References
  1. Vidal M, Cusick ME & Barabási A‐L (2011) Interactome networks and human disease. Cell  144 , 986– 998
  2. Von Eichborn J, Günther S & Preissner R (2010) Structural features and evolution of protein–protein interactions. Genome Inform  22 , 1– 10.
  3. Kolodny R, Pereyaslavets L, Samson AO & Levitt M (2013) On the universe of protein folds. Annu Rev Biophys  42 , 559– 582.
  4. Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys. 2021 May 6;50:267-301. doi: 10.1146/annurev-biophys-091720-102019. Epub 2021 Feb 19. PMID: 33606945; PMCID: PMC8105287.
  5. Rodrigues JP, Bonvin AM. Integrative computational modeling of protein interactions. FEBS J. 2014 Apr;281(8):1988-2003. doi: 10.1111/febs.12771. Epub 2014 Mar 26. PMID: 24588898.
  6. Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol. 2015 Jul 6;210(1):11-22. doi: 10.1083/jcb.201412028. Epub 2015 Jun 29. PMID: 26124289; PMCID: PMC4494010.
  7. Cheerambathur D.K., and Desai A.. 2014. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol.  26:113–122. 10.1016/j.ceb.2013.12.005.
  8. Fukagawa T., and Earnshaw W.C.. 2014. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell.  30:496–508. 10.1016/j.devcel.2014.08.016.
  9. Cheeseman I.M. 2014. The kinetochore. Cold Spring Harb. Perspect. Biol.  6:a015826 10.1101/cshperspect.a015826.
  10. Cheeseman I.M., Chappie J.S., Wilson-Kubalek E.M., and Desai A.. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell.  127:983–997. 10.1016/j.cell.2006.09.039.
  11. DeLuca J.G., Gall W.E., Ciferri C., Cimini D., Musacchio A., and Salmon E.D.. 2006. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell.  127:969–982. 10.1016/j.cell.2006.09.047.
  12. Izuta H., Ikeno M., Suzuki N., Tomonaga T., Nozaki N., Obuse C., Kisu Y., Goshima N., Nomura F., Nomura N., and Yoda K.. 2006. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells.  11:673–684. 10.1111/j.1365-2443.2006.00969.x
  13. Okada M., Cheeseman I.M., Hori T., Okawa K., McLeod I.X., Yates J.R. III, Desai A., and Fukagawa T.. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol.  8:446–457. 10.1038/ncb1396.
  14. Hu, L., Huang, H., Hei, M., Yang, Y., Li, S., Liu, Y., Dou, Z., Wu, M., Li, J., Wang, G. Z., Yao, X., Liu, H., He, X., & Tian, W. (2019). Structural analysis of fungal CENP-H/I/K homologs reveals a conserved assembly mechanism underlying proper chromosome alignment. Nucleic acids research47 (1), 468–479. https://doi.org/10.1093/nar/gky1108.
  15. Foltz D.R., Jansen L.E.T., Black B.E., Bailey A.O., Yates J.R.r., Cleveland D.W.. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol.  2006; 8 :458–469.
  16. Westermann S., Schleiffer A.. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol.  2013; 23 :260–269.
  17. Amano M., Suzuki A., Hori T., Backer C., Okawa K., Cheeseman I.M., Fukagawa T.. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol.  2009; 186 :173–182.
  18. Black B.E., Brock M.A., Bedard S., Woods V.L., Cleveland D.W.. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl. Acad. Sci. U.S.A.  2007; 104 :5008–5013.
  19. Chittori S., Hong J., Saunders H., Feng H., Ghirlando R., Kelly A.E., Bai Y., Subramaniam S.. Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science . 2018; 359 :339–343.
  20. Falk S.J., Guo L.Y., Sekulic N., Smoak E.M., Mani T., Logsdon G.A., Gupta K., Jansen L.E.T., Van Duyne G.D., Vinogradov S.A. et al. . Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science . 2015; 348 :699–703.
  21. Musacchio A., Desai A.. A molecular view of kinetochore assembly and function. Biology (Basel) . 2017; 6 :5.
  22. McKinley K.L., Cheeseman I.M.. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol.  2016; 17 :16–29.
  23. Huis In ’t Veld P.J., Jeganathan S., Petrovic A., Singh P., John J., Krenn V., Weissmann F., Bange T., Musacchio A.. Molecular basis of outer kinetochore assembly on CENP-T. Elife . 2016; 5 :e21007.
  24. Petrovic A., Keller J., Liu Y.H., Overlack K., John J., Dimitrova Y.N., Jenni S., van Gerwen S., Stege P., Wohlgemuth S. et al. . Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell . 2016; 167 :1028–1040.
  25. Hara M., Fukagawa T.. Kinetochore assembly and disassembly during mitotic entry and exit. Curr. Opin. Cell Biol.  2018; 52 :73–81.
  26. Tian T., Li X.R., Liu Y.Y., Wang C.L., Liu X., Bi G.Q., Zhang X., Yao X.B., Zhou Z.H., Zang J.Y.. Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res.  2018; 28 :374–378.
  27. Pentakota S., Zhou K., Smith C., Maffini S., Petrovic A., Morgan G.P., Weir J.R., Vetter I.R., Musacchio A., Luger K.. Decoding the centromeric nucleosome through CENP-N. Elife . 2017; 6 :e33442.
  28. Kim S., Yu H.T.. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J. Cell Biol.  2015; 208 :181–196.
  29. McKinley K.L., Sekulic N., Guo L.Y., Tsinman T., Black B.E., Cheeseman I.M.. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the Centromere-Kinetochore interface. Mol. Cell . 2015; 60 :886–898.
  30. National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2021 Feb 07]. Available from: https://www.ncbi.nlm.nih.gov/
  31. The Protein Data Bank H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne (2000) Nucleic Acids Research28 : 235-242. doi:10.1093/nar/28.1.235.
  32. Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. PMID: 28056090; PMCID: PMC5249242.
  33. Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic acids research41 (Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  34. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research35 (Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  35. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477-86. doi: 10.1007/BF00228148. PMID: 9008363.
  36. Yuan, S., Chan, H. C. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), e1298.  doi:10.1002/wcms.1298
  37. Basilico, F., Maffini, S., Weir, J. R., Prumbaum, D., Rojas, A. M., Zimniak, T., De Antoni, A., Jeganathan, S., Voss, B., van Gerwen, S., Krenn, V., Massimiliano, L., Valencia, A., Vetter, I. R., Herzog, F., Raunser, S., Pasqualato, S., & Musacchio, A. (2014). The pseudo GTPase CENP-M drives human kinetochore assembly. eLife3 , e02978. https://doi.org/10.7554/eLife.02978
  38. Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., and Ben-Tal N. 2016 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucl. Acids Res.  2016; DOI: 10.1093/nar/gkw408; PMID: 27166375
  39. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nature Protocols.  2017 Feb;12(2):255-278.
  40. Lopéz-Blanco JR, Garzón JI, Chacón P. iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics. 2011 Oct 15;27(20):2843-50. doi: 10.1093/bioinformatics/btr497. Epub 2011 Aug 27. PMID: 21873636.
  41. Carlos HM Rodrigues, Douglas EV Pires, David B Ascher, DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability, Nucleic Acids Research , Volume 46, Issue W1, 2 July 2018, Pages W350–W355, https://doi.org/10.1093/nar/gky300
  42. Shapovalov MV, Dunbrack RL Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 2011 Jun 8;19(6):844-58. doi: 10.1016/j.str.2011.03.019. PMID: 21645855; PMCID: PMC3118414.
  43. Dehouck, Y., Kwasigroch, J. M., Rooman, M., & Gilis, D. (2013). BeAtMuSiC: Prediction of changes in protein-protein binding affinity on mutations. Nucleic acids research41 (Web Server issue), W333–W339. https://doi.org/10.1093/nar/gkt450.
  44. Carlos H M Rodrigues, Yoochan Myung, Douglas E V Pires, David B Ascher, mCSM-PPI2: predicting the effects of mutations on protein–protein interactions, Nucleic Acids Research , Volume 47, Issue W1, 02 July 2019, Pages W338–W344, https://doi.org/10.1093/nar/gkz383
  45. Rodrigues CHM, Pires DEV, Ascher DB. mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions. Nucleic Acids Res. 2021 Apr 24:gkab273. doi: 10.1093/nar/gkab273. Epub ahead of print. PMID: 33893812.
  46. Li, M., Simonetti, F.L., Goncearenco, A. and Panchenko, A.R. (2016) MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res, 44, W494-501.
  47. Weng GQ, Wang EC, Wang Z, Liu H, Li D, Zhu F, Hou TJ. HawkDock: a web server to predict and analyze the structures of protein-protein complexes based on computational docking and MM/GBSA. Nucleic Acids Research , 2019, 47(W1): W322-W330.
  48. Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D. B., & Blundell, T. L. (2017). Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. Journal of molecular biology429 (3), 365–371. https://doi.org/10.1016/j.jmb.2016.12.004
  49. Jayashree, S., Murugavel, P., Sowdhamini, R. et al.  Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Biol Direct  14,  1 (2019). https://doi.org/10.1186/s13062-019-0232-2
  50. Mosca R, Céol A & Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Method  10 , 47– 53.
  51. Vangone A, Cavallo L & Oliva R (2013) Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Proteins  81 , 2210– 2220.
  52. Karaca E, Bonvin AM. Advances in integrative modeling of biomolecular complexes. Methods. 2013 Mar;59(3):372-81. doi: 10.1016/j.ymeth.2012.12.004. Epub 2012 Dec 23. PMID: 23267861.
  53. Hori T., Amano M., Suzuki A., Backer C.B., Welburn J.P., Dong Y., McEwen B.F., Shang W.H., Suzuki E., Okawa K. et al. . CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell . 2008; 135 :1039–1052.
  54. Carroll C.W., Milks K.J., Straight A.F.. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol.  2010; 189 :1143–1155.
  55. Gascoigne K.E., Takeuchi K., Suzuki A., Hori T., Fukagawa T., Cheeseman I.M.. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell . 2011; 145 :410–422.
  56. Nishino T., Takeuchi K., Gascoigne K.E., Suzuki A., Hori T., Oyama T., Morikawa K., Cheeseman I.M., Fukagawa T.. CENP-T-W-S-X forms a unique centromeric chromatin structure with a Histone-like fold. Cell . 2012; 148 :487–501.
  57. Petrovic A., Keller J., Liu Y.H., Overlack K., John J., Dimitrova Y.N., Jenni S., van Gerwen S., Stege P., Wohlgemuth S. et al. . Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell . 2016; 167 :1028–1040.
  58. Cingolani G, Petosa C, Weis K, Müller CW. 1999. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature  399:221–229. doi: 10.1038/20367.
  59. Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A. 1999. Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell  97:635–646. doi: 10.1016/S0092-8674(00)80774-6.
  60. Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P. 2002. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes & Development  16:101–113. doi: 10.1101/gad.949302.
  61. McPherson A, Gavira JA. Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24. PMID: 24419610; PMCID: PMC3943105.
  62. Kim DE, DiMaio F, Yu‐Ruei Wang R, Song Y, Baker D. One contact for every twelve residues allows robust and accurate topology‐level protein structure modeling. Proteins: Structure, Function, and Bioinformatics. 2014;82(S2):208–18.
  63. de Juan D, Pazos F, Valencia A. Emerging methods in protein co-evolution. Nature Reviews Genetics. 2013;14(4):249–61. pmid:23458856.
  64. Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein-protein interaction by message passing. P Natl Acad Sci USA. 2009;106(1):67–72.
  65. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74. doi: 10.1073/pnas.061034498. Epub 2001 Mar 13. PMID: 11283351; PMCID: PMC31875.
  66. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180-3. doi: 10.1038/415180a. PMID: 11805837.
  67. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3:89. doi: 10.1038/msb4100134. Epub 2007 Mar 13. PMID: 17353931; PMCID: PMC1847948.
  68. Smith GR, Sternberg MJ. Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol. 2002 Feb;12(1):28-35. doi: 10.1016/s0959-440x(02)00285-3. PMID: 11839486.
  69. Ritchie DW. Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci. 2008 Feb;9(1):1-15. doi: 10.2174/138920308783565741. PMID: 18336319.
  70. López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic acids research42 (Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  71. Mahajan S, Sanejouand YH. On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys. 2015 Feb 1;567:59-65. doi: 10.1016/j.abb.2014.12.020. Epub 2015 Jan 3. PMID: 25562404.
  72. Bauer JA, Pavlović J, Bauerová-Hlinková V. Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules. 2019 Sep 10;24(18):3293. doi: 10.3390/molecules24183293. PMID: 31510014; PMCID: PMC6767145.
  73. Stefl S., Nishi H., Petukh M., Panchenko A.R., Alexov E. Molecular mechanisms of disease-causing missense mutations. J. Mol. Biol.  2013;425 :3919–3936.
  74. Wainreb G., Wolf L., Ashkenazy H., Dehouck Y., Ben-Tal N. Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics.  2011;27 :3286–3292.