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Abstract

For the numerical solution of singularly perturbed second-

order parabolic partial differential equation of one dimen-

sional convection-diffusion type with long time delays aris-

ing in control theory, a novel class of fitted operator finite

difference methods is constructed using non-standard fi-

nite difference methods. Since the two parameters; time

lag and perturbation parameters are sources for the si-

multaneous occurrence of time-consuming and high speed

phenomena of the physical systems that depends on the

present and past history, our study here is to capture the

effect of the two parameters on the boundary layer. The

spatial derivative is suitably replaced by a difference op-

erator followed by the time derivative is replaced by the

Crank-Nicolson based scheme. A second-order parameter-

uniform error bounds are established to provide numerical

results.
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1 | INTRODUCTION

Any system involving the return to the input of a part of the output of a system control will almost always

involve time delays. In contrast to non-delay parabolic partial differential equations which relate an unknown

function to its derivatives evaluated at the same time, parabolic partial differential equations with delay in

time arise when the rate of change of a time dependent process is determined not only by its current state but

also by a certain past state in its mathematical modeling. A realistic model with time delay partial differential

equations has significantly more complicated dynamics than a model without time delay partial differential

equations, because a time delay can cause a stable equilibrium to become unstable. Such type of equation

arises frequently in the mathematical modelling of science and engineering [17, 28, 20, 5, 23, 32, 15, 18, 19,

29, 30, 33, 14, 2, 3, 4, 8]. The occurrence of boundary layer in singular perturbation problem was originated

in nineteenth century [31]. The solution to such problems undergoes abrupt changes in narrow regions of the

domain due to the multiscale character of the associated perturbation parameter(s) [26, 7, 22]. In general,

there are two type of difficulty associated with singularly perturbed time delay partial differential equations;

one is due to the presence of the perturbation parameter multiplied to the highest order derivative term and

another one is due to the presence of retarded argument. The two parameters makes complexity of the system

modeled by singularly perturbed time delay partial differential equations that renders it unlikely to obtain

an analytical solution and numerical solution of the problem would seem more practical. However, for the

numerical solution of such problems, these layers are connected with additional difficulties; besides instabilities

of certain discretization methods, high computational costs and insufficient resolution are essentially due to

the existence of layers [8, 7]. Solutions of time delay differential equations are of immense interest, equally in

applications and theory. An important example arises in the numerical study of the overall control system

∂u(x, t)

∂t
=ε

∂2u(x, t)

∂x2
+ v[g (u(x, t− τ))]

(
∂u(x, t)

∂x

)
+ c[f (u(x, t− τ))− u(x, t)]

defined on a one dimensional spatial domain 0 < x < 1, where v is the instantaneous material strip velocity

depending on a prescribed spatial average of the time-delayed temperature distribution u(x, t − τ), and f

represents a distributed temperature source function depending on u(x, t − τ) [33]. A wide range of delay

parabolic partial differential Equations models can be found in Wu [33] and Murray [23]. Much attention

has been paid to delay parabolic differential equations and their numerical approximations. Among the first

rigorous numerical treatments of singularly perturbed parabolic delay differential equations with delay is

the pioneering work of Ansari et al. [1] in which second order singularly perturbed delay parabolic differential

equations are approximated by finite differences on piecewise Shishkin meshes. In the papers, [11, 12, 13, 6, 27]

the authors considered numerical study of singularly perturbed parabolic convection-diffusion equation with

time delay. Recently, Gowrisankar and Natesan [9], Kumar and Kumari [16] and Podila and Kumar [24]

proposed a robust numerical approach for solving convection-diffusion singularly perturbed parabolic partial

differential equations with large delay in time.

Most of the previous works for numerical solution of singularly perturbed delay parabolic partial differential

equations of convection-diffusion type have been studied on the ε-uniform convergence of solutions based on

fitted mesh and a few interest has been paid to construction fitted operator finite difference method of solutions.

As a result, when the perturbation parameter ε becomes very small, it is critical to improve appropriate

numerical techniques to cope with the oscillatory character of the solutions, whose accuracy is independent of

the parameter value ε. In this work, a denominator function has been introduced in the nonstandard method,
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in such a way that it suits the central difference and thus obtained are very stable for all the finite values of

step-sizes. The goal of this study is to implement such a numerical method and provide parameter uniform

error estimates for singularly perturbed convection-diffusion parabolic systems with large time lag.

Notation For any given function g(x, t) ∈ C(k) (Ωx × Ωt) (k is a non-negative integer), ‖.‖∞ is standard

supremum norm over the domain Ωx × Ωt given by ‖.‖∞ = supx∈Ωx,t∈Ωt
|g(x, t)|. Through out this paper C

(in some case indexed) is denoted for positive constant independent of perturbation parameter ε.

2 | PROBLEM FORMULATION

Let Ωx = (0, 1), D = Ωx × (0, T ], and Γ = Γl ∪ Γb ∪ Γr, where Γl and Γr are the left and the right side of

the rectangular domain D corresponding to x = 0 and x = 1, respectively and Γb = [0, 1]× [−τ, 0]. Here in

this paper, we consider the following class of second-order singularly perturbed time delayed one-dimensional

parabolic convection-diffusion problem:

£ε,xu(x, t) ≡
∂u(x, t)

∂t
− εuxx(x, t) + a(x, t)ux(x, t) + b(x, t)u(x, t) = −c(x, t)u(x, t− τ) + f(x, t), (x, t) ∈ D,

(2.1)

initial condition

u(x, t) = φb(x, t), (x, t) ∈ Γb, (2.2)

and subject to the boundary condition

u(0, t) = φl(t), Γl = {(0, t) : 0 ≤ t ≤ T}, (2.3)

u(1, t) = φr(t), Γr = {(1, t) : 0 ≤ t ≤ T}. (2.4)

0 < ε� 1 is a singular perturbation parameter and τ > 0 represents the delay parameter and the functions

a(x, t), b(x, t), c(x, t), f(x, t) on D and φb(x, t), φl(t), φr(t) on Γ are sufficiently smooth, bounded functions

and independent of ε. For small values of perturbation parameter(ε→ 0) the solution of the problem typically

exhibits layer behavior depending on the sign of the convection term. When a(x, t) ≥ α > 0, b(x, t) ≥ β > 0,

c(x, t) ≥ ϑ > 0, (x, t) ∈ D, the solutions of (2.1)-(2.4) exhibits boundary layer along x = 1(i.e, in the neighbor-

hood of Γr). In this study, our aim is to obtain and examine the approximate solution to observe the effects

of the delay parameter τ and perturbation parameter ε on the boundary layer.

3 | BOUNDS FOR THE SOLUTION OF THE CONTINUOUS PROBLEM

The existence and uniqueness of the solution for the model problem (2.1)-(2.4) can be guaranteed by the

sufficient smoothness of φl(t), φb(x, t) and φr(t) along with appropriate compatibility conditions at the corner

points (0, 0), (1, 0), (0,−τ) and (1,−τ), and delay terms [25]:
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{
φb(0, 0) = φl(0),

φb(1, 0) = φr(0),
(3.1)

and 
∂φl(0)
∂t

− ε ∂
2φb(0,0)

∂x2 + a(0, 0)
∂φb(0,0)
∂x

+ b(0, 0)φb(0, 0) = −c(0, 0)φb(0,−τ) + f(0, 0),
∂φr(0)
∂t

− ε ∂
2φb(1,0)

∂x2 + a(1, 0)
∂φb(1,0)
∂x

+ b(1, 0)φb(1, 0) = −c(1, 0)φb(0,−τ) + f(1, 0).
(3.2)

Lemma 3.1 (Continuous maximum principle) Let Ψ(x, t) ∈ C2 (D) ∩ C0
(
D̄
)
, with £ε,xΨ (x, t) ≥ 0 in D and

Ψ(x, t) ≥ 0 for all (x, t) ∈ Γ. Then we have Ψ(x, t) ≥ 0 for all (x, t) ∈ D̄.

Proof Suppose there exists (x∗, t∗) ∈ D̄ be such that Ψ (x∗, t∗) = min(x,t)∈D̄ Ψ (x, t) and suppose that

Ψ (x, t) < 0 which implies (x∗, t∗) /∈ Γ as Ψ(x, t) ≥ 0 on Γ. Then, we have Ψx (x∗, t∗) = Ψt (x∗, t∗) = 0 and

Ψxx (x∗, t∗) ≥ 0 and thus £ε,xΨ (x∗, t∗) < 0 which contradicts the given hypothesis and hence Ψ(x, t) ≥ 0 for

all (x, t) ∈ D̄.

In a case when boundary layer will occur in the neighborhood of Γr then by using compatibility conditions in

(3.1) and(3.2) we can say that there exist a constant C independent of ε such that for all (x, t) ∈ D we have

the following Lemma.

Lemma 3.2 The solution u (x, t) of the continuous problem (2.1)-(2.4) satisfy the following estimate:

|u (x, t)− φb (x, 0) | ≤ Ct. (3.3)

Proof For the proof reader can refer to Das and Natesan [6].

Lemma 3.3 The bound on the solution u(x, t) of the continuous problem (2.1)-(2.4) satisfy the following

bound:

|u(x, t)| ≤ C, (x, t) ∈ D̄.

Proof From Lemma 3.2, we have

 |u (x, t) | − |φb (x, 0) | ≤ |u (x, t)− φb (x, 0) | ≤ Ct.

⇒ u (x, t) ≤ Ct+ φb (x, 0) , ∀(x, t) ∈ D̄

Since t ∈ (0, T ], so it is bounded and φb (x, 0) ∈ C2
(
D̄
)
. Therefore, Ct+φb (x, 0) is bounded by some constant

C and hence |u(x, t)| ≤ C, (x, t) ∈ D̄.

Lemma 3.4 (Uniform stability estimate for continuous problem ) The uniform stability bound on the solution

u(x, t) of the continuous problems (2.1)-(2.2) satisfy:

‖u‖ ≤ β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|)) .
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Proof For the barrier functions Ψ± (x, t) = β−1 ‖£ε,xu‖ + max (|φb| , (|φl|+ |φr|)) ± u (x, t) , (x, t) ∈ D̄ we

have

Ψ± (0, t) = β−1 ‖£ε,xu‖+ max (φb,max (φl, φr))± u (0, t) ≥ 0,

Ψ± (1, t) = β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|))± u (1, t) ≥ 0,

£ε,xΨ± =b
[
β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|))

]
±£ε,xu (x, t)

≥ ‖£ε,xu‖+ βmax (|φb| , (|φl|+ |φr|))±£ε,xu (x, t) ≥ ‖£ε,xu‖ ± ‖£ε,xu (x, t)‖ ≥ 0.

Thus, by applying the maximum principle we obtain the required result.

Lemma 3.5 Let u(x, t) be the solution of the continuous problem (2.1)-(2.4) for the case when boundary layer

occur in the neighborhood of Γr then the derivatives of u(x, t) satisfy the following bound:

∣∣∣∣∂iu∂xi
∣∣∣∣ ≤ C (1 + ε−iexp (−α (1− x) /ε)

)
,∀(x, t) ∈ D̄

where i non-negative integers such that 0 ≤ i ≤ 4..

Proof For the proof reader can refer to Das and Natesan [6].

Lemma 3.6 [6] Suppose Lemmas 3.1 and 3.3 hold and by using mean value theorem the bound on the deriva-

tives of u(x, t) with respect to ′t′ is given by

∣∣∣∣∂ju∂tj
∣∣∣∣ ≤ C,∀(x, t) ∈ D̄, j = 0, 1, 2, 3.

4 | NUMERICAL SCHEME FORMULATION

4.1 | The time semidiscretization

On the time domain [0, T ] we introduce the equidistant meshes with uniform step size ∆t such that

Ω̄Mt = {tn = n∆t, n = 0, 1, ...,M,∆t = T/M} ,

where M = T/∆t is the total number of mesh elements in the domain [0, T ]. For the delay term u(x, t − τ)

we first divide the given interval [−τ, 0] into s equal parts with spacing ∆t = τ/s for some positive integer k

and use the same spacing for the interval [0, T ] and so the mesh in the interval [−τ, T ] is defined as

Ω̄st = {tn = n∆t, n = 0, 1, ..., s, ts = τ,∆t = τ/s,−s ≤ n ≤M} .

Thus the uniform meshes Ω̄st and Ω̄Mt with step size ∆t, with s and M mesh elements are used on [−τ, 0] and

[0, T ], respectively. Here, we propose a numerical scheme to solve Equations (2.1)-(2.4), which consists of the
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Crank-Nicolson method for the time derivative. This gives the following system of semi-discretize problem,



Un+1 (x)− Un (x)

∆t
− ε (Uxx)n+1/2 (x) + an+1/2 (x) (Ux)n+1/2 (x) +

bn+1/2 (x)Un+1/2 (x) = −cn+1/2(x)Un+1/2−s (x) + fn+1/2 (x) ,

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (x) = φb (x, tn+1) , x ∈ Ωx,− (s+ 1) ≤ n ≤ −1,

(4.1)

where Un+1(x) is the approximate solution of u(x, tn+1) at (n + 1)th time level. The above equation (4.1)

can be rewritten in operator form as



£̂Mε,xU
n+1(x) ≡ −

ε

2
(Uxx)n+1 (x) +

an+1/2 (x)

2
(Ux)n+1 (x) +

1

2

(
2

∆t
+ bn+1/2 (x)

)
Un+1 (x)

= Ĥn (x)

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (x) = φb (x, tn+1) , x ∈ Ωx,− (s+ 1) ≤ n ≤ −1,

(4.2)

where

Ĥn (x) =



ε

2
(Uxx)n (x)−

an+1/2 (x)

2
(Ux)n (x)−

1

2

(
−2

∆t
+ bn+1/2 (x)

)
Un (x)−

cn+1/2(x)φ
n+1/2
b (x) + fn+1/2(x), if tn < s,

ε

2
(Uxx)n (x)−

an+1/2 (x)

2
(Ux)n (x)−

1

2

(
−2

∆t
+ bn+1/2 (x)

)
Un (x)−

cn+1/2(x)Un+1/2−s (x) + fn+1/2(x), if tn ≥ s.

The semidiscrete difference operator £Mε,xUn+1(x) in Equation (4.2) satisfies the maximum principle as follows.

Lemma 4.1 (Semi-discrete maximum principle) Let Υn+1 (x) be a smooth function such that Υn+1 (0) ≥ 0

and Υn+1 (1) ≥ 0. Then £Mε,xΥn+1 (x) ≥ 0 for all x ∈ D, implies that Υn+1(x) ≥ 0 for all x ∈ D̄.

Proof Let (x∗, tn+1) ∈ {(x, tn+1) : x ∈ D̄} be such that Υn+1 (x∗) = min(x)∈D̄ Υn+1 (x) and suppose

Υn+1 (x) < 0. It is clear that (x∗, tn+1) /∈ {(0, tn+1) , (1, tn+1)} as Υn+1(x) ≥ 0 on {0, 1}. Then, we have

Υn+1
x (x∗) = 0 and Υxx (x∗) ≥ 0 and thus

£Mε,xΥn+1
x (x∗) = −

ε

2
(Ψxx)n+1 (x∗) +

an+1/2 (x∗)

2
(Υx)n+1 (x∗) +

Rn+1/2 (x∗)

2
Υn+1 (x∗)

≤
Rn+1/2 (x∗)

2
Υn+1 (x∗) < 0

which contradicts our supposition and Υn+1(x∗) ≥ 0, which implies Υn+1(x) ≥ 0 for all (x) ∈ D̄.
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The local truncation error en+1 of the temporal semi-discretization (4.2) is given by Un(x)− u(x, tn) where

u(x, tn) and Un(x) are the exact and approximate solution of the problem in (2.1)-(2.4). Now we follow the

following lemma for the error estimate en+1.

Lemma 4.2 (Local error estimate) Suppose that Lemmas 3.5 and 3.6 hold. Then the local error estimate

associated to the semi-discretized problem (4.2) is given by

‖en+1‖∞ ≤ C (∆t)3

Proof The proof can be done by using the Taylor’s series expansion up to O
(

(∆t)3
)
such that u(x, tn+1/2) =

u(x, tn + ∆t/2), u(x, tn) = u(x, tn −∆t/2) and applying the maximum principle given at Lemma (4.1). For

more detail the reader referred to Kumar et al. [16].

The contribution of each time step to the global error of the time semi-discretization is measured by local

truncation error en+1 given by En =
∑n
k=1 ek. Then E

n satisfy the following Lemma.

Lemma 4.3 (Global error estimate.) Under the hypothesis of Lemma 4.2, global error estimate in the temporal

direction is given by

‖En‖∞ ≤ C (∆t)2

where En is the global error in the temporal direction at (n+ 1) th time level.

Proof Using local error estimates given in Lemma 4.2, the global error estimate at the (n+ 1) th time step is

given by

‖En‖∞ =

∥∥∥∥∥
n∑
k=1

ek

∥∥∥∥∥ , n ≤ T

∆t

≤ ‖e1‖+ ‖e2‖+ ...+ ‖en‖

≤ C0 ((n)∆t)2 (∆t)

≤ C0T (∆t)2 , since n (∆t) ≤ T

≤ C (∆t)2 , C = C0T,

where C is constant independent of ε and ∆t.

The bounds on the derivatives in x direction and asymptotic behavior with respect to ε of the solution Un+1(x)

of the problems in (4.2) is given by the following Lemma.

Lemma 4.4 [9] The solution Un(x) of semi-discretized problem (4.2) and its derivatives satisfies

∣∣∣∣diUn(x)

dxi

∣∣∣∣ ≤ C (1 + ε−iexp (−α (1− x) /ε)
)
, ∀(x) ∈ D̄, 0 ≤ i ≤ 4.
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4.2 | Spatial discretization

Consider the semi-discretized problem corresponding to the Equation (4.1):

−
ε

2
(Uxx)n+1 (x) +

an+1/2 (x)

2
(Ux)n+1 (x) +

1

2

(
2

∆t
+ bn+1/2 (x)

)
Un+1 (x) = Ĥn (x) . (4.3)

Using the homogeneous problems corresponding to (4.3) with constant coefficients gives

− ε (Uxx)n+1 (x) + α̂ (Ux)n+1 (x) + r̂∗Un+1 (x) = 0 (4.4)

where 1
2

(
2

∆t
+ bn+1/2 (x)

)
≥ r̂∗ > 0. From Equation (4.4) we have two linear independent solutions

exp
(
λ̂1x

)
and exp

(
λ̂2x

)
such that

λ̂1,2 =
−α̂±

√
α̂2 + 4εr̂∗

−2ε
. (4.5)

Now we partitioned spatial domain [0, 1] into N number of mesh elements with a uniform meshes of equal

length of h. This gives the spatial mesh

ΩNx = {xm = mh,m = 1, 2, ..., N, x0 = 0, xN = 1, h = 1/N}

where xm is nodal points. Let us denote the approximate solution to u (x, tn) at the grid point xm by

Um = c1exp
(
λ̂1xm

)
+ c2exp

(
λ̂2xm

)
. Using the method in [21] we have

∣∣∣∣∣∣∣∣∣
Um−1 exp

(
λ̂1xm−1

)
exp

(
λ̂2xm−1

)
Um exp

(
λ̂1xm

)
exp

(
λ̂2xm

)
Um+1 exp

(
λ̂1xm+1

)
exp

(
λ̂2xm+1

)
∣∣∣∣∣∣∣∣∣ = 0.

Evaluation of the determinant gives:

exp

(
α̂h

ε

)
Um−1 − 2 cosh

(
h
√
α̂2 + 4εr̂∗

2ε

)
Um + exp

(
−α̂h
ε

)
Um+1 = 0, (4.6)

which is an exact difference scheme for (4.4). With some manipulations (4.6) yields the following scheme for

the non homogeneous problem corresponding to the problem (4.4)

− ε
Un+1
m−1 − 2Un+1

m + Un+1
m+1

2hε

α̂
tanh

(
α̂h

2ε

) + α̂
Un+1
m+1 − U

n+1
m−1

2h
= Ĥn+1

m . (4.7)

According to Mickens [21] we introduce a denominator function that constitutes a general property of the

schemes (4.7). Motivated by (4.7), the non-standard finite difference scheme for the variable coefficient problem
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is given by

−
ε

2

δ2
xU

n+1
m

γ̂2
+
a
n+1/2
m

2
D0
xU

n+1
m +

1

2

(
2

∆t
+ b

n+1/2
m

)
Un+1
m = Ĥn

m, (4.8)

where

Ĥn (x) =



ε

2

δ2
xU

n+1
m

γ̂2
−
a
n+1/2
m

2
D0
xU

n+1
m −

1

2

(
−2

∆t
+ b

n+1/2
m

)
Unm − c

n+1/2
m φ

n+1/2
b (xm)+

f
n+1/2
m , if tn < s,

ε

2

δ2
xU

n+1
m

γ̂2
−
a
n+1/2
m

2
D0
xU

n+1
m −

1

2

(
−2

∆t
+ b

n+1/2
m

)
Unm − c

n+1/2
m U

n+1/2−s
m +

f
n+1/2
m , if tn ≥ s,

with

δ2
xU

n
m = Unm−1 − 2Unm + Unm+1, γ̂

2 =
2hε

anm
tanh

(
a
n+1/2
m h

2ε

)
, D0

xU
n
m =

Unm+1 − Unm−1

2h
.

Equation (4.8) can be rewritten as:



£̂N,Mε,m Un+1
m = Ĥn+1

m ,

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (xm) = φb (xm, tn+1) ,− (s+ 1) ≤ n ≤ −1, xm ∈ Ω̄N ,

(4.9)

where

£̂N,Mε,m Un+1
m = −

ε

2

δ2
xU

n+1
m

γ̂2
+
a
n+1/2
m

2
D0
xU

n+1
m +

1

2

(
2

∆t
+ bnm

)
Un+1
m .

Lemma 4.5 (Discrete maximum principle) Let Ψn+1 (xm) be a mesh function such that Ψn+1 (x0) ≥ 0 and

Ψn+1 (xN ) ≥ 0. Then £N,Mε,m Ψn+1 (xm) ≥ 0 for 1 ≤ m ≤ N − 1, implies that Ψn+1(xm) ≥ 0 for 0 ≤ m ≤ N .

Proof Let k∗ ∈ {0, 1, ..., N} be such that Ψn+1
k∗ = min1≤m≤N Ψn+1

k∗ and suppose Ψn+1
k∗ < 0. It is clear that

k∗ /∈ {0, N}. Also we have Ψn+1
k∗+1 −Ψn+1

k∗ ≥ 0 and Ψn+1
k∗+1 −Ψn+1

k∗−1 ≤ 0. Now from (4.9) we have

£N,Mε,m Ψn+1
k∗ = −

ε

2

δ2
xΨn+1

k∗

γ2
+
a
n+1/2
k∗

2
D0
xΨn+1

k∗ +
R
n+1/2
k∗

2
Ψn+1
k∗

= −
ε

2

Ψn+1
k∗−1 − 2Ψn+1

k∗ + Ψn+1
k∗+1

γ2
+
a
n+1/2
k∗

2

Ψn+1
k∗+1 −Ψn+1

k∗−1

2h
+
R
n+1/2
k∗

2
Ψn+1
k∗

= −
ε

2

(
Ψn+1
k∗−1 −Ψn+1

k∗

)
+
(

Ψn+1
k∗+1 −Ψn+1

k∗

)
γ2

+
a
n+1/2
k∗

2

Ψn+1
k∗+1 −Ψn+1

k∗−1

2h
+
R
n+1/2
k∗

2
Ψn+1
k∗

< 0,
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which contradicts the given hypothesis £N,Mε,m Ψn+1 (xm) ≥ 0 and our supposition Ψn+1
k∗ < 0. For k∗ =

0, 1, ..., N, which gives Ψn+1
k∗ ≥ 0, and hence Ψn+1(xm) ≥ 0, for all m = 0, 1, ..., N .

Lemma 4.6 (Uniform stability estimate) The solution Un+1
m of the discrete scheme in (4.9) satisfy the bound

∣∣Un+1
m

∣∣ ≤ max
∣∣∣£N,Mε,m Un+1

m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|} ,

Proof We define two barrier functions as

℘±m,n+1 =
max

∣∣∣£N,Mε,m Un+1
m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|} ± Un+1
m .

Then on the boundary points, we obtain

℘±0,n+1 =
max

∣∣∣£N,Mε,m Un+1
m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|} ± Un+1
0 = max

∣∣∣£N,Mε,m Un+1
m

∣∣∣ ≥ 0,

℘±1,n+1 =
max

∣∣∣£N,Mε,m Un+1
m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|} ± Un+1
N = max

∣∣∣£N,Mε,m Un+1
m

∣∣∣ ≥ 0.

Now for 0 < m < N , we have

£N,Mε,m ℘±m,n+1 =−
ε

2

δ2
x℘
±
m,n+1

γ2
+
a
n+1/2
m

2
D0
x℘
±
m,n+1 +

R
n+1/2
m

2
℘±m,n+1,

=
R
n+1/2
m

2

max
∣∣∣£N,Mε,m Un+1

m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|}

±£N,Mε,m Un+1
m

=
R
n+1/2
m

2

max
∣∣∣£N,Mε,m Un+1

m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|}

±Hn+1
m

≥ 0, since R
n+1/2
m ≥ r∗.

Using discrete maximum principle given in Lemma 4.5 yields ℘±m,n+1 ≥ 0,m = 0, 1, 2, ..., N.

Lemma 4.7 For all k ∈ Z+ on a fixed number of mesh numbers N , and ε −→ 0, we have

lim
ε−→0

max
1≤m≤N−1

exp (−αxm/ε)
εk

= 0 and

lim
ε−→0

max
1≤m≤N−1

exp (−α (1− xm) /ε)

εk
= 0

where xm = mh, ∀m = 1, 2, ...N − 1.

Proof The proof is given in [10].
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5 | CONVERGENCE ANALYSIS OF THE METHOD

Next, we consider the semidiscrete problem in Equation (4.2) and the discrete scheme in (4.9) to find the

truncation error of the spatial direction discretization.

Theorem 5.1 (Error estimate in the spatial direction) Let Un+1 (xm) be the solution of continuous solution

(4.2) after temporal discretization and Un+1
m be the approximate solutions of (4.9) after the full discretization.

Then, the numerical solution Un+1
m of the problem in (4.9) satisfies the error bound

∣∣∣£N,Mε,m

(
Un+1(xm)− Un+1

m

)∣∣∣ ≤ Ch2

Proof Consider the error bound in the spatial direction

∣∣∣£N,Mε,m

(
Un+1(xm)− Un+1

m

)∣∣∣ =∣∣∣∣∣− ε2 (Uxx)n+1 (xm) +
an+1/2 (xm)

2
(Ux)n+1 (xm)−

{
−
ε

2

δ2
xU

n+1
m

γ2
+
a
n+1/2
m

2
D0
xU

n+1
m

}∣∣∣∣∣∣∣∣∣∣− ε2
(

(Uxx)n+1 (xm)−
δ2
xU

n+1
m

γ2

)
+
an+1/2 (xm)

2

(
(Ux)n+1 (xm)−D0

xU
n+1
m

)∣∣∣∣∣
=

∣∣∣∣− ε2
(

1−
h2

γ2

)
(Uxx)n+1 (xm)−

h2

12
an+1/2 (xm) (Uxxx)n+1 (xm)−

εh4

24γ2
(Uxxxx)n+1 (xm)

∣∣∣∣
≤ h2

(∣∣∣∣− 1

12
an+1/2 (xm) (Uxxx)n+1 (xm)

∣∣∣∣+

∣∣∣∣− εh2

24γ2
(Uxxxx)n+1 (xm)

∣∣∣∣)
≤ Ch2, where γ2 =

2hε

anm
tanh

(
anmh

2ε

)
≈ h2 −

h4

24

α2

ε2

Applying the bound given in Lemma (3.5) and Lemma (4.7) gives

∣∣∣£N,Mε,m

(
Un+1(xm)− Un+1

m

)∣∣∣ ≤ Ch2 = CN2

Theorem 5.2 (Error estimate in the fully discrete scheme) Let u be the solution of the problem (2.1)-(2.4) and

U be the numerical solution of (4.9). For the fully discrete scheme, the following parameter uniform error

estimate holds:

sup
0≤ε<1

|u− U | ≤ C
(
h2 + (∆t)2

)
.

Proof Immediate result follows from the combination of temporal error bound (Lemma 4.3) and spatial error

bound (Theorem 5.1).

6 | NUMERICAL RESULTS

In this section, we present test examples with left and right end boundary layers obtained by the proposed

method to support the theoretical discussion. We utilize the double mesh technique to calculate the maximum
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point wise error and rate of convergence because the exact solution to the issues is unknown. The maximum

pointwise errors EN,∆tε and the corresponding order of convergence pN,∆tε are computed as

EN,∆tε = max
m,n

∣∣∣∣UN,∆tm,n − U
4N,∆t

2
m,n

∣∣∣∣ , pN,∆tε = log2

 EN,∆tε

E
4N,∆t

2
ε


and from these values we obtain the ε-uniform error EN,∆t and the corresponding ε-uniform order of conver-

gence pN,∆t by:

EN,∆t = maxε E
N,∆t
ε and pN,∆t = log2

(
EN,∆t

E
4N, ∆t

2

)
.

where UN,∆tm,n is the numerical solutions obtained by using N , M mesh intervals in space and time direction,

respectively. To compute U
4N,∆t

2
m,n we use 4N and 2M mesh intervals in spatial and temporal direction,

respectively.

Example 6.1 Consider

∂u

∂t
− ε

∂2u

∂x2
+

(5− x2)

3

∂u

∂x
+ tu(x, t) = −u(x, t− τ) + t3x (1− x) sin (πx) , (x, t) ∈ (0, 1)× (0, 2],

with u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

Example 6.2 Consider


∂u

∂t
− ε

∂2u

∂x2
+ (2− x2)

∂u

∂x
+ (x+ 1)(t+ 1)u(x, t) = −u(x, t− τ)

+ 10t2exp(−t)x(1− x), (x, t) ∈ (0, 1)× (0, 2],

with  u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

We have illustrated the maximum point wise errors EN,∆tε and the corresponding numerical rates of

convergence pN,∆tε calculated by numerical scheme (4.9) for Example 6.1 and Example 6.2 in Table 1 and

Table 3, respectively. The numerical results presented in Table 1 and Table 3 shows the fact that the pro-

posed numerical method is accurate of order O
(
h2 + (∆t)2

)
as predicted by the theory. From the tables

Table 1,Table 2,Table 3 and Table 4 one can clearly observe the ε-uniform convergence of the proposed scheme

(4.9). Figures 1 and 2 clearly indicate that the boundary layer is located at the right side of the rectangular

domain. The two figures (Figure 1 and Figure 2 ) shows the effect of perturbation parameter and that of
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TABLE 1 Maximum pointwise errors (EN,∆t
ε ) and the corresponding rate of convergence (pN,∆t

ε ) of the
scheme (4.9) for Example 6.1.

ε↓ N=8 N=32 N=128 N=512 N=2048

M=32 M=64 M=128 M=256 M=512

2−10 1.6006e-02 4.5339e-03 1.0927e-03 1.8560e-04 4.4588e-05

1.8198 2.0529 2.5576 2.0575 −

2−12 1.6006e-02 4.5339e-03 1.1003e-03 2.6609e-04 5.1185e-05

1.8198 2.0429 2.0479 2.3781 −

2−14 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1020e-05

1.8198 2.0429 2.0442 1.9094 −

2−16 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

1.8198 2.0429 2.0442 1.9059 −

2−18 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

1.8198 2.0429 2.0442 1.9059 −

2−20 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

1.8198 2.0429 2.0442 1.9059 −

2−22 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

1.8198 2.0429 2.0442 1.9059 −

2−30 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

1.8198 2.0429 2.0442 1.9059 −

EN,∆t 1.6006e-02 4.5339e-03 1.1003e-03 2.6678e-04 7.1192e-05

pN,∆t 1.8198 2.0429 2.0442 1.9059 -

retarded argument on the steepness of layer of the solution. In order to reveal the numerical order of conver-

gence, we have plotted the maximum pointwise errors of Example 6.1 and Example 6.2 in Figure 3 (a) and

Figure 3(b), respectively in the log-log scale for which again confirms the effectiveness of the proposed method

and also it gives close to second-order. Moreover, we note that in this paper computations associated with

the examples discussed above were performed using MATLAB R2013A software package.

7 | CONCLUSION

In this paper, singularly perturbed parabolic convection-diffusion problem with large retarded argument is

considered. Because of the perturbation parameter and the retarded argument, the solution of the investigated

problem exhibits boundary layer behavior on the right side of the spatial domain, which is dependent on the

sign of the convection term coefficients. To stabilize the breakdown solution of the problem in the boundary

regions we employ the nonstandard finite difference method for the space discretization and the Crank-Nicolson
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TABLE 2 Maximum pointwise errors (EN,∆t
ε ) of the scheme (4.9) for Example 6.1.

ε↓ Number of mesh intervals N=M

16 32 64 128 256 512

1 4.4487e-04 1.8416e-04 8.0850e-05 3.7441e-05 1.7955e-05 8.7830e-06

2−2 1.1336e-03 5.0859e-04 2.4745e-04 1.2449e-04 6.2818e-05 3.1601e-05

2−4 2.6338e-03 8.5968e-04 2.9989e-04 1.4663e-04 8.5631e-05 4.6177e-05

2−6 6.1203e-03 2.5280e-03 8.0020e-04 2.3234e-04 7.2644e-05 4.1308e-05

2−8 6.9800e-03 3.9397e-03 1.8667e-03 6.9905e-04 2.1082e-04 5.9430e-05

2−10 6.9802e-03 3.9669e-03 2.1290e-03 1.0927e-03 4.9067e-04 1.7922e-04

2−12 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5950e-04 2.8014e-04

2−14 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

2−16 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

2−20 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

2−24 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

2−28 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

2−30 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

EN,∆t 6.9802e-03 3.9669e-03 2.1290e-03 1.1003e-03 5.5951e-04 2.8210e-04

pN,∆t 0.81526 0.89784 0.95228 0.97566 9.8796 -
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FIGURE 1 Surface plot of the numerical solution for Example 6.1 with N = 128,M = 64, a ε = 2−4,b
ε = 2−18.

method for the time discretization both on a uniform mesh. Thus, the proposed nonstandard finite difference

method converges properly, is unconditionally stable and is robust with respect to the singular perturbation
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TABLE 3 Maximum pointwise errors EN,∆t
ε and the corresponding rate of convergence pN,∆t

ε of the scheme
(4.9) for Example 6.2.

ε↓ N=8 N=32 N=128 N=512 N=2048

M=32 M=64 M=128 M=256 M=512

2−10 8.3727e-03 2.5378e-03 5.7067e-04 1.1055e-04 3.8159e-05

1.7221 2.1528 2.3680 1.5346 −

2−12 8.3727e-03 2.5378e-03 5.8446e-04 1.4370e-04 2.9594e-05

1.7221 2.1184 2.0240 2.2797 −

2−14 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7693e-05

1.7221 2.1184 2.0231 1.9316 −

2−16 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

2−18 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

2−20 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

2−22 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

2−24 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

2−30 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

1.7221 2.1184 2.0231 1.9307 −

EN,∆t 8.3727e-03 2.5378e-03 5.8446e-04 1.4379e-04 3.7717e-05

pN,∆t 1.7221 2.1184 2.0231 1.9307 -

parameter (see Table 5). Analytically we have proved that the nonstandard finite difference method provides

second order ε-uniform convergent results, two numerical experiments are carried out to validate the analytical

findings.
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TABLE 4 Maximum pointwise errors (EN,∆t
ε ) of the scheme (4.9) for Example 6.2.

ε↓ N=16 N=32 N=64 N=128 N=256 N=512

M=20 M=40 M=80 M=160 M=320 M=640

1 3.8040e-04 1.4725e-04 6.2939e-05 2.8834e-05 1.3764e-05 6.7191e-06

2−2 3.8040e-04 3.6866e-04 1.7495e-04 8.5493e-05 4.2296e-05 2.1041e-05

2−4 1.9081e-03 5.5763e-04 1.8604e-04 1.0896e-04 5.8832e-05 3.0523e-05

2−6 3.7751e-03 1.6115e-03 5.1191e-04 1.4229e-04 4.4252e-05 2.8661e-05

2−8 4.2718e-03 2.2877e-03 1.0477e-03 4.2282e-04 1.3082e-04 3.5920e-05

2−10 4.2723e-03 2.3338e-03 1.2139e-03 6.0468e-04 2.6934e-04 1.0703e-04

2−12 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1196e-04 1.5320e-04

2−14 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

2−16 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

2−20 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

2−24 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

2−28 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

2−30 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

EN,∆t 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04 1.5671e-04

pN,∆t 0.87233 0.94279 0.97311 0.98697 0.99363 -
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FIGURE 2 Surface plot of the numerical solution for Example 6.2 with N = 120,M = 64, a ε = 2−4,b
ε = 2−18.
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TABLE 5 Comparison of uniform error (EN,∆t) and the corresponding uniform rate of convergence (pN,∆t) for
Example 6.2.

Methods N=16 N=32 N=64 N=128 N=256

M=20 M=40 M=80 M=160 M=320

Proposed method EN,∆t 4.2723e-03 2.3338e-03 1.2141e-03 6.1847e-04 3.1204e-04

pN,∆t 0.87233 0.94279 0.97311 0.98697 -

Method in [24] EN,∆t 1.4212e-02 7.8114e-03 4.1163e-03 2.1158e-03 1.0729e-03

pN,∆t 0.8635 0.9242 0.9601 0.9797 -

Method in [9] EN,∆t 1.6119e-02 9.9504e-03 5.8541e-03 3.3439e-03 1.8650e-03

pN,∆t 0.6960 0.7653 0.8079 0.8424 -

N=M=16 N=32 N=64 N=128 N=256

Proposed method EN,∆t 3.9940e-03 2.1965e-03 1.1459e-03 5.8446e-04 2.9506e-04

pN,∆t 0.86263 0.93873 0.97130 0.98610 -

Method in [16] EN,∆t 3.06e-02 1.72e-02 9.00e-03 4.58E-03 2.30e-03

pN,∆t 0.8311 0.9344 0.9746 0.9937 -
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FIGURE 3 Log-Log plot of the maximum error for Example 6.1 on left ([a]) and Example 6.2 on right([b]).
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