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1 | INTRODUCTION

Video information is ubiquitous and abundant: media- and user-generated videos, data acquired by mobile devices or robots, are
all sources of videos. Understanding videos is an important problem in computer vision with many applications, e.g. automated
video tagging, activity recognition, robot perception. Video understanding tasks (action classification or detection, Figure[T) are
challenging as they have the inherent complexity of image understanding, and additionally need to incorporate spatio-temporal
information across multiple frames. Previous methods for video analysis use complex and computationally intensive models™'2%,
These approaches are not suitable for real-time video processing, which greatly hinders their application to real-world systems.

To address these challenges, we propose to automatically design video networks that provide strong recognition performance
at a fraction of the computational cost. More specifically, we propose a general video architecture search approach, based on
evolution, which designs a family of ‘tiny’ neural networks for video understanding. The networks achieve high accuracy and
run efficiently, outperforming state-of-the-art video models, despite being order of magnitude faster (Figure[2)). They run at real-
time or better speeds, e.g. less than 20 ms on a GPU per video snippelﬂ We call them Tiny Video Networks (TVN), as they
require extremely small runtimes, which is unprecedented for standalone video models. TVNs operate in the high accuracy and
low runtime (or GFlops) area of the accuracy-runtime curve where no other models exist (Figure [2).

Video architecture search is a challenging task as the search needs to span the full spatio-temporal domain, while processing
an order of magnitude more data per example. Neural architecture search approaches*2! are successful for image understanding,
but are time-intensive even for images. With TVNs we address both problems in video architecture search, showing that it is
possible to design efficient video architectures differently, both structurally and at the component level, from low-level primitives.

The contributions of this work are: (i) Creating highly efficient, faster-than-real-time Tiny Video Networks, with very strong
performance on video understanding tasks, despite working at the fraction of the cost. (ii) We discover novel and interesting video
architectures, which are easy to understand and can be easily integrated in computationally demanding video understanding tasks.
Figure |3 shows example discovered architectures. (iii) We propose a search space which enables the combination of efficient
layers, which effectively interleave components working in the time and spatial domains. As a result, the architecture search is

!'A video snippet typically consists of 32 frames, which span 1 second; for longer video durations, the same video snippets are given to TVNs and baselines.
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FIGURE 1 Examples of video understanding tasks: one or more action labels are provided per video snippet. The goal is to
automatically recognize the action(s) per video. Some tasks include short video snippets and single classification label per video,
some are long video clips with multiple (unordered) labels per video i.e. multi-class multi-label task. We use both settings here.
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FIGURE 2 GFlops vs average precision (AP) of Tiny Video Networks (TVN) compared to the state-of-the-art, Charades dataset
(left). Runtime vs. model accuracy of TVNs compared to the 3D-ResNet family models, MiT dataset (right).
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FIGURE 3 Example efficient Tiny Video Networks (TVN), created using architecture search. TVN-1 (top) takes 37 ms on
CPU (10ms on GPU) for inference. TVN-2 (bottom) takes 65ms on CPU and 13ms on GPU. Each net has multiple blocks, each
repeated R times. Each block has a different configuration with spatial and temporal convolution, pooling, non-local layers,
context gating and etc. The architecture search can also select the input resolution, number of frames to sample and frame rate.

very efficient, despite being done on videos. (iv) Lastly, using the Tiny Video Networks architectures, we create TVNs suitable
for mobile devices. Our Mobile TVNs significantly outperform the popular MobileNets? applied to videos, both in accuracy
and runtime. We evaluate TVNs on well-established video understanding tasks for multi-class and multi-label multi-class action
classification and test their generalizability on four challenging datasets: Moments-in-Time®, HMDB?, Charades'%, MLB™,

TVNs can find wide application in real-time video understanding tasks, such as mobile phones or robots. Furthermore, they
can be used for tasks which require heavy computational loads, e.g. server-side video processing, or for tasks that can benefit
from time and energy savings. Due to their fast speeds, TVNs can also impact video research, by allowing researchers to train
and explore future video architectures at very low cost thus accelerating video understanding research.

Code for the Tiny Video Network is open-source(ﬂ This paper is an extended version of the workshop contribution’2.

2Code: https:/github.com/google-research/google-research/tree/master/tiny_video_nets, Trained models are publicly available via TF.Hub e.g. at
https://tthub.dev/google/tiny_video_net/tvn1/1, https://tthub.dev/google/tiny _video_net/tvn2/2, etc.


https://github.com/google-research/google-research/tree/master/tiny_video_nets
https://tfhub.dev/google/tiny_video_net/tvn1/1
https://tfhub.dev/google/tiny_video_net/tvn2/2
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2 | RELATED WORK

Traditionally, building efficient networks has been an important problem with a wealth of research, mostly limited to
the image domain"!# LGNS Network architectures have also been designed for specific hardware or mobile devices,
e.g., IBLSIOIIONR0  where larger networks are optimized to run at fast speeds on these devices.

Video understanding research has produced a number of successful approaches 211221222312412512612 702812913013 113213313413513613 713811139401 1142143144
a handful of these have focused on efficient video processing#433,

Advances in neural architecture search (NAS)##304047 demonstrate large gains in recognition accuracy and successful results.
NAS methods can also be used for building automatically time-constrained models 315548, in some cases with hardware in the
loop“?!IZ, Unlike architecture search for images*#>04047 architecture search for videos has been scarce®’> !, primarily because
of the computational cost of the architecture search itself. These approaches had produced relatively expensive networks. Recent
work, X3D, generates efficient video models®4, where the networks are configured by expanding fast 2D models. Unlike prior
work in video architecture search, we here create efficient video architectures automatically from first principles which are both
highly efficient and accurate, with competitive performance to the best architecture-searched models®!.

Some works reduce the computation cost of video CNNs. Representation flow?, MFNet?3 reduce the computation of optical
flow, while CoViAR* focus on using compressed videos (e.g., MPEGs) to perform recognition. These works rely on heavy
CNN s to obtain strong results. We here focus on obtaining efficient and compact CNN architecture, which itself can run on
top of compressed videos. Furthermore, online video understanding works have generated fast video processing by reusing
computations across frames®*#33, These works are complementary to ours, as the fast standalone video architectures we propose
can be further utilized in even more efficient online recognition.

3 | TINY VIDEO NETWORKS

In this section, we describe how to automatically design TVNs so that they can solve efficiently video understanding tasks. The
goal is to build video architectures, satisfying certain constraints, e.g. runtime, by starting from random ones and iteratively
improving their structure until sufficiently good architectures are obtained. We use evolution for architecture search®>4¢,

To tackle video architecture search, we design the algorithm so that it can build effective combinations of layers by interleav-
ing elements working across space and time. We specifically focus on a set of primitive neural elements, e.g. 2D spatial or 1D
temporal convolutions, pooling, and other efficient layers e.g. context-gating>?, squeeze-and-excitation®Z. Video-specific ele-
ments, such as 3D convolutions, are not included as they are expensive. At the same time, these basic layers can chose to work
in the spatial or temporal domain. Thus if a combination or a sequence of elements, one working across space and the other
across time, is found to successful at the video understanding task, it will be selected in future evolved architectures and in the
final learned architectures. The architecture search can also decide which input resolution is most advantageous, combined with
how many frames per video snippet are needed and at what sampling rate. This allows for further adaptability of the framework
to obtain efficient and accurate architectures. We describe the search methodology (Sec. [3.1) and the search space (Sec.[3.2).

3.1 | Tiny Video Architecture Search

In order to learn efficient video architectures, we maximize the following equation where the input is the set of parameters
defining a neural network architecture. Let N, be the network configuration, which corresponds to a specific architecture, and 6
denote the learnable weights of the network (|| is the number of weights in the network). Let P be a hyperparameter controlling
the maximum size of the network, assuming the network will be constrained for parameter size, as well. We denote by R(N,)
the function which computes the runtime of the network on a device, given the network N with its weight values 6, and by R
the maximum desired computational runtime. We then optimize:

maximize F(Ny)
Ny
subject to  R(N,) < R ey
0| < P,

where F is the fitness function, which measures the accuracy of the trained model on the validation set of a dataset. We optimize
Eq.by evolutionary search®>. The search is done by measuring runtime on a regular desktop CPU. Optionally, we constrain the
number of parameters or the memory footprint. The fitness function 7 we use is the sum of top 1 and top 5 accuracy per model.

We use the tournament selection evolutionary algorithm with discrete mutation operators>. Since the search space is large,
we begin by generating a pool of 200 random networks. (Please see Section [3.2] for description of the search space). After
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evaluating these networks, we randomly choose 50 of them and take the top performing network as a ‘parent’. This is typically
done in parallel. We then apply a discrete ‘mutation’ operation to this network by randomly changing one part of the network
according to the search space. For example, randomly changing the input resolution, or a random layer. This allows for the ‘pool’
of architectures to stay diverse and at the same time to evolve to a set of potentially better architectures at each round.

The models are partially trained to 10,000 iterations in order to evaluate their performance. We ran the evolution until a
saturation point of about 500 rounds. The average training time per model is about 1.5 hours, but actual training times may vary
significantly, as well. Taking advantage of parallel training (we use 10 parallel workers), the full search is done within a day.

Evolutionary search provides several advantages. It allows targeting different types of devices within the search and effectively
explores the irregular search space with a non-differentiable objective function, e.g. adding constraints on the parameters or
memory footprint, which are important for mobile applications. Evolution allows for parallelizing the search which significantly
speeds it up. Since each architecture considered in the search is extremely efficient to begin with, and networks that do not
meet the timing criterion are quickly discarded, the search itself is not as computationally intensive as other architecture search
methods. More extensive search, e.g., larger pool, more mutations, search over different hardware, or an expanded search space
can be used. The search space can also be modified to include new elements, as we do for Mobile-specific networks in Section 6]

3.2 | Search space

In order to generate a network to start the evolution, one can sample from each of the components of the search space. For
example, a network first randomly selects the input resolution which can be between (32 x 32 to 320 x 320) with a step size of
32. Then it will randomly pick the number of frames (1-32), and framerate - 1fps to 25fps (this is also referred to as ‘stride’,
i.e. number of frames to skip; the stride is selected by uniform random sampling but depends on the number of frames already
selected). Then it selects a fixed number of blocks as a uniform random variable between 1 and 8, and number of ‘repeats’ per
block (up to 8). Then, per each block, we sample a sequence of layers, which are selected randomly from a potential set of
components which are 2D spatial or 1D temporal convolutional layer, 1D pooling, non-local blocks?, context-gating layers>?,
and squeeze-and-excitation layers®’. A residual connection at the end of a block can also be (randomly) enabled. Blocks are used
for simplicity only and are not required. Their use reduces the search space somewhat, as the structure imposed by the blocks,
eliminates some combinations. We found that this is still a very effective and little-constraint search space.

For each of these layers, a specific set of parameters are also sampled, in order to fully form a computational layer, e.g. the
kernel sizes (from 1 to 8), strides (from 1 to 8), number of filters (from 32 to 2048) and types (e.g., standard or depthwise
convolution, average or max pooling). For non-local layers, we search for the bottleneck size (between 4 and 1024). We search
for the squeeze ratio for the squeeze-and-excitation layers (a real-valued number between 0 and 1). Additionally, a layer can
optionally pick an activation function, a ReLu (or a swish'l¥ for the Mobile-friendly models). The final block is followed by a
fixed standard block of global average pooling, a dropout layer (0.5 dropout rate), and a fully-connected layer which outputs the
number of classes required for classification.

4 | EXPERIMENTS

We conduct experiments on four challenging datasets. TVNs are evolved on different datasets to capture various aspects of the
video datasets scenarios. Models evolved on one dataset are evaluated on all other datasets, to test their usability across datasets.

Found TVN Models. By placing different constraints on the search, we automatically generate TVNs of various capacities
and runtimes. Our method finds unique, yet simple and elegant architectures which are multiple times more efficient than other
networks (Figure [2). Figure[3shows some examples, where we can see the layers and their combinations selected. Interestingly,
non-local layer? is rarely preferred in TVNSs. This suggests that it is more cost-efficient to spend computation on deeper and/or
wider networks. We describe the found TVNs in more details in Table[Il These models are evolved under different constraints.
The models have also picked specific runtime image resolutions, number of frames f, and sampling stride s. TVN-1 is the
fastest model found. It was evolved on the MiT dataset by constraining the search space to include models only running in less
than 50ms on CPU. TVN-2 is evolved by limiting the search space to 100ms and 12 million parameters. TVN-3 was evolved
by limiting the search space to 100ms as well, but no constraint on the number of parameters. TVN-4 is a slower model, which
we created trying to understand what performance we can get allowing the model to take more time for inference. It is found by
allowing networks up to 1200ms and 30 million parameters (cost roughly comparable to I3D%). TVN-5 is found by assigning
limit on runtime and memory usage: up to 100ms and 2.5GBytes. TVN-6 is the same as TVN-5 but we set 32 frames as input
(instead of 16). Thus the TVN-6 model uses the same number of frames as other models in prior art. Both models, despite using
a large number of input frames, are very efficient (Figure[2)), which can be attributed to also limiting the memory footprint.
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TABLE 1 Description of TVN models found. Runtime is in milliseconds (ms).

Model Evolved on Runtime (CPU) Runtime (GPU) Imageresol. Num. frames (f) Sampling rate (s)

TVN-1 MiT 37 10 224x224 2 4
TVN-2 MLB 65 13 256x256 2 7
TVN-3  Charades 85 16 160x160 8 2
TVN-4 MiT 402 19 128x128 8 4
TVN-5 MiT 86 16 160x160 16 4
TVN-6 MiT 142 18 160x160 32 4

TABLE 2 Comparison to the state-of-the-art results on Charades. We report the best TVN models in bold, and the best prior work
models as bolded italics. Many TVNs, even without pretraining, outperform the SOTA which uses strong Kinetics pre-training.
RGB-only results. TVNs also outperform or rival the strongest video models which use additionally flow: e.g. AssembleNet>!
47.0 from scratch, and 53.0 with MiT pretraining; AssembleNet++-8 achieves 54.98. TVNs are also orders of magnitude faster.

Method Runtime CPU (ms) Runtime GPU (ms) GFlops  mAP
Asyn-TF, VGG16>° - - - 22.4
I3D2 - - 216 32.9
Nonlocal, R1012 - - 544 x 30 375
SlowFast (two-stream)=2Z 3594 135 213x30 42.1
SlowFast + NL (two-stream )% 4354 152 234 x30 452
X3D-XL (pretr Kin-400)>4 - - 48.6 x 30 43.4
X3D-XL (pretr Kin-600)>4 - - 48.6 x30 47.1
TVN-1 (from scratch) 37 10 13 40.4
TVN-2 (from scratch) 65 13 17 47.4
TVN-3 (from scratch) 85 16 69 52.0
TVN-4 (from scratch) 402 19 106 53.8
TVN-5 (from scratch) 86 16 52 524
TVN-6 (from scratch) 142 18 93 52.8
TVN-1 (MiT pretr) 37 10 13 42.1
TVN-2 (MiT pretr) 65 13 17 48.3
TVN-3 (MIiT pretr) 85 16 69 53.2
TVN-4 (MiT pretr) 402 19 106 53.9
TVN-5 (MiT pretr) 86 16 52 54.2
TVN-6 (MiT pretr) 142 18 93 54.6

TABLE 3 Results on the MiT dataset comparing different Tiny Networks to baselines and state-of-the-art (which are all RGB-
only). We report the best TVN model in bold, and the best prior work model as bolded italics. As seen, TVN models perform
very competitively, but are much faster. No runtime was reported in prior works.

Method Runtime CPU (ms) Runtime GPU (ms) GFlops Accuracy
ResNet-18 2120 105 38 21.1%
ResNet-34 2256 110 50 24.2%
ResNet-50 3022 125 124 28.1%
ResNet-101 3750 140 245 30.2%
TSN - - - 24.1%
2D ResNet-50® - - - 27.1%
bLVNet-TAM2® - - - 31.4%
TVN-1 (MiT) 37 10 13 23.1%
TVN-2 (MLB) 65 13 17 24.2%
TVN-3 (Charades) 85 16 69 25.4%
TVN-4 (MiT) 402 19 106 27.8%
TVN-5 (MiT) 86 16 52 29.8%

TVN-6 (MiT) 142 18 93 30.7%
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TABLE 4 Comparison to the state-of-the-art results on MLB. TABLE 5 Performance on HMDB.
No prior runtimes are available. *Our measurement of runtime. Method GFlops  Acc. (%)
Method Runtime Runtime mAP CoViARB? ~ 501
(CPL) ~ (GPU) 13D2 300 74.8
InceptionV3 - - 479 S3D-G*2 - 75.9
13p™L 1865ms* - 483 ECO (online)** 64 72.4
I3D+sub-eventsd - - 55.5 TSM (online)=* 65 73.5
TVN-1 (MiT) 37ms 10ms 442 TVN-1 (MiT) 13 72.1
TVN-2 (MLB) 65ms 13ms 482 TVN-2 (MLB) 17 73.5
TVN-3 (Charades) 85ms 16ms 46.5 TVN-3 (Charades) 69 71.8
TVN-4 (MiT) 402ms 19ms 52.3 TVN-4 (MiT) 106 74.7
TVN-5 (MiT) 72ms 16ms 55.3 TVN-5 (MiT) 52 73.4
TVN-6 (MiT) 142ms 18ms  56.4 TVN-6 (MiT) 93 75.5

4.1 | Experimental setup

Datasets. We conduct experiments on four well-established public video datasets, representing various challenges for video
understanding: Moments-in-time (MiT)® is a large-scale dataset with 800k training examples and 33900 validation examples
across a large number of (339) activity classes. It is a very challenging dataset, not only because of the large number of classes,
but also because some of the categories are abstract or include multiple diverse concepts, e.g. dancing. HMDB? is a dataset of
about 5000 training and about 1500 test examples for 51 different classes. It is a popular dataset, although relatively small (only
about 100 videos per activity). Major League Baseball (MLB) Whas 4290 videos for 8 different baseball activities. It is a multi-
class, multi-label dataset (i.e. more than one label is correct). Unlike the previous two datasets, MLB contains longer videos
and requires understanding of temporal information as the actions are fine-grained and occur in the same scene, e.g., ‘bunt’ and
‘swing’ activities are very similar. We use the segmented video setting, as in®!. Charadesl" is also a multi-class multi-label
dataset of about 8000 training and 1686 validation videos of 157 different in-home activities. Charades contains long, continuous
videos (30 seconds on average) with multiple activities which can be occurring or co-occurring. It is also a very challenging
dataset due to the large number of actions, the multi-class multi-label setting, and the small number of examples per class.

We use the established evaluation protocols for all datasets. We report runtime (on CPU and GPU), FLOPs and accuracy or
mean average precision (mAP), in the context of state-of-the-art (SOTA) models. We measure runtime on an Intel Xeon CPU
running at 2.9GHz and a single V100 GPU. We follow the specified network and inputs for each model: our baselines use 32
frames, as in (2+1)D ResNet3?; I3D2 and S3D%2 use 64 frames. We note that TVNs use fewer frames per video, e.g. 2, 8, 16
(Table([T). We report results using RGB as inputs, since flow computation itself is quite expensive and is not suitable for real-time
video understanding, e.g.*? need about 100ms on GPUs, compared to our entire TVNs running in less than 20ms.

4.2 | Performance across datasets and comparison to the state-of-the-art

Charades. Table 2] shows the performance of the Tiny Video Networks evaluated on the Charades dataset (see also Figure [2).
TVNs obtain impressive results over SOTA. Firstly, TVN-2, TVN-3, TVN-4, TVN-5, TVN-6, without using any pre-training,
already outperform the best state-of-the-art models which used powerful Kinetics pre-training. Among the SOTA are strong
models with much more compute e.g. an architecture searched X3D?% and the two-stream SlowFast models%’. We also fine-
tune the models trained on MiT, as is customarily done in the literature , and obtain even better results. Curiously, TVNs rival
performance of the most powerful video models to date, AssembleNet and AssembleNet++2158 which use additionally optical
flow and connectivity learning. We note that achieving such performance at a fraction of the speed is an impressive result.
Moments-in-Time. Table [3| shows the results of TVNs on the MiT dataset (they are evolved on MiT, Charades and MLB).
Since prior work did not report runtime, we also compare to strong baselines, (2+1)D ResNets®?"¥ (Figure [2| right). The TVNs
perform competitively or better than previous state-of-the-art methods, while running very fast. TVN-1 and TVN-2, both out-
perform ResNet-18 and are 57 and 33 times faster, respectively, TVN-6 outperforms ResNet-101, being 26 times faster and
outperforms or performs comparatively to other state-of-the-art methods. We further note that TVN models perform very well
even compared to prior online video models. For example, ECO and TSM“#33 have at least three times the GFLOPs (64 and 65,
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FIGURE 4 Number of model parameters (in Millions) of TVNs (in red) vs ResNets (left) and CPU runtime (right). As seen,
some highly efficient nets (e.g. TVN-1 needs only 37 ms on a CPU) may actually have more parameters.

TABLE 6 TVN models obtained when expanding the search TABLE 7 TVNs compared to MobileNets. TVNs outperform
with components used in MobileNet. CPU runtime shown. MiT. them in both faster rutimes and higher accuracies. MiT dataset.

Method Runtime  Params. GFlops  Acc. # Frames | MobileNet MobileNet | TVN ~ TVN
TVN-1 37ms 11.1M 13.0 23.1% Runtime Accuracy | Runtime Acc.
TVN-1+swish 39ms 11.1M 13.0 24.8% 1 Frame 42ms 18.8 32ms 202
TVN-M-1 43ms 5.6M 100 21.95% 2 Frame 58ms 19.3 37ms  23.1
TVN-M-2 75ms 5.4M 10.1  21.96% 8 Frame |  280ms 20.8 85ms 254

respectively) than TVN-1 and TVN-2 (13 and 17, respectively), larger GFLOPs than TVN-5 and comparable to TVN-3. This
is an opportunity to combine these two technologies for future work, and extend TVN models to online versions.

MLB. Table [ shows the performance of TVNs on the MLB dataset, which targets fine-grained actions. We see here too that
TVNs outperform SOTA. For example, TVN-5 and TVN-6 outperform I3D while being 25 and 13 times faster, respectively.
TVN-2 performs comparably to I3D and is 29 times faster. TVN-6 outperforms', being at least 13 times faster.

HMDB. Table [3] shows the performance on HMDB. Here we report the ‘averaged over 3 splits’, per the standard evaluation
protocol. We did not evolve on HMDB as it is a very small dataset, so all models are transferred from other datasets. TVNs are
comparable to*? on HMDB, and outperform online models ECO and TSM*#33, where ECO further decreases its performance
to 68.5 when using 16 frames, and to 61.7 when using 4 (TVN-1 achieves 72.1 with 2 frames, and TVN-4 is at 74.7 with 8).

While in general, the model evolved on its own dataset performs better than others, larger-capacity models perform best. Model
runtimes do not change across datasets, as it has the same resolution and frame rate, which is sub-optimal for other datasets.

Number of parameters. Figure ] shows the number of parameters of the main models considered in the paper. We see
that, naturally, smaller models have fewer parameters. However, an interesting observation is that some of the computationally
efficient TVN models have more parameters, e.g., TVN-1 has more parameters than TVN-2, but is faster. Similarly, despite
TVN-3, TVN-4, TVN-5 and TVN-6 having more parameters, they are faster than counterparts ResNet-18, ResNet-34, and are
also more accurate. This is due to the ability of these models to build architectures taking advantage of specific characteristics
of the hardware, as the combination of layers seems to have a larger effect on runtime. TVNs were also evolved to drastically
limit the parameter size or memory usage, as was done with the TVNs for Mobile applications (see Table [6).

S | TINY VIDEO MODELS FOR MOBILE DEPLOYMENT

Mobile-friendly Tiny Video Networks. We further make a modification to our search space to include mobile-friendly com-
ponents, such as inverted residual layers and the hard swish activation function, similar to MobileNet!3 applied both in space
and time dimensions. Since search is done with the same constraints to be comparable to the original TVNSs, i.e., runtime within
100ms on CPU, there is no guarantee that Mobile-only components will be selected. Still the search is able to uncover more inter-
esting TVNs. Table[6]shows two selected mobile models, named TVN-M-1 and TVN-M-2. They are comparable to TVN-1, but
achieve 23% fewer Flops and have almost twice fewer parameters, which are both important for mobile, at a small reduction in
accuracy. These models satisfy all requirements for production Mobile deployment. Furthermore, we modify the original TVN-
1 by substituting all ReLu activations with the hard-swish'’¥, we find an improvement in accuracy of 1.7% with only negligible
2ms loss in runtime, confirming its usefulness.

Comparison to MobileNet models. MobileNetV 33 models are among the fastest single-image models to date, and are also
obtained via a neural architecture search. It is interesting to see how such models can perform when adapted to videos. We
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TABLE 8 Increasing the number of frames for TVN-1 from 2 to TABLE 9 Increasing the number of frames on Charades.

16 on MiT. We find that just adding more frames as input is not While more frames help, TVN-3 performs better.

greatly beneficial, the original TVNs, TVN-5 performs better.

Method Num. frames Accuracy

Method Runtime Runtime Accuracy TVN-1 1 frames 39.8%

(CPU) (GPU) TVN-1 2 frames 40.4%
TVN-1 (2 frames) 37ms 10ms 23.1% TVN-1 4 frames 41.2%
TVN-1 (8 frames) 140ms 28ms 23.4% TVN-1 8 frames 42.1%
TVN-1 (16 frames)  200ms 45ms 23.5% TVN-1 16 frames 43.8%
TVN-5 (16 frames) 86ms 16ms 29.8% TVN-3 8 frames 52.0%

TABLE 10 Different methods of scaling up the model. MiT. TABLE 11 Scaling up our tiniest model (TVN-1) on MiT can

Method Time CPU Time GPU Accuracy reach ResNet performance.
TVN-1 37ms 10ms 23.1% - -

Method Time (CPU) Time (GPU) Accuracy
TVN-1 (2x res) 140ms 28ms 23.5%
TVN-1 (4x res) 200ms 45ms 24.1% (24+1)D ResNet-50 3022ms 125ms 28.1%
TVN-1 2x wide)  130ms 38ms  238%  LYN-l@xwide) o 275ms 60ms 24.2%
TVN-1 (4x wide)  275ms 60ms 2429% _TVYN-1EN 305ms 92ms 28.2%
TVN-1 2x deep)  181ms Adms 237%  LVNS 72ms 16ms 29.8%
TVN-1 (4x deep) ~ 270ms 65ms 239% _TVN6 142ms 18ms 30.7%

compare our Tiny Video models to a MobileNetV3-equivalent ones, by applying MobileNet per frame, with a max pooling
before the final fully connected layer, and training this video-adapted model. We report the performance of TVNs which have 2
and 8 frames, and of a single-frame TVN model, which we evolved on MiT, with accuracy of 20.2%, 32ms runtime, 8 GFlops, at
224x224 resolution. Table[7]shows that TVNs are advantageous in both accuracy and speed, especially notable are the significant
improvements in both directions for larger number of frames.

6 | ABLATION RESULTS

Exploring a range of number of frames. One key advantage of TVNSs is the opportunity to select the number of frames and how
to sample them. For some datasets, MiT and HMDB, the network prefers to use very few frames 2-4 to reduce the computation
cost. This is expected, given that many activities there are scene-based so a single frame is often enough. To determine the effect
of temporal information, we increase the number of inputs frames used by TVN-1 from 2 to 16, and re-train these models on MiT,
providing more input information to the model (Table [8). We find that this does not lead to significant performance increase,
while the runtime increases a lot. At the same time our evolved TVN-5, which also has 16 frames, is 2.3 times faster and is by
6.3% more accurate on MiT. Similarly, Table 9] experiments with increasing the number of frames for Charades. Charades has
more dynamic content so one can expect more frames will be beneficial. As seen, the performance grows slowly with increasing
the number of frames, but falls short of the performance of TVN-3.

Scaling Up the TVNs. We further demonstrate the performance of the models by scaling up the found TVN. In Table[T0} we
compare TVN-1 with increasing spatial resolution (‘res’), increasing the width (number of filters in each layer) and increasing
the depth (number of times each block is repeated). We scale these by multiplying them by 2 or 4. We find that some scaling lead
to performance gains, but at large runtime costs. We further apply an EfficientNet-style scaling®?, i.e. scaling all dimensions
(input resolution, width and depth) (Table[TT). The EfficientNet-scaled model, denoted TVN-1 EN, achieves higher performance
than other scaling versions, but specifically evolved TVNSs, e.g. TVN-5 and TVN-6, are both more accurate and faster.

7 | CONCLUSION

We propose the Tiny Video Networks, which are automatically designed efficient video architectures. Despite working at
unprecedented speeds, 10-20ms on GPU, they accomplish strong results on four challenging video datasets. Mobile-friendly ver-
sions of TVNs outperform MobileNet models adapted to video and satisfy runtime and parameter count constraints for onboard
deployment. We have provided open-sourced code and models.
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