Various parameters of the multiaxial variable amplitude loading and their effect on fatigue life and fatigue life computation
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Abstract
The paper discusses various partial solutions used for estimating fatigue life under variable amplitude multiaxial loading in the high-cycle fatigue domain. The concurring effects are treated, and their proposed solutions are commented upon. The major focus is on the categories of the phase shift effect and of cycle counting, and on the scope and quality of data, which support discussed theories. Results of own new experimental data set on specimens from S355 steel are provided. Fatigue life estimates for McDiarmid and Findley multiaxial methods and for two different methods of load path decomposition to cycles are shown to highlight some of the points open for discussion. It is concluded that the available experimental data are not sufficient to substantiate a clear decision to follow a definite algorithm.
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Nomenclature
Variables, symbols
A5	[%]	elongation at the fracture
b	[-]	fatigue strength exponent of the Basquin formula
CEV	[%]	carbon equivalent value
C	[MPa]	shear stress evaluated on a plane
D	[-]	range of a given parameter
E	[MPa]	Young modulus
e	[-]	normal strain
FI	[-]	fatigue index (Eq. (3))
g	[-]	shear strain
k	[-]	fatigue strength ratio (Eq. (2))
N	[MPa]	normal stress evaluated on a plane
Nf	[-]	number of cycles to failure
p-1	[MPa]	fatigue strength in fully reversed axial loading
s	[MPa]	acting nominal normal stress
sa,eq	[MPa]	equivalent stress amplitude
s’f	[-]	fatigue strength coefficient of the Basquin formula in axial loading
su	[MPa]	tensile strength
sy	[MPa]	yield stress
t-1	[MPa]	fatigue strength in fully reversed torsion loading
t	[MPa]	acting nominal shear stress
t’f	[-]	fatigue strength coefficient of the Basquin formula in torsion

Indexes
a	amplitude
eq	equivalent
m	mean value
max	maximum value
s	related to axial loading
t	related to torsion
-1	related to fully-reversed loading

Abbreviations
CPA	Critical Plane Approach
CPD	concept of Critical Plane Deviation from the failure plane
IA	Integral Approach
IDSA	approach evaluating the load path in the Illyushin Deviatoric Space
IP	in-phase loading
LCM	Longest Chord Method (see Fig. 2)
LPM	Longest Projection Method (see Fig. 2)
MCCM	Minimum Circumscribed Circle Method (see Fig. 2)
MCEM	Minimum Circumscribed Ellipse Method (see Fig. 2)
MCH	Maximum Convex Hull (see Fig. 2)
MD	Maximum Damage concept
MMK	Manson-McKnight criterion1
MMP	Manson-McKnight-Papuga criterion2
MOI	Moment of Inertia method3
MPH	Maximum Prismatic Hull
MSSR	Maximum Shear Stress/Strain Range 
OOP	out-of-phase loading
PCR, PCN	Papuga’s critical plane criteria in Revised4 or New5 versions, respectively
PI, PIR	Papuga’s integral criteria in original 6 and Revised7 versions, respectively
Introduction
The in-service loading of engineering structures is far from being a simple constant amplitude loading, though this is the most often used load process for determining the fatigue characteristics. Moreover, in comparison with common fatigue specimens, real components produced in factories are more complicated as regards their shape, surface, and tolerances. The transition of the predictive fatigue tools from the basic research domain to real applications is not therefore easy. The errors induced in evaluating so many potential interacting effects can be substantial. Furthermore, only some of the potential effects as regards the life estimation capability of the computation tool have been noted. The errors induced in selecting the wrong reference load history to represent the most important (damaging) sequence or the quality of workmanship are further additional factors. These can affect the final real fatigue life of manufactured components, but they can stay hidden until premature failures arise.
It is no wonder that there are voices stating that the common fatigue life estimation procedures „…primarily rely on the test data curve to fit the empirical void/damage evolution function... These empirical models are popular for engineering applications due to their simplicity. Still, the identification of parameters is costly, time-consuming, and lacks any scientific basis due to a lack of physical and mathematical foundations” 8, and that a completely different solution must be found. If the common procedure of fatigue life estimation is assessed, the multitude of various effects, intertwined but solved separately, is really striking.
The attempt to provide the fatigue life estimation for a variable amplitude multiaxial loading applied on unnotched specimens in the high-cycle fatigue regime could seem to present a very small and unchallenging slice of the complex reality engineers are facing every day. Research on finding the optimum computational technology has been pursued for many years. The interesting paper by Ioannidis9 brings along a kind of warning. It proves statistically how simply the observation can lead to erroneous results if the testing matrix used for the proof is too small, or if the number of interacting effects involved is too large. The recent research of Papuga et al.10 has revealed the considerable insufficiency of the existing experimental basis to prove whether the phase shift between tension and torsion load channels affects the fatigue life in high-cycle fatigue, and to what extent. The response to the phase shift effect is very important for a real variable amplitude loading. Its non-existence, as proposed for example by Papadopoulos et al.11, for bending-torsion loading would greatly affect the way the load history is treated. 
This paper deals with individual effects which interact within the stated domain, with the primary focus on the phase shift effect, the mean stress effect and cycle counting. It intentionally avoids also discussing the damage accumulation rule. It is closely related to a cycle counting solution. To prove its success in modelling the reality, the previously mentioned effects should be mastered well enough first.
There is little doubt about how to process the computation of the fatigue response to variable amplitude loading in the case of uniaxial loading in the HCF regime. The rain-flow method (first proposed by Matsuishi and Endo12) is universally used to divide the measured discretized load history into individual cycles. This step is generally well accepted, and the only objection that can be raised concerns the correctness of involving the yet unclosed half-cycles in the computation process13. 
The rain-flow method preserves the memory effect, as it is observed in reality. Whenever a smaller hysteresis loop (a cycle) is closed, further stress-strain response follows the path related to the branch of the larger hysteresis loop into which the smaller one is nested. The area of the hysteresis loop relates to the strain energy density which is accumulated in the component, and which can be later released by forming the crack. The correct identification of hysteresis loops in load history is thus of ultimate importance.
Once the individual load cycles are defined, they can be described by their amplitudes and mean values. Typically, there is not a separate experimentally defined S-N curve available for each stress amplitude and mean value combination, and  an approximation routine must be used to obtain the equivalent stress amplitude (see e.g. Dowling14 or Papuga et al.15). Because the basic case treated here avoids the effect of the stress gradient16 (only smooth unnotched specimens are referred to), the only remaining unknown is the question of the right damage accumulation model. Because of its simplicity, the Palmgren-Miner rule is taken as the optimum solution, though it is known to be imperfect17. A potential adjustment by available reference experiments can be applied if need be, because the computed final damage need not correspond to the real experiments (see the final damage value in the range 0.01-10 reported to be common18).
Concurring Effects
The limitation of this paper to only high-cycle fatigue brings along assets, but also some disadvantages. The advantage is the very limited scale of plasticity observed within the evaluated structures. Thanks to that, the question of the right plasticity model to provide exact values of elastic-plastic strains, including various complicated load paths, can be neglected.
Taking into account for how long multiaxial fatigue problems have been studied, the biggest disadvantage is surprising. It is the lack of data that would be able to prove the validity or inaptitude of selected criteria for cycle counting in the variable amplitude load history. If compared to the above-mentioned 1D scenario, there is an increase in the number of concurrent and not wholly proven computation effects that must be mastered. Though the younger generation of fatigue researchers 19 might believe that the legacy of the 1990’s is clear, and that the methods for load history decomposition were adequately proven to work, it can be considered an overoptimistic view. The following subsections focus on some special effects separated from the whole computation line. The reality is complex, and most of the effects described separately are interrelated. 

Multiaxial stress parameters
If the fatigue strength or life prediction of a more complicated multiaxial load history is to be close to the experimental observation, the quality of the multiaxial criterion used plays an important role in the complete computation procedure. The next subsections address some parts of its functionality – the way it faces the non-proportional loading, or the way it processes the mean stresses of individual cycles. Both these features are directly in-built into its formulation. The number of existing multiaxial strength criteria is unpleasantly high, and only the review6 compares 18 of them. That survey compared those criteria on a large set of 407 experimentally obtained fatigue strengths. New proposals keep being published 2,20–26, as well as new data sets27,28. Papuga has recently published two newer papers, each of which enhances the estimation quality of the two most precise methods in the survey 6 – the Papuga PCr (new PCN5) and Papuga PI methods (new PIR7).
These newer versions were defined and proven to work better above all thanks to the mean stress effect, with the special emphasis placed on the role of the mean shear stress effect. This topic is covered in another subsection hereafter.  An interesting point in the evaluation of both these methods is that the statistics of their overall results are quite similar, despite substantial differences in their solutions. An explanation of the currently most common approaches to the problem thus represents the core of this subsection, though the other two topics (non-proportional loading and mean stress effect) must also be intrinsically well mastered in the right multiaxial criterion.
The key categories in the multiaxial solution follow in the list below. Note that a more detailed description of most of the mentioned methods and links to original references can be found in the survey6:
1) Critical plane approach (CPA): These methods work with the key argument that the initiated crack follows some special plane, stress (or strain) parameters which should thus be relevant for assessing the fatigue damage or fatigue strength. There are differences in understanding which plane is the critical one:
a) Maximum damage (MD) found on any plane can be the decisive parameter to define this plane as the critical plane. This is the most often represented category of criteria (Papuga PCN5, Findley29, Robert30, Ninic31, Papuga QCP5, …)
b) Maximum shear stress range (MSSR) can be the selection criterion for the critical plane as well in relation to the observation of Socie 32 that the shear stress/strain is the main parameter governing crack initiation. Bannantine and Socie in another paper 33 commented that the maximum damage should be the decisive parameter because a lot of slightly smaller damaging cycles should overrule the effect of the maximum shear stress range. This their commentary is not affecting the case of constant amplitude loading. These criteria thus should be treated within such category as well. The most prominent methods using  the MSSR concept are those by Susmel34 or by Matake35.
c) Critical plane deviation (CPD) is proposed by two teams – Carpinteri and Spagnoli36, and Liu and Mahadevan37. The concept assumes that the critical plane is only a marker and that the real fracture plane should be determined in a second step in a defined inclination to the critical plane.
2) Integral approach (IA): Instead of searching for a plane with a maximum of a given variable, either the individual stress parameters or the whole equivalent stresses on each plane can be integrated over all plane orientations. The concept is thus utterly different from the critical plane – not the maximum value, but the mean value over all planes is emphasized. Methods by Fogue30, Liu and Zenner38 and Papadopoulos11 can be categorized in this group, as well as the Papuga PII methods6,7. Some proponents of this type of solution 39 supposed this type of solution should better conform to non-proportional loading, where the principal stress directions rotate and the definition of the critical plane of a constant orientation is doubtful. In any case, such an assumption has not yet been proven valid by any larger study. The integral approach can seem to be more computationally demanding due to the potential requirement of a small integration step to reduce the computational integration error. Tomčala et al. 40have recently shown that the stability of results of the integral approach is better in comparison with critical plane solutions when the number of evaluated planes is intentionally decreased to quicken the calculation.
An interesting variant of this approach was recently introduced by Albinmousa and Al Hussain41, who analyze the damage on all planes perpendicular to the surface and integrate those partial damages over whole range of plane rotation angles 0-2p.
3) Ilyushin deviatoric space approach (IDSA): The load path is evaluated overall in a 5D-space derived for the stress tensor deviator components. In comparison with the previous approaches, where many analyses must be carried out on various candidate planes, here the circumscribed hyperball or hyperellipsoid is computed just once, with a substantial reduction of computation time. Typical representatives of this kind of solution are the Sines method 42, the Crossland method 43 or the Kakuno-Kawada method44.
This categorization avoids some special cases, as is e.g. the MMP2 approach derived from the modified von Mises equivalent stress, or the Braccesi-Morettini solution45,46, which can be applied either for random signals or which can be reduced to deal with common deterministic constant-amplitude loading.
As noted above, the broadest comparison of these methods can be found in the review6. The exact comparison of statistical parameters of individual methods is interesting, but also dependent on the quality of experimental data used for it. Papuga thus decided to continue in his effort by increasing the credibility of the experimental data used. Some of these analyses have been published28,44,47,48. It is worth noting that the original PI method presented in 6 would not provide acceptable results for the newer data set49, though it belonged to the two best solutions originally6. The size and content of the data set used for the validation of the criteria is obviously of tremendous importance. 
Both modified PCN and PIR methods were largely improved as regards the shear mean stress effect, and they are proven to work well on the modernized test set28. They result in very similar statistics of estimation errors, though the philosophy of processing the stress states is so completely different. The question can be raised: “If such dissimilar methods result in similar prediction quality, can they both be correct? Is something like that possible?” The authors of this text are inclined to assume that this output could also mean that neither of these two methods reflects the reality in full. They are simply other models fitted to existing experimental data, for which the number of interacting effects is reasonably low to get the fitted results close to the experimental data of only slightly more complicated cases. Though this is also a legitimate conclusion, its disadvantage is that a further increase in the complexity of interactions can extensively modify the quality of the output, which might no longer resemble the experimental results.
Most of this sub-section was focused on explaining the different processing paths of the multiaxial fatigue criteria, which themselves are elaborately treated elsewhere6,50. Technically, those two items can be variously combined, and thus e.g. Iftikhar and Albinmousa51 decided to separate the effects of both parts. In their study, they first used the maximum damage critical plane approach. Then they processed the same data so that any candidate plane (Albinmousa sticks to the idea that only planes perpendicular to the surface are the candidate planes for being the critical ones41,52) could be the critical one based solely on the fatigue estimate closest to the experimental life. By following this concept, they assume to evaluate solely the effect of the damage formulation, while they keep the decision on the evaluation method (e.g., here CPA-MD vs CPA-MSSR) open. 
Quite logically, this freedom in marking any candidate plane as the critical plane solely on the closeness of the fatigue prediction to the experiment affects only those experimental points, fatigue life prediction of which ended as too conservative in the original CPA-MD approach. Those results, which were previously with the CPA-MD scheme non-conservative, cannot improve using this modified approach. This benchmark thus favors those models, which were in the CPA-MD scheme too conservative and only some experiments were slightly non-conservative, which in the authors’51 selection of evaluated methods is the Fatemi-Socie model53. Because of this obvious consequence, it is a question however, whether any more general conclusion can be made from such a partial analysis, and whether such kind of a problem segmentation can lead to any more universal understanding.

Non-Proportional Loading
In order to be able to describe simply the load path and its separation into individual cycles, the load path of the multichannel loading must be linear (see e.g., cases 0, 5 or MT in Fig. 1). Such loading is called synchronous in FKM-Guideline54. Proportional loading, i.e. the case when principal directions do not change during the time, is a special subset of synchronous loading. Note that the strict application of ordering principal stresses s1>s2>s3 would result in the change of principal direction even for a simple push-pull test, so this artificial condition must not be applied if the question of load proportionality is evaluated. The condition of proportional loading is fulfilled only if the stress tensors at one instant are multiples of stress tensors at any other instant of the evaluated load history. Such a condition is easily complied with only by load cases where the load path in the - (- diagram goes through [0; 0] point as a straight line (see cases 0 and 5 in Fig. 1). Any straight line shifted away from the zero (see case MT in Fig. 1) results in a rotation of the principal directions during loading, and thus it must be classified as non-proportional loading.
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[bookmark: _Ref69831362]Load paths tested by Kida et al.55 (paths 0-13) and other typical cases.

Synchronous loading allows the computation to be kept simple and not so different from the 1D case, because it is unambiguously obvious which cycles are treated within the load history. Even if the critical plane solution (which is today the prevailing solution to multiaxial load cases) is used, the projection of a synchronous load path to any plane remains a line. The stress magnitudes along it can be quickly analyzed by the rain-flow approach, and the amplitudes and mean values of normal and shear stresses can be derived without any hesitation.
Once a load path becomes multi-dimensional, any such simplicity disappears. Load non-proportionality is the most probable output in the case of loading induced in service by several load channels. It can be found in contact areas between two adjacent components. The question arises of how to describe the effect of the changing shear stress on the evaluated plane. In order to cope with this question essential for typical multiaxial criteria, various methods have been proposed as shown in Fig. 2 (see 11,56–60) to deduce from the shear stress path the shear stress amplitude Ca and the mean shear stress Cm.
To keep the solution simple, at least for this moment, and to avoid cycle counting and damage accumulation, let non-proportional loading be related to one apparent load cycle for now. For such cases, the out-of-phase loading manifested for example in Fig. 1 by the path OOP is the one which is the most frequently tested thanks to its simple experimental setup. A projection of such a load path to any physically reasonable plane related to the potential crack initiation is again an ellipse, even if more than two load channels are involved with all of them featuring the same frequency61. The reduction of the general non-proportional path to the ellipse induced by the out-of-phase loading removes any differences of results obtained while using the strategies shown in figures d)-f) in Fig. 2.
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[bookmark: _Ref69837065]Methods of shear stress analysis on evaluated planes: a) Minimum Projection method (MPM), b) Longest Chord method (LCM), c) Minimum Circumscribed Circle method (MCCM), d) Minimum Circumscribed Ellipse method (MCEM57), e) Maximum Prismatic Hull (MPH59), f) Maximum Convex Hull (MCH60).

Until recently, the effect of the mean shear stress on fatigue life was generally assumed to be negligible, so the primary attention was given to the question of how to define the shear stress amplitude. For the load path depicted in Fig. 2, the first three methods a)-c) provide identical output of this value – the higher computational demand of the MCCM method is necessitated by the ambiguity of the previous two methods found for example in the isosceles case. On the other hand, the previously mentioned supposed lack of importance of the mean shear stress value is the presumed reason for not defining its value for the strategy of the maximum convex hull60.
The MCEM method was described in various variants (see e.g. 57,62). The authors of these proposals reasoned that the MCCM method does not differentiate at all between load cases of fully proportional loadings (load path of a single line) and out-of-phase (load path of an ellipse) loadings – the radius as well as the center position are likely to be the same. Today, there are multiple definitions of the circumscribed ellipse59. The striking difference of any of these MCE methods compared with MCC methods is in the calculation of the shear stress amplitude. While MCCM uses the circle radius directly, MCEM calculates the vector product of both ellipse axes. In the case of the line path (case 0 in Fig. 1) projected to an evaluated plane, the shear stress amplitude is equal to half of the path length for both methods. The other extreme – the circular path (case OOP in Fig. 1) – ends up for the MCEM with the shear stress amplitude equal to the 1.41 multiple of the circle radius, i.e. of the shear stress amplitude of MCCM. The same load path therefore provides very different shear stress amplitudes for the MCE and MCC methods. 
The authors defending MCE or MPH methods assume that such behavior is acceptable, because the out-of-phase loading (circular load path) causes higher damage, which will be positively reflected by higher shear stress amplitude59. The same assumption is anyhow in clear contradiction to the conclusion proposed by Sonsino63, who describes a converse expectation. Any such comparisons can, however, be misleading. The first key question is, which loads are compared and how they project onto the evaluated plane. Secondly, the assumption that out-of-phase loading causes an increase or decrease in the lifetime, cannot be confirmed as a general observation. Papuga et al.10 evaluated available historical data of fatigue strengths comparing the experimental responses to in-phase (IP) loading and to out-of-phase (OOP) loading with equal stress amplitudes on axial and shear stress channels for both load cases. If only acceptably reliable data were evaluated, 15 pairs of in-phase and out-of-phase load cases could be retrieved. The histogram of ratios between fatigue strengths of OOP to IP loadings based on the MMP parameter2:
	
	 


was prepared10. It is used in the evaluation to compute the equivalent stress for two stress inputs of a axial stress and a shear stress amplitudes. While the histogram showed a response symmetric to ratio between fatigue strengths of 1.0 (i.e. for some cases the switch from in-phase to out-of-phase loading caused fatigue strength increase, for other it caused decrease), Papuga et al. decided to decrease the probability of any other effect interacting with the phase shift effect by dismissing the data items, including the plane bending mode and by removing the data items related to full bar specimens (with potentially differing responses in the crack initiation and crack growth phases). These additional demands further diminished the already small set to 5 pairs of test fatigue strengths only (one item for IP, the other one for OOP loading), which were derived from several references2,64,65.
Fatigue strength ratio 
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is an interesting characteristic showing the material behaviour11, which can be divided into brittle ( < 1.25), extra-ductile ( > 1.73) and ductile materials described by  between those two limit values. Based on the fatigue strength ratio, all tests gathered in the final set were performed on ductile materials, in the range of  between 1.39 and 1.47.
Due to the extremely limited variations of the test conditions in the final set, any output of such analyses was dubious, with no clear conclusion. To improve understanding of the behavior of  the analyzed criteria, Papuga et al.10 performed a sensitivity analysis based on artificially produced material and load data. They defined three materials of  ratio related to the three afore-mentioned material groups (brittle, ductile, extra-ductile), and four various load ratios between both acting load channels (push-pull, torsion). The acting stresses were adjusted to bring the fatigue index FI 
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close to one (i.e. the stress parameter a,eq equal to the axial fatigue strength of material p-1) for the Papuga PCN method in the in-phase loading configuration. This in-phase loading case and the response of the material to the selected estimation criterion were used as a reference state only, and the same stress amplitudes were then applied with various phase shifts between both load channels. The computed fatigue indexes FI for each such configuration were normalized by the response at the in-phase loading, so that the relative response of the method to the phase shift only could be checked.
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[bookmark: _Ref70105600]Ratios of fatigue indexes for two critical plane solutions, one with the maximum damage preference (left), the other with the maximum shear stress range preference (right).
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[bookmark: _Ref70106861]Ratios of fatigue indexes for the Dang Van method (left), and for a representative of the integral criteria (right).
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[bookmark: _Ref70105644]Ratios of fatigue indexes for the representative of the IDS criteria in the MCCM variant (left) and of the CPD variant of the critical plane solution (right).
The examples of the outcomes described in 10 are presented in Fig. 4 – Fig. 6 for various representatives of the major classes of fatigue strength criteria. The methods invariant to the phase shift (e.g. Papadopoulos11, MMP2 or e.g. the Crossland method43 with the application of the circumscribed hyperellipsoid in the IDS concept61) would result in a constant line at FIOOP/FIIP=1.0. For other criteria within MCCM concept, the following conclusions can be found10:
1. Based results of the integral criteria (e.g. Liu & Zenner in Fig. 5) and the critical plane criteria of the MSSR type (e.g. Matake in Fig. 4) it is assumed that in some cases the increase of the phase shift increases the equivalent stress (fatigue index FI), and thus reduces the fatigue life. This behavior is observed only for brittle materials, the trend is reversed for all other cases.
2. In all other cases, the criteria assume that the non-zero phase shift decreases the equivalent stress, i.e. it causes lower damage.
3. In all tested variants, the maximum difference in the response compared to in-phase loading is reached at the phase shift of 90 degrees.
4. In case of ductile materials (to which all accepted tests in Table 1 of reliable experimental outputs belong), most of the evaluated multiaxial criteria respond to the phase shift in a very moderate way. The change of the fatigue index with the phase shift usually remains within 10%. The exceptions – the Dang Van method and the Crossland method – show substantial non-conservativeness of the solution in the out-of-phase loading scenario, and thus their response cannot be taken as a reliable representative of the experimental behaviour6.
The 2nd point of the numbered list above can be discussed as regards the potential impact of the MCEM technique in increasing the equivalent stress provided here in the results depicted in Fig. 4 – Fig. 6. However, the data presented in those figures are only results of a mathematical analysis unrelated to the real material behavior. Before checking the potential of the switch to MCEM or MPH formulations, the pressing need of more relevant experimental data must be highlighted. Papuga et al.10 thus evaluate also testing setups, which are likely to provide the highest difference in the response to the phase shift. If such a minor effect should be observed for ductile materials, many more experiments per each load case are necessary to bring forth also the adequate experimental certitude. The response of the methods to the phase shift in the case of brittle and extra-ductile materials is much more pronounced, and more promising to be detectable.
In the recent paper61, Papuga et al. extend this study to the application of other methods of shear stress path description. In their paper it is proven that once harmonic loads are imposed on all practically applicable load channels acting on common fatigue specimens, and all partial loads are of the same frequency, the final load path either on any evaluated plane, or in the Illyushin deviatoric space, will be either a line, an ellipse or a circle. The analytical formulas usable for any common test setup on unnotched specimens to derive the parameters of the ellipse (or ellipsoid) are provided to cover all test cases including axial loads, torsion and pressurizing. The only other setup which could not be analyzed in those formulas concerns contact cases with mating surfaces where additional shear stresses are induced.
Because the load path is elliptic, there is no difference between outputs of MCEM, MPH or MCH methods (see Fig. 2). The paper61 thus focuses above all on the question which changes the substantially bigger derived shear stress amplitudes obtained for any of these three methods cause in comparison to MCCM. In addition to checking the basic difference between MCEM and MCCM concepts, the Moment of Inertia (MOI) method proposed by Meggiolaro and Castro3 for evaluating the shear stress path was also evaluated. 
The evaluation proceeded both in the same sensitivity analyses10 as described above, and also on the set of applicable experimental data derived from the FatLim data set49. Only 6 multiaxial fatigue strength methods were evaluated 61 – the Papuga PCN criterion5, the Findley criterion29 and the Matake criterion35 to represent the critical plane models, the Papuga PIN criterion7 and Liu and Zenner criterion38 to represent integral criteria and the Crossland criterion43 for the methods based on stress invariants evaluated in the Illyushin deviatoric space. Experimental data used for the validation were free of any induced mean stresses to secure that only the phase shift effect is concerned. The total used data set covered 29 different load combinations and materials available for validation. Due to the intrinsic nature of such multiaxial tests, these cases thus cover only axial-torsion load combination. The application of any pressurizing to induce also second normal stress is invariably accompanied by mean stresses28, so such load combination could not be addressed. The outcome of all these analyses can be summarized:
· MOI responds to the phase shift effect too strongly.
· For critical plane criteria, MCEM seems to slightly improve the prediction quality in contrast to MCCM.
· Crossland and Liu&Zenner criteria become phase-shift-insensitive if MCEM is applied.
· Integral criteria seem to lose some of their quality, if switched from the application from MCCM to MCEM.
· The Crossland method clearly benefits from switch to MCEM.
Although the validation was selected with great care, the differences between MCEM and MCCM are relatively small, and they could be affected by a too limited data set scope. Further analyses and further experimental data to support the conclusions stated above are urgently needed.
Mean Stress 
The fact that the mean stress affects the fatigue life has already been accepted for a long time. However, the transferability of the experience from the uniaxial fatigue analysis14,15 to the multiaxial fatigue analysis is questionable. Among the multiaxial fatigue strength estimation methods, the idea to evaluate the effect of multiaxiality on the equivalent stress amplitude and on the equivalent mean stress separately, and to combine them together while using the classic 1D rules for mean stress effect evaluation is not common. The exception are, e.g. the Manson-McKnight method 1 and the MMP criterion2 derived from it.
In most other cases, the implementation of the mean stress effect is built into the criteria themselves. Fortunately, unlike the response of the criterion to the phase shift effect, the mean stress can be simply removed from the criterion by putting it to zero, and the equivalent stress amplitude can be evaluated separately without it. The first criteria did not treat the mean stress effect in complexity, and a simple use of the maximum normal stress was proposed (Findley29, Matake35, McDiarmid66, etc., see their formulations6), or of the maximum hydrostatic stress for other criteria (Crossland43, Dang Van67, Papadopoulos68). The understanding that a more complicated evaluation of the amplitude and of mean values of the normal stress, or of the hydrostatic stress developed only afterwards. Among these enhanced approaches, the methods by Kakuno and Kawada44, Robert or Fogue30 could be listed. 
Liu and Zenner were probably the first authors69, who proposed to implement also the effect of the mean shear stress value in the cycle. Their proposal was negatively accepted by some authors11 with  reference to the research of Sines70 who described the dependency between fatigue life and the mean shear stress in the HCF regime as non-existent unless the mean shear stress exceeds the value of the torsional yield strength. The dismissal of their method as unreasonable with regard to this aspect provoked Liu and Zenner to publish the comparison38 between the estimation quality of the Papadopoulos method and of the Liu-Zenner method. It was concluded that the overall estimation quality of their solution including the mean shear stress is comparable or even better than the Papadopoulos method. 
The issue was left dormant until only recently when several attempts to reopen the problem and to evaluate the effect of the mean shear stress were published. Pallarés-Santasmartas et al.71 did their experimental study on 34CrNiMo6 and agreed with Sines’ conclusions – the mean shear stress effect is negligible at 2 million cycles if it is below the torsional yield strength, otherwise, it cannot be neglected. As a result, a modification of the Crossland method was proposed to cope better with the latter situation. They admitted that the mean shear stress effect introduced by them was relatively mild, and it thus might not be sufficient for brittle materials with large defects (as e.g., cast irons), where much stronger decrease of fatigue strength is expected with the increasing mean shear stress. 
The two implementations by Papuga et al. of PCN5 and PIR7 criteria have been lately published. Improvement of those new criteria in comparison to original PCR4 and PI6 criteria is based on including the mean shear stress in their formulation. Both new methods seem to provide the estimation closest to experimental results for a large set of experimental data items, if compared with other methods. They result in better predictions than the original PCR and PI methods which were compared with other methods6, and no other paper with a newly proposed method published afterwards has attempted to compare its results with any of these two methods. For both methods, the involvement of the mean shear stress in their formulations improves the behavior not only for more complex load cases or for uniaxial torsion loading, but it also enhances the response to purely axial loading including the mean stress.
The improvement mentioned in the last sentence must be emphasized. The reasoning by Papadopoulos11 on too many supporting experiments for the four-parametric fatigue strength parameters is far from unreasonable. It is no wonder that these four-parametric fatigue strength criteria yield better results than those equipped by only two parameters. By adding new parameters, the fit of the criterion to four different load conditions is secured, which affects the general response to more complex loads positively as well, above all, in comparison to those two-parametric criteria, which were fitted only to fully-reversed load cases. Fojtík et al.72 mention their surprising finding that two-parametric McDiarmid method provides quite good results which are not much worse than the four-parametric PCN criterion.
Böhme et al.73 recently introduced a new integral criterion, where the mean shear stress is multiplied with the shear stress amplitude. This means that its importance in the fatigue strength criterion increases with the shear stress amplitude value as well. The context of the model development is, however, slightly different – the authors focused on fatigue problems and prediction in carburized bevel gears. They did not restrict themselves to solving the problems on the gears surface where the contact induces more complex stress tensors than common fatigue experiment provides. They ran the analyses also in the core of the gear tooth, including the transition interface between the case and the core. The new criterion did not exceed quality of the prediction results of the PIN criterion when tested on the test set of multiaxially loaded unnotched specimens, but it provides the second-best estimate. On the other hand, PIN method falsely proposes the critical hot-spot on the surface of the bevel gears, which does not conform to real issues, while the newly developed method treats those cases to a satisfactory degree.
Cycle Counting
It is no wonder that the cycle counting procedures in the multiaxial domain are derived from the successful rain-flow method, or that they at least attempt to resemble it, if reduced to the 1D scenario. The key question is if the same tactics might be applicable in the truly multiaxial non-proportional loading where different cycles can cause different planes to be critical. 
The least demanding solution as regards new implementations is used e.g. with the Bannantine-Socie approach33,53 or the early Wang-Brown approach74. The shear strain projection to a given direction at the evaluated plane is evaluated by the rain-flow analysis (i.e., it uses the LPM approach from Fig. 2). Because the Bannantine-Socie method works only with the maximum normal stress to the evaluated plane, it is simple to register this maximum value during each shear strain cycle.
The original Wang and Brown method74 follows a similar concept of the rain-flow performed on the shear strain parameter, but its damage parameter involves the normal strain range. The method proposed by authors74 monitors separate shear strain reversals and computes the normal strain range within each of them to be used in the final fatigue parameter of equivalent shear stress amplitude. Kim et al.75 proposed modification of this solution by using the full shear strain cycles and the normal strain range related to it, instead of the individual reversals. Papuga et al. compared both approaches76 and concluded the variant by Kim et al. provides the best results for a series of multiaxial experiments performed on one batch of general structural steel.
Wang and Brown soon modified this original approach of theirs77,78. Although they kept the damage parameter composed of the shear strain amplitude and normal strain amplitude, they completely changed the way the cycle counting is processed. The paper77 which was submitted as the first one describes the solution by an example only, i.e. without any explicit flow diagram or algorithm details – see it reproduced in Fig. 7, on the left. The maximum equivalent strain (based e.g. on Mises equivalent strain as Wang and Brown used in their papers, or on Tresca’s shear strain as they also proposed and as is used elsewhere19) must be detected in the complete strain history. The block of the preceding load history is shifted to the end of the subsequent strain history.
[image: ]
[bookmark: _Ref71221993]Examples of the cycle counting method proposed by Wang and Brown and submitted to the first publication77 (left) and afterwards78 (right).

The relative strain ranges of individual strain tensor components based on each evaluated time and the starting point are calculated and the equivalent relative strain ranges are computed from them (the path ABCDE in Fig. 7, left). The reversal A-D can be retrieved. The load history between the points D and E is then evaluated by relative strain ranges computed to the breakpoint D afterwards. Because there are no more changes in the trend, D’-K can be retrieved as another reversal. The change of the ABCD series trend in the point B (which is not the global maximum and thus cannot form the reversal with the point A) means that another reversal starts there. The relative strain range history in between B and D thus should be recalculated with the strain ranges relative to the point B (B’GHI path). Along this path, the reversals B’-H is retrieved, and the remnants G-H and H-I should be newly evaluated relative to G and H points, respectively. This procedure is repeated until all reversal are derived.
The load history in Fig. 7 (left) provided by authors by chance hides another rule established by them, which they did not mention explicitly. Only the surprising end at point S of the load history part starting with point O’ can cause the reader to wonder. The next paper of authors78, sketch from which is also provided in Fig. 7 (right), explains this rule in the part of the BCD load history. It shows that once the A-E reversal was extracted, the load history starting with the point B’ is not analyzed up to the point E, but only to the point D, which is detected by having the equivalent relative strain range to the point B’. This condition allows the authors to claim that their method reduces to the common rain-flow method, if used on an 1D strain history. In addition, the paper78 states another important rule – the reversal A-E goes along the B-D line, i.e. in a constant distance from the point A, and it does not include the real load history in between the points B and D. 
Meggiolaro and Castro79 proposed to improve this newer algorithm in several items. Firstly, they objected that the search for the maximum equivalent strain need not detect the maximum relative strain range. They suggested to find this maximum by checking all pairs of load history strain states to detect it. Secondly, if Wang and Brown77,78 showed the examples in 2D space only (tension and torsion), Meggiolaro and Castro point out that once the real cases are evaluated, the strain tensors can be much more complicated, and thus the search for the alternate paths of equal distance from the  starting point (to find the equivalent strain range) can become very demanding in time. It is therefore convenient according to them to switch from the full 6D space of strain tensor components to the 5D space of the strain tensor deviator. Thirdly, they propose to close the cycles first by pairing reversals with equal position of extremes, and to process the resting unclosed reversals only subsequently.
There are some points to be raised for the last two methods based on equivalent relative strains. First – is the chosen equivalent strain the right parameter? The MMP criterion2,72 (used here in its simplified form in Eq. 1) was derived from the Manson-McKnight (MMK) method to conform better  to torsion load cases, for which the original MMK using the Mises stress failed to provide adequate results. If the equivalent strain (stress) used by Meggiolaro and Castro mixes the input values wrongly, the output of cycle counting should be wrong as well. 
Karolczuk et al.80 recently raised a question on the variability of the weight parameter that takes care of balancing the individual shear and normal stress inputs in the multiaxial criterion. The weight should reflect the change of the response to axial and torsion loadings with different number of cycles. For most S-N curves in axial and torsion loading, the ratio between appropriate fatigue strengths changes. Consequently, a similar change is encountered also in the weight parameter necessary to fulfill the compatibility condition pure axial and torsion loads. The equivalent strain in the Wang-Brown method is based on the von Mises condition. It is obvious therefore2,80 that a different weight than the one typical for Mises equivalent stress or strain should be used, and that it should differ for different load levels, if the compatibility should be preserved. This further complicates the computation. On the other hand, although the use of von Mises strain in fatigue predictions need not be correct, it can be appreciated as a solution convenient well enough to reach the end – detected individual cycles.
Second question concerns the decision accepted by both teams not to allow the same load history path to be counted twice, and to work with the equal distance curves. In this algorithm, individual isolated reversals or cycles cause other planes to be critical in the case of a real variable amplitude multiaxial history. But let us imagine the solution used by the rain-flow analysis by Bannantine and Socie – if a shear strain cycle is detected, the maximum normal strain will be sought within its range. If there is another cycle nested inside it, and the position of the maximum normal strain is within it, it should be counted in both, the nested and the enclosing cycles, because it affects them both (it can open the tip of the potential initiated crack). In comparison to it, the multiaxial methods based on the newer Wang-Brown algorithm which work with the relative equivalent strain ranges would leave the effect of the maximum normal strain only to the nested cycle.
Both opened questions are objections based only on evaluating the rules of the algorithm itself, without any real relation to the experimental reality. What is interesting is that none of these last two methods was more broadly or extensively validated in papers while using real experimental results. The reason is very simple – it is extremely difficult to decide which effects in the whole computation line could cause the quality of the results to be good or bad.
In comparison to these models, the solution used by Bannantine-Socie was tested more extensively. A very interesting and demanding analysis was recently published in a series of papers by Gates and Fatemi81,82. The results of their calculations are very promising, but changes to the original Bannantine-Socie method had to be induced. Whether or not the previous good results of the original Bannantine-Socie method would be consistently achieved with the new modification remains questionable.
The list of defined cycle counting methods is far from being complete. Langlais et al.83 apply the rain-flow analysis on one selected stress component from the whole stress tensor. They discuss, above all, how to ensure that the information on other auxiliary channels (stress components) preserves their important features. Janssens84 proposes a simple geometric rule. He sums the angles of the load path direction change in the evaluated plane. The cycle is counted, whenever the current load path direction returns to the original direction. However, none of these approaches has been extensively tested.
Practical test case
Superposed harmonic signals
All methods on cycle counting presented here were defined for the low-cycle fatigue analyses, where plasticity causes additional issues (Gates and Fatemi81 e.g. discuss, if the stabilized stress-strain response can provide adequate quality of results in such cases). Technically, the HCF domain can be treated in the same way. The elastic response should make the analyses simpler. Any subsequent comparison with experimental data while looking for the potential sources of error in the whole algorithm should be more feasible. The authors of this paper are not aware, however, of any experimental data, which could be used for that goal.
In this paper, the response of various materials to out-of-phase loading was described as insufficiently understood. Various researchers end up with opposing claims. Any final conclusion is hard to reach because the scope of available experimental data sets is not satisfactory, either in quality, or in volume. Once these inputs are replenished, and once the role of the phase shift becomes clearer, the combination of non-proportional loading and of the mean stress effect should be treated for the constant amplitude loading as the first extension. The criterion complying to those conditions can be then also used for testing the quality of the cycle counting procedures for multiaxial loads.
There is an important point to discuss whether the future experimental activity should focus on the HCF region or not. The paper by Ioannidis9 explains that when working with complex systems, the error is more likely to be induced if: 
· the number of experiments is too low, 
· the analyzed effect is too small,
· there are too many coexisting effects that should be correctly solved. 
Today in HCF, mostly random loadings are used, where the number of cycles derived in any attempts for load signal deconstruction to cycles is huge. The possibility to clearly clarify the effect of individual variables is close to zero in such conditions.
If a better understanding of the correlation between the proposed methods and a real behavior is desired, the number of load cycles in the analyzed load history should be rather small. A very limited number of experiments is known to be done in Germany85,86, France87 or Italy88 with unequal signal frequencies at both load channels, which generates paths similar to a) in Fig. 8. Such kind of signals can be sometimes found in LCF analyses89, but their extension to HCF domain experiments is really rare. The mentioned HCF cases85,86 were tested within the staircase testing scheme, with the zero information provided on the S-N curve to include the evaluation of the partial formed cycles within one whole load period. This means that no cycle counting definition and damage accumulation rule can be used for them to perform the computational analysis. These experimental items are sometimes used for assessing the fatigue prediction quality90 or the applicability of the shear stress path description method60, but the outcome of such attempts is hard to assess. In such cases, the solutions run the evaluation on the whole load period, without questioning the potential load path decomposition to cycles.
The idea presented here is to build the load paths from the two superposed goniometric functions so that they would present only a limited number of derived cycles:
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The setup of parameters A – L allows very broad variety of resulting signals. Parameters S and T determine the overall magnitudes of the defined signals.
Practical test case and its results
The previous sections are intended to increase the awareness, how fluid and unsettled the computation process is. It is based on many interacting effects, which are often so interrelated that the verification of some partial solution of a successfully isolated effect need not be sufficient to satisfy the demands when the situation gets again more complicated. The problem is further worsened by a very limited scope of experiments in HCF that would be relatively simple to analyze. Preparing the load signals based on Eqs. (4) and (5) can be a way, how to keep the multitude of interacting effects relatively low to understand how they affect the final prediction quality. An example of their application is presented hereafter to replenish the domain of multiaxial variable loading HCF tests at least a little. Two well-known multiaxial fatigue strength criteria and two relatively broadly accepted methods for load path separation to cycles are chosen to illustrate the various aspects of the prediction approach. The very limited scope of the tests does not justify any more elaborate analyses, because such verification would be far from sufficient.
The experimental procedure to showcase the previously discussed topics was carried out in the Strength and Elasticity Laboratory of Operational Lifetime and Materials Testing of the Faculty of Mechanical Engineering STU. An Inova EDYZ testing system (tension/compression tests) and an MTS Bionix 370.02 Axial/Torsional testing system (torsion tests and multiaxial variable amplitude tests) were used. As each of the machines uses a different gripping system, two sets of experimental specimens were manufactured. The specimen geometry utilized for pure tension/compression loading and the specimen geometry utilized in pure torsion and in multiaxial tests are shown in Fig. 9.
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[bookmark: _Ref71799417]Geometry of the experimental specimens: a) specimen for torsion and multiaxial loading; b) specimen for tension/compression loading.
The experiments were carried out in the force (torque) control mode. The fatigue crack initiation was determined based on a continuous measurement of the deformation response (strain, distortion) during the loading regime of the test specimen σa (or τa) = const (in case of variable amplitude loading the constant loading path). The completion of the test was defined either a) by the increase of the deformation (the angle of the distortion or strain) by 10% in reference to the mean value (indication of the technical initiation of fatigue crack91), or b) by reaching the lifetime of 2·106 cycles.
Material
S355 medium strength non-alloy steel was used for the experiment. Steel S355J0 was chosen as a low carbon steel frequently used in structural design. It contains 0.2% of carbon, 1.3% of manganese and 0.4% of silicon. It has a regular ferrite-pearlite microstructure obtained by normalization annealing. The static mechanical properties of the tested material are Young’s modulus E=210 GPa, elongation at fracture A5=19%, yield stress σy=612 MPa and tensile strength σu=644 MPa. Parameters of Basquin curve in push-pull were set to f´=581 MPa and bs=-0.0507, while the Basquin curve in torsion was obtained with tf´=550 MPa and bt=-0.0735. These data items have already been published92 along also with upper and lower boundary of 95% probability interval.
Tested load paths
Three loading paths based on Eqs. (4) and (5) described by parameters in Table 1 and shown in Fig. 8 were chosen for the experimental procedure. All tests were performed in force/torque control mode while similar global maximums and minimums on each load channel were defined. The actual loading force, torque, strain, and distortion were measured. 
The summary of the applied load conditions (maximum range of normal and shear stresses) and obtained experimental fatigue lives for each test item performed is included in Table 2. The real measured load paths for each tested specimen are shown in Fig. 9. As can be seen, due to problems with machine control during the test mark No.2.1, the loading path was deformed during the first third of the measured lifetime (the dashed line in Fig. 12). 
[bookmark: _Ref77976378]Parameters of the goniometric functions in Eqs. (4) and (5) as originally proposed for the evaluated load paths.
	Path
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L

	Case 1
	0.15
	3
	
	1.15
	1
	0
	0.15
	3
	/2
	1.15
	1
	/2

	Case 2
	0.65
	3
	
	0.65
	1
	0
	0.65
	3
	/2
	0.65
	1
	/2

	Case 3
	1.0
	3
	
	0.3
	1
	0
	1.0
	3
	/2
	0.3
	1
	/2



[image: ]
[bookmark: _Ref71802673]Proposed load paths cases when pictured with S=141.0 MPa in Eq. (4) and T=143.8 MPa in Eq. (5).

[bookmark: _Ref71802866][bookmark: _Ref71803108]Experimental results on S355. Note: (*) during the first 111269 cycles: a slight change of the load case of Δσ=367MPa and Δτ=368 MPa was applied, see also Fig. 9.
	Case 1
	Case 2
	Case 3

	Mark
	Δσ 
[MPa]
	Δτ
[MPa]
	Nf,exp 
[-]
	Mark
	Δσ
[MPa]
	Δτ
[MPa]
	Nf,exp 
[-]
	Mark
	Δσ
[MPa]
	Δτ
[MPa]
	Nf,exp
[-]

	1.1
	366
	374
	578140
	2.1
	368*
	371*
	421968*
	3.1
	365
	366
	203670

	1.2
	366
	373
	840640
	2.2
	366
	369
	200538
	3.2
	366
	367
	294300

	1.3
	364
	371
	630240
	2.3
	367
	370
	652730
	3.3
	366
	367
	621340

	1.3
	343
	376
	239900
	2.4
	351
	366
	271970
	3.4
	349
	368
	652750



[bookmark: _Ref71803125][image: ] Measured load paths for each specimen. Note the distorted original sequence in path No. 2.1, mentioned also in text and in Table 5.
Fatigue lifetime estimation procedure
Fatigue lifetime estimates (in the form of load path repetitions) of measured specimens were calculated from the real measured load signals, as the real loading paths slightly differ from modelled loading signal histories (due to imperfection in regulation). Two most common approaches to the cycle identification were used, namely Bannantine-Socie method17,33 and the newer multiaxial Wang-Brown method77,93.
The Findley29 and McDiarmid94 multiaxial criteria were used for damage parameter calculation, as they represent a different approach to the definition of the critical plane (the plane with maximum damage versus the plane with maximum shear stress amplitude, respectively). 
The Findley criterion is based on a linear combination of shear stress amplitude and maximum normal stress acting on calculated plane. When used for finite fatigue lifetime estimation, the following formula is used:
	,
	 


where:
	
	 


and kfin can be calculated from:
	
	 


The critical plane is defined as a plane of the maximum damage parameter. In the case of variable amplitude loading, the critical plane is the plane with the maximum accumulated damage. 
Similarly to the Findley criterion, the McDiarmid criterion is based on a linear combination of the shear stress amplitude and the maximum normal stress acting on the same plane. The main difference is the definition of the critical plane. Unlike Findley, McDiarmid originally94 proposed that the critical plane is the plane with the maximum shear stress amplitude. In case of finite fatigue lifetime estimation, the McDiarmid equivalent shear stress amplitude is combined with the Basquin formula in torsion:
	
	 


The weight parameter kmcd is derived from the load case of the push-pull according to Socie and Marquis95 to be:
	
	 


For variable loading, McDiarmid later96 revised the original MSSR idea, and switched to the MD concept. In this paper, thus, the final fatigue lifetime is also determined by the plane with the maximum accumulated damage. 
Palmgren-Miner linear damage accumulation rule were used for damage accumulation on evaluated planes. The increment of the angle defining the evaluated planes perpendicular to the surface has been set to 2°.
Results
The overall accuracy of the estimation procedure was estimated based on parameter PNf describing the ratio between calculated and experimentally obtained lifetimes:
	
	 


For a perfect correlation between the estimated and measured lifetimes, the parameter would provide the value of 1. Values higher than 1 represent errors on the non-conservative side while values lower than 1 represent conservative errors. The comparison between the measured and estimated lifetimes is shown in Table 6 for the Wang-Brown procedure and in Table 7 for the Bannantine-Socie method of load decomposition to cycles. 

[bookmark: _Ref71810172]Comparison of experimental results and estimated lifetimes – Wang-Brown method.
	Load case
	Test mark
	Nf,exp
	Nf,calc,Fin
	Nf,calc,McD

	Case 1
	1.1
	578000
	81118
	445376

	
	1.2
	841000
	64834
	359270

	
	1.3
	630000
	64049
	358463

	
	1.4
	240000
	88044
	364618

	Case 2
	2.1
	422000
	18532
	77183

	
	2.2
	201000
	61260
	229919

	
	2.3
	653000
	50085
	188113

	
	2.4
	272000
	74811
	260875

	Case 3
	3.1
	204000
	36712
	149535

	
	3.2
	294000
	39020
	159778

	
	3.3
	621000
	41026
	162595

	
	3.4
	653000
	42229
	157219



[bookmark: _Ref71810241]Comparison of experimental results and estimated lifetimes – Banantine-Socie method.
	Load case
	Test mark
	Nf,exp
	Nf,calc,Fin
	Nf,calc,McD

	Case 1
	1.1
	578000
	45199
	276112

	
	1.2
	841000
	45613
	280051

	
	1.3
	630000
	46663
	290619

	
	1.4
	240000
	53104
	279190

	Case 2
	2.1
	422000
	22334
	37413

	
	2.2
	201000
	151388
	495341

	
	2.3
	653000
	157159
	498020

	
	2.4
	272000
	186189
	566321

	Case 3
	3.1
	204000
	176958
	563627

	
	3.2
	294000
	170199
	554416

	
	3.3
	621000
	167924
	552571

	
	3.4
	653000
	185085
	549881



The accuracy of predicted lifetimes is shown via PNf parameter for Wang-Brown method and both fatigue damage parameters (Fig. 13) and for Bannantine-Socie method similarly in Fig. 14. The solid line represents the absolute correlation between measured and estimated lifetimes, the dash-dotted lines represent the error bands (3 x Nf,exp and 0.33 x Nf,exp). 
[image: ]
[bookmark: _Ref71811294]PNf parameter for prediction estimated using Wang-Brown method.

[image: ]
[bookmark: _Ref71811296]PNf parameter for prediction estimated using Bannantine-Socie method.
Discussion of results
All results of fatigue predictions do not exceed the lifetime multiple 3 on the unsafe side. If there are bigger disproportion of predicted values compared to experimental values, these concern the over-conservative prediction (low PNf), where these extremes can be detected above all for the Findley criterion. In general, the output of cycle decomposition of the Bannantine-Socie solution tends to be less conservative than the output delivered by the Wang-Brown method.
The differences and above all the found conservativeness of the Wang-Brown method for detecting the half-cycles are worth further study. The original proposal of Wang and Brown77,78 was used in the analyses presented here. The improvements proposed by Meggiolaro and Castro79 concern among others the question of maximum detected equivalent strain range. Whereas Wang and Brown start with finding the maximum equivalent strain, Meggiolaro and Castro recommend detecting the maximum detectable equivalent strain range, which can be more computationally intensive. The fact, that these two approaches can differ is illustrated well on the seemingly simple strain history provided in Fig. 14. In most situations, however, it can be expected that this difference need not be substantial – the small additional cycle will not impact the total damage extremely, and only the decreased range of the largest detected half-cycle can lead to slightly higher lifetimes.
[image: ]
[bookmark: _Ref71878104]Differences in processing the same load history (see its parameters in Table 2) via the original Wang-Brown method77 detecting first the maximum equivalent strain (upper two graphs) or via the modification by Meggiolaro and Castro79 detecting first the maximum equivalent strain range (lower two graphs).
The case of insufficient load control for case Mark 2.1 is used in Fig. 15 to show the output of the Wang-Brown method. This method intrinsically generates only half-cycles. In conventional 1D problems, the damage related to a half-cycle is usually simply assumed to be one half of the damage related to the full cycle. The half-cycle pairs shown in first four graphs in Fig. 15 do not have, however, anything in common – though they are similar in their total equivalent strain range, the position of the cycles in the stress space, and thus also the mean values of those half-cycles are totally different. Meggiolaro and Castro recommend to pair together half-cycles of identical extremes to form the full cycle, which is then evaluated in the damage parameter. This call is logical – if the case OOP in Fig. 1 is dealt with, this is the only solution to ensure that the output will not be two half-cycles, each of them with non-zero mean stress, but that it will be one full cycle with zero mean stress. This logics does not work here, above all due to other positions of the signal parts in the stress space – only the pair of half-cycles in the first graph in Fig. 15 share the same extreme, and thus they could form the full cycle. The other half-cycles are significantly smaller, and thus the damage proportion related to them will be of minor importance, despite the non-zero mean stress values. The last graph shows the complete load path segmented to the individual half-cycles isolated to previous graphs.
[image: ]
[bookmark: _Ref71878582]Half-cycles detected by the Wang-Brown method for the load case 2.1 in the early phase with inefficient load control. 
Another rule of interest is the intention79 not to count the same segments of the load history twice. These cases can be seen in first two graphs on the upper row in Fig. 13. The abrupt vertical switch in the trajectory in the first graph is caused by the need to remove the load history parts described in nested half-cycles (3rd and 4th graph). The question then clearly arises, whether Nmax normal stress parameter necessary in both fatigue strength criteria should be related to the segment shown in first graph (i.e. with the both nested half-cycles skipped in its evaluation), or if it should be derived from practically the whole load history over which these major half-cycles span. The first solution was used in the calculations presented here, while the latter one would lead to lower lifetime predictions, and it would decrease even more the general conservativeness.
The many open questions in the application of the Wang-Brown method seem to lessen its attractiveness in solving the problem of cycle detection in comparison to the Bannantine-Socie solution. The latter one has, however, some significant drawbacks:
1. It can be applied only on criteria running the stress/strain evaluation on individual planes (CPA and IA methods), while the criteria using e.g., the Illyushin deviatoric space (IDSA) cannot use it.
2. If Wang and Brown method is applied just once to get the segments of the load history, the algorithm by Bannantine-Socie must be evaluated at each plane and at each direction.
Conclusions
The paper described various concepts which can be used today for solving the problem of the HCF fatigue life estimation on smooth specimens under multiaxial variable amplitude loading. Extensive gaps in the understanding of the real material behavior were commented in the cases of out-of-phase loading and cycle counting methods. 
An illustrative case of the authors’ HCF experiments on S355 structural steel is described with three different more complex load cases. The load paths are defined so that the number of detected cycles remained low, and the mutual relations between various concurring effects could be manageable. The computations with cycle counting by either Wang-Brown method or Bannantine-Socie method and with McDiarmid and Findley fatigue strength parameters were run. The results are commented, and some questions raised. Due to the limited scope of our own testing and due to the limited scope of available non-random HCF variable amplitude experimental results (with limited numbers of cycles as e.g. those recommended in Fig. 8), neither the question of the optimum cycle counting method for multiaxial load records nor of its relation to multiaxial fatigue strength criterion or to the induced mean stress effect solution is answered. 
The experimental base usable for analyzing various approaches is not sufficient enough to claim any of the partial solutions presented in this paper is valid conclusively. Without a substantial improvement in the experimental domain, any fatigue life estimation remains to be a random shot and must be perpetually modified by new modifications if acceptable results are desired. This should be reminded not only to fatigue researchers but also to practicing engineers, because some papers or fatigue estimation tools tend to present the problem as solved.
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Highlights:
· Parts of the prediction analyses for multiaxial loading of variable amplitude are analyzed
· [bookmark: _Hlk77845223]Extremely limited existing experimental evidence for any theories is highlighted
· Own experimental data described to document the obtained prediction quality
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