £(0,0)ps(1 — 2t2) + D20 £(0, $)ps(2ta) ) + ua(t2),

I
=

B

NgE!

DEOf(5,t2) = 30 535 (DCO2D f(3,0)ps(1 = 2t2) + DC) f(5, 3)ps(2t2) ) + valta),

0

@
I

(3.7)

M=
E
—

D28 f(11,0) = 3= (D28 £(0,0)pa (1 — 2t1) + D25 f(1.0)pa(2t1)) + wa(ty),

I
=

[e3%

M=

DO f(ty,5) = 3 3= (D2 f(0, §)pa(l = 2t1) + D2 f(5, $)pa(2t1)) +75(t1).-

a=0
From this, we have
u$P(0) = a7 (L) =0, v?(0) = v (1) =0,
2 2 2 2a
wi™(0) = wi® (%) =0, 150) =181 =0 (a,8=0,1,..,n).

After odd extensions and then 1-periodic extensions for uq, va, wg, and v, we get four 1-periodic smooth odd

functions ug,, vy, wj, 75 € CY(R). Similarly to the argument of Proposition 2.2, the one-dimensional periodic

wavelet coefficients of these four periodic functions decay as fast as O(2-™(+1D). So 75(t) can be reconstructed

well by the value of the derivative of f on four vertices of [0, %]2 and one-dimensional periodic wavelet coefficients.

By (3.3), 71(t) is can be reconstructed by the value of the derivative of f on four vertices of [0, 1]?. Therefore,
1

f can be reconstructed well by the value of the derivative of f on four vertices of [0, 5]2 and one-dimensional

and two-dimensional fast decaying periodic wavelet coefficients.

4. Discrete Version of our Improved Algorithm

In this section, we will improve traditional discrete wavelet transform such that boundary effects can be
mitigated well. Our improvement of discrete (periodic) wavelet transform is stated as follows:

For f € C'([0, 3]%), assume that the sampling of f on [0, 3]? is given:

ny n2

Tnyny = f (Zﬁa 27) (n1,m2 = 0,1, ...,2J_1),



The derivatives on the boundary of the square is denoted by

ng:ﬁé = D(205725)f (%a ;73) (77/1 = 07 2J_1 or ng = Ou 2J_1; Oé,,@ = 07 17 (XX} [1/2]) (41)

By (3.3) and (3.4), define ynl,n2 and ynhn2

! = () = 2 ety pa(l— 30Ips(l = 32) + %) pa(l — 3)ps(37)

a,B=0
o ni n o, ny no (42)
iy palG)pa (L= 57) + 25y pa (57 )05 (5]
(n = (n1,n2), n1,ng =0,1,...,2771)
2 n L a,0 2n a,0 n
yﬁl) =n(37) = ZO%[Q%() n2)pa(1 J1)+$gf l)ngpa(%)]
< 0, n 0, n .
+570 ﬁ[ 511%)]9 ( 227J2) + xfblg).l—1pﬁ(2272)] (4 3)
(n = (n1,n2), n1,ne =0,1,...,2771).
The discrete data z,, ,, can be decomposed as follows:
Tnyns = y7(z1)n2 - y7(111)n2 + Zny,na (nla N2 = Oa ]-7 ceey 2J_1)- (44)
By (4.2)-(4.4), we have
Zny s = 0, (n1 = 0,2‘]71 or ng = 0,2‘]’1)
We do an odd extension for the data {z,, n,} as follows:
29014 hny = TA27 ks Zpy 2014k T Py 201 ks 9014k 0014k = 901 jou-1 (4.5)

where ny,ny = 0,1,...,2771 k =1,...,277! — 1. After that we do the 2/ —periodic extension for {z2 ,.} and

get {Z;kLl,’rLQ }'

Proposition 4.1. For a large J, the periodic wavelet coefficients ¢, of 7 satisfy

A *
CIn ¥ 57%n (n1,me =0,1,...,27 — 1),

where X = ([, ¢(t)dt)? and 7 is stated in Theorem 3.1.

10



Proof. Comparing (3.5) and (4.4), it follows that {z} , 1} is just the sampling of 7. Noticing that

ni,n2

P 2 (8) = Yyeze Y0.un(t + k), by (2.6), it follows that

Cjn = /
[—%7%]2

Denote the compact support of ¢ by . Noticing that g 7n(t) = 27¢¢(27t — n) and 7 € C(R?), we have

Z<POJnt+kdt— Z/

kez?2 kez2 /-3 2]2"‘1‘

£)0.7n(t)dt = / ()0 ()t

Cin = 27 f]Rz t)o( 2Jt —n)d ng u)po(u —n)du

277 e (27 (u+n))po(u)du =277 [, 7277 (u+ n))po(u)du
= 277 (?(Q’Jn) fw ©o(u dqufQ 7(27/(u+n)) 7'77(2*Jn))g00(u)du)

~J(AF(27/n) + 0(277)),

ie.,
A A, _
Cin & 271“(2 Jn) = Q—Jzn (n1,n2 =0,1, 27 1),
where
2
A= / po(u)du = / woluy,us)duydug = / p(u1)p(ug)dudug = </ <p(t)dt> )
R2 R2 R2 R

O

By (2.8), {csn} (n = (n1,n2), n1,n2 = 0,1,...,27 — 1) can be used further to compute two-dimensional

periodic wavelet coefficients in finer resolution levels:

{Cmo by ks Yy ko=0,1,2m0 15 {dpmky ko Jpi=1,2,3 k1 k2 =0,1,....2m — 1, m=mo,mo+1,...J—1- (4.6)

Theorem 4.2. Suppose that ¢ and ¢ are symmetric at t = 0 and ¢ and @Z are symmetric at t = % and

t= —%, respectively. Then periodic wavelet coefficients in (4.6) are symmetric:
Cm,2m —kq,ka — —Cm,ky,ka> Cm,k1,2m—kas = —Cm,kq,k2>
d1,m,2m —ky ke = —A1,m k1 ks A1 kg 2m —ko—1 = —A1,m kq ko
do.m,2m —ky—1,ks = —2,m k1 ks> d2.m ky,2m —ky = —A2.m. k1 ko>
ds,m,2m —ki—1,ks = —A3,m k1 ko> ds.m.ky,2m —ky—1 = —d3.m k1 ks

11



and t

N=
I
|
N|=

Proof. Since ¢ and @ are symmetric at ¢ = 0 and ¢ and 1; are symmetric at ¢t =
respectively, by (2.3), it follows that
h*, =hr, Tl in = Tl—n-
Again by (2.8) and (4.5), we easily get the symmetry property of wavelet coefficients. [
In (4.3), {yt(f)} is determined by four sequences {xgi;g)}, {x(a’o) }, {ac (©, B)} and {x(oﬁ which will

271 ng n1,0 ny,27-1

be decomposed further as:

xé?ﬁg) = [i:o[(x(()aoﬁ)p (1- 2"2)+ﬂcéa2’§)1pﬂ(22#))+ua,n2,
5 = 30 (S opa1 = B) a5 pa(5)) F v
(4.7)
08 = % k(a0 - 3 + ol (5) + wp,
f00 = % (el pall = 2 425 () + s

a=0

After odd extensions and then 1-periodic extensions for Ua ny, Va.nss Wa.nys Vony s We get four 27-periodic smooth

SEqUENCeS Uy, 1.5 Vi nys Wh s Vi, - Again by (2.7), we can get one-dimensional periodic wavelet coefficients of

* * * * .
uaa7l2’ UC%"Z’ wﬁanl’ ,757"741'

{mo kT E=0,1,...,2m0 1, {do k e=0,1,....2m 1, m=mg,mo+1,...,J—1-
{Chmo kT E=0,1,...,2m0 1, {dy, 1 k=0.1,....2m —1, m=mo,mo+1,....0~1-
{Cmo ke J=0,1,...,2m0 1, {do kI k=0,1,....2m —1, m=mg,mo+1,...,J—1- (48)
{Czloyk}kzo,l,“.QmO—ly {d;ymk}kzo,l,...,Qm—l,m:nLo,mU—i—l,...,J—l-

Similar to Theorem 4.2, the above periodic wavelet coefficients are also symmetric.

Finally, we summarize our improvement of discrete (periodic) wavelet transform for {zpn, n, }ny no=0.1,... 271,
as follows:

Decomposition Algorithm.

Step 1. By (4.2)-(4.4), we can get {2n, ny }ny.na=0.1,... 27-1. After that, we do an odd extension and a

periodic extension for {2n, n,}n, ny=0,1,...,27-1 and get {25 . 4, n,ez2. Finally, by Proposition 4.1 and (2.8),

12



we can compute two-dimensional periodic wavelet coefficients in (4.6). Again by Theorem 4.2, the number of
non-zero two-dimensional periodic wavelet coefficients that we need to store is (2771 —1)2.

Step 2. By (4.7), we can get ©a n,, Va,nas Wants V8,n,- After odd extensions and then periodic extensions,
we get four 27-periodic smooth sequences U s Vamss Whnys Vo - Again by (2.7), we can get one-dimensional
periodic wavelet coefficients in (4.7). Similar to Theorem 4.2, due to symmetric property of periodic wavelet
coefficients, the number of non-zero two-dimensional periodic wavelet coefficients that we need to store is
4 x (2771 —1).

Step 3. The following 4(n + 1)? values are stored:

e ey P @50, (e B=01,.n),

Reconstruction Algorithm.

Step 1. By (4.2), using 4(n + 1)? values:

567 e S0 @5 (@B =01,.m),

1
we get {y7(11)7"2}nl,nQ:O,l,...,QJ*1'
Step 2. By 4(n + 1)? values in Step 1, (4.7)-(4.8) and one-dimensional inverse discrete periodic wavelet

transform, we can get

{250, @250 Y (s =0,1,..,2""  a=0,1,..,n)

271 p,

00 @00 (m=01,..,277", B=0,1,...n),

n1,0 n
2
by (4.3), we get {yﬁll),m}nl,nzzo’l,”ﬂ,]_l.
Step 3. By (4.6) and the two-dimensional inverse discrete periodic wavelet transform, we get {z;;, ,,,}. It
means that {2n, ny bnyne=0,1,...,27-1 is computed

Step 4. By (4.2), we can reconstruct f:

) B 4 zZmmy  (n1,ne=0,1,..,277),

Tnyng = yn1,n2 - ynl,ng

13



Remark. Assume that {n, n,}ny np—0.1,.. 27-1, are sampled from f € C'([0,4]?). By Propositions

2.1-2.2, due to smooth extension in our algorithm, the one-dimensional and two-dimensional periodic wavelet
coefficients in our algorithm decay as fast as O(Q*m(l“)). Compared with this, if we apply traditional discrete
(periodic) wavelet transform for f € C*([0, %]2), due to discontinuity on the boundary, the corresponding wavelet
coefficients of f decays as fast as O(27™). Even when we consider the simplest version n = 0 in our algorithm,
where no any derivative is involved, the corresponding wavelet coefficients in our algorithm still decay as fast
as O(273™), better than that of traditional discrete (periodic) wavelet transform (i.e., O(27™)). Full version
of our algorithm can be applied to compress smooth data, e.g. CMIP6 data [14]. The size of CMIP6 data
is increasing sharply at the petabyte scale [13], but by now there is no good algorithm to compress it. Since
CMIP6 data are output data from numerical solutions of fluid equations and energy equations governing the
Earth’s climate system [14], CMIP6 data is smooth and the needful derivative values on the data boundary are

easily estimated, so our algorithm can compress this kind of data well.
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