Time-lapse imagery is cheap and timely in the fight against colonial species’ decline
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Abstract
1. Many of the species in decline around the world are subject to different environmental stressors across their range, so large-scale monitoring programmes, with replication of sites, are necessary to disentangle the relative impacts of these threats. For those taxa or environments where a single vantage point can observe individuals or ecological processes, time-lapse cameras can provide a cost-effective way of collecting time series data replicated at large spatial scales that would otherwise be impossible and permit landscape-scale ecological hypotheses to be tested.
2. Networks of time-lapse cameras needed to cover the range of species or processes create a problem in that the scale of data collection easily exceeds our ability to process the raw imagery manually. While some out of the box image analyses such as optical flow do exist, citizen science and machine learning provide bespoke, adaptable solutions to scaling up data extraction (such as locating all animals in an image). 
3. Crucially, citizen science, machine learning-derived classifiers, and the intersection between them, are key to understanding how to establish monitoring systems that are sensitive to – and sufficiently powerful to detect –changes in the study system. Citizen science works relatively ‘out of the box’ as a first step for many systems until machine learning algorithms are sufficiently trained to automate the process. 
4. More work is needed to supplement ‘out of the box’ tools and we suggest advances in camera technology necessary to enable more complex time-lapse monitoring, such as on-board computer vision and decision-making. 



Tweetable abstract

Time-lapse cameras are cheap at collecting remote data. Citizen science and AI provide the best processing when combined. 
[bookmark: _iny0on3272o3]
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Introduction

The world faces an extinction crisis coupled with data deficiency (Legg & Nagy 2006) which is required to understand and disentangle the contrasting or confounded threats to species across their ranges. Remote and logistically challenging settings such as mountain ranges, deserts, submarine environments and Polar Regions are often most data deficient. Some of these data gaps can be filled by advances in technology or a decrease in cost per unit of monitoring networks (Merkel, Johansen & Kristensen 2016; De Pascalis, Collins & Green 2018). Time-lapse photography and photogrammetry techniques have been employed in research since Muybridge first captured stills of a running horse in 1877 (Muybridge 1887). It can be defined as any repeated image of the same subject or view that can be used to infer change over time. Time-lapse cameras (most of which are commercially available) are now routinely deployed for multi-year observational studies including both poles. While challenges remain in scaling up image analyses, a number of well-developed techniques exist and data collection is no longer a barrier to monitoring in many of the most hostile environments.
For example, the surge and retreat of glaciers over large timescales has been documented using this technique, with images captured via repeated manual ground photography as well as time-lapse cameras (Lenzano et al. 2014) and satellite imagery (Cook & Vaughan 2010). Ground-level and satellite imagery is routinely used to infer everything from snow and vegetation cover (Zhang et al. 2003; Zhang et al. 2004) to the census of animal populations (Fretwell et al. 2012; Larue et al. 2015). Motion-triggered passive infrared (PIR) cameras are already widely used in wildlife studies (Kays et al. 2009) for population density estimation (Cusack et al. 2015; Lucas et al. 2015), to identify home ranges (Dillon & Kelly 2008; Gil-Sanchez et al. 2011), and for anti-poaching or bushmeat monitoring (Hegerl et al. 2017). In contrast, time-lapse cameras have been slower to establish as a widely used technique, particularly with respect to development of standardised methods. However, time-lapse cameras have enormous potential to capture information at times of the year that are difficult to directly observe, and in remote settings (Black, Rey & Hart 2017; Black et al. 2018). Moreover, the relatively low cost per unit effort of time-lapse monitoring allows the ability for longer, more granular time series with observation of behaviour and replication over landscape scales. At any one location, it conceptually lies within both mark-recapture studies for applications such as nest survival, or individual id of animals and remote monitoring for questions about colorimetry (Del Río et al. 2013), glacial flow (Harrison et al. 1992; Ahn & Box 2010) or sea ice (Dufour-Beauséjour et al. 2020). 

Ground-level time-lapse photography was used for avian studies before the digital age (Penney 1968; Weller & Derksen 1972; Harris 1982), but its use is gaining pace due to the ubiquity of affordable off-the-shelf cameras and cheaper electronic storage. Increases in storage capacity, battery life and advances in AI methods of image analysis facilitate the transfer of behavioural studies from lab and farm settings (Roberts et al. 2011; Dawkins, Cain & Roberts 2012) to remote environments (Lynch, Alderman & Hobday 2015).

Time-lapse imagery is ideal for monitoring species that aggregate at high densities at some point in their life history, allowing the maximum number of individuals to be observed using a minimal number of camera units. Colonial breeding species (e.g. seabirds, land-breeding seals, freshwater birds, batsmeerkats and colonial insects) are obvious targets for time-lapse photography (Walsh et al. 1995; Southwell & Emmerson 2015; Black 2018) because they gather in fixed, known locations on an annual basis. Time-lapse sensors may also be particularly valuable when monitoring migratory species (Kays et al. 2009) (e.g. whales, wildebeest or salmon), provided their migration routes are predictable and constrained.

Penguin Watch (www.penguinwatch.org) is one of an increasing number of camera network projects that creates large volumes of imagery that can be processed to test hypotheses on ecological processes, and to estimate parameters of interest (e.g. survival, reproduction) suitable for long-term monitoring(Jones et al. 2018). Fig. 1 shows a schematic of the Penguin Watch monitoring process, from data collection through processing to analysis and interpretation. In this system, expert annotation, citizen science and automation should not be viewed in isolation, but as an integrated network, to enhance wildlife monitoring. 

Data collection 

A single remote camera can capture and store thousands of images, and many such cameras are on the market. Traditionally, studies using time-lapse have utilised off the shelf camera units (Bater et al. 2011; Black, Rey & Hart 2017) that are prioritised for motion-triggered detection of animals, or bespoke systems (Richter et al. 2018) , usually comprising a digital SLR coupled with an interval controller (Newbery & Southwell 2009; Huffeldt & Merkel 2013). Data collected are passive images, of both animals and the environment, but can be enhanced if part of a controlled experiment in which plots or replicates are manipulated, or by the addition of tools within the field of view such as colour standards for calorimetry (Nolan et al. 2006) or snow/water level indicators. When combined into networks, large scale or ‘big data’ approaches can address questions that are impossible to answer through more conventional monitoring studies due to a lack of statistical power and local replication. Decisions need to be made regarding battery life, servicing interval, and orientation to best capture the imagery of interest. One of the biggest gaps for monitoring is the ability to have differing rules for data acquisition over a season or year (most cameras record at the same times and intervals regardless of the day or season) and such user-defined sample programmes have been limited to researchers building bespoke micro-computer controlled cameras for their specific needs (Alarcón-Nieto et al. 2018). As yet, no study has incorporated image processing into a camera device to help make decisions about frequency of monitoring, which will likely be facilitated by open source cameras such as the Raspberry Pi (www.raspberrypi.org). The result is a time series of images of various and varying intervals.

Data Processing 

An inherent problem of large-scale data collection is that depending on the quantity of imagery captured and the required processing task, it can be impossible to analyse everything via conventional means (e.g. expert manual annotation). Many solutions are available, including citizen science (where non-expert volunteers are used to crowd-source analysis) and computer vision (where a machine learning algorithm is used to process data). At present, we can collect large amounts of imagery, but the cross-utility of analytical techniques means that (with the possible exception of citizen science) tools need to be redeveloped for each new study system. Some techniques exist that require no specific training for the taxa or scenario of interest, such as optic flow analysis of sequential images used to examine welfare in broiler chickens (Roberts et al. 2011) or signal processing/temporal averaging over several images (Merkel, Johansen & Kristensen 2016), indeed the sequence of images can also be used in the identification of animals, for example through the identification of moving objects (Yousif et al. 2019) In contrast, computer vision methods usually require a period of ‘training’. Machine learning algorithms must be provided with a subset of pre-processed data in order to learn a task, meaning an alternative method of annotation (e.g. expert- or citizen science- processing) is a prerequisite for this type of analysis. Therefore, regardless of the method that will ultimately be employed for the bulk of image processing, large numbers of human-annotated images will likely be required in the first instance, and these can also be used to calibrate parameters across sites. 

Citizen science

Camera networks are capable of rapidly collecting datasets that may prove impossible for an individual team of researchers to manually process. Citizen science (Fig. 2) and computer vision (Figs. 3 and 4) both offer solutions to this problem. While they are often viewed as alternatives, they are increasingly being used in synergy, where their differential errors counteract each other (Wright et al. 2017). Furthermore, citizen science classifications provide essential training datasets for machine learning approaches.

Successful citizen science projects present volunteers with a simple task, which can be easily learnt via a short tutorial, and produce data of comparable reliability to expert data(Cusack et al. 2015; Swanson et al. 2015). Regular error-checking and aggregation of multiple users’ data – with the potential for filtering of erroneous annotations – are vital to producing reliable output (Fig. 2). Penguin Watch is a Zooniverse (www.zooniverse.org) project, first launched in September 2014, which aims to identify the position of – and thereby count – every penguin in each image from a network of over 100 time-lapse cameras positioned across the Southern Ocean. By September 2017 over six million images had been classified by nearly 48,000 registered volunteers and a wealth of anonymous participants.

Within Penguin Watch, every image is shown to four volunteers. If at least one person identifies a penguin (or other animal/object), six more volunteers are asked to classify the image (i.e. a total of ten people see the image before it is retired). These numbers could be altered to change the accuracy of the results, and efficiency of data collection. Volunteers are asked to ‘tag’ individuals, labelling them as ‘adult’, ‘chick’, or ‘egg’ (for penguins) or ‘other’ (for different fauna, ships or tourists). Volunteers can also highlight unusual features of an image, such as the presence of a rare animal – something that computer vision may not be able to accommodate. After image retirement, the classifications made by each citizen scientist are aggregated using agglomerative hierarchical clustering (Fig. 2), and a single ‘consensus click’ is produced for each group of markings. This method effectively averages volunteer input, and allows incorrect markings to be filtered out. For example, a threshold could be introduced that discards any ‘consensus click’ that was drawn from a cluster of fewer than four classifications. In Fig. 2, there are two erroneous markings on object ‘c’; these are clustered together (see dendrogram), but would be filtered out due to cluster ‘c’ having fewer than four classifications

Computer vision for counting problems

[bookmark: _3rg5ur36s3f0][bookmark: _f777p7of5wtm][bookmark: _nnj0052qdfda][bookmark: _i3q8ozddk2j3][bookmark: _l4wpaixtp40t][bookmark: _gowy9ox0dw42][bookmark: _p8xzu8rbfdn][bookmark: _4mke3k9l72hx][bookmark: _7twsosmngf41][bookmark: _u7hri0str9rt]Modern approaches to ecology often require automated data collection and processing, which is already used widely for birds and mammals (Weinstein 2018). Automated approaches to image data extraction are rooted in machine learning techniques such as Convolutional Neural Networks (CNN), which have become popular due to their ability to achieve human-level performance on specific recognition tasks (Tabak et al. 2019). However, before machine learning can automate a task, they require a lot of pre-annotated data to learn, test and validate themselves. In the context of time-lapse monitoring, the task may centre on counting objects in images, which consists of estimating the number of instances of an object appearing in a scene, but could also include looking for colour changes, for example in flowering plants (Graham et al. 2010). Automatic counting in Penguin Watch imagery consists of a CNN trained to estimate an object density map (Lempitsky & Zisserman 2010; Arteta, Lempitsky & Zisserman 2016), where pixel density (the proportion of a penguin that each pixel represents) is estimated rather than individuals identified. Summing the ‘penguin pixel’ densities in any given area equals the number of penguins (Fig. 3).

Once trained, the counting algorithm can count previously unseen images, either over the whole image or a region of interest. Training a CNN to count requires a large dataset of images (in the order of 72,000 for this task (Arteta, Lempitsky & Zisserman 2016)) with each penguin labelled within it (Jones et al. 2018). Although placing dots on an image is an easy type of label to provide, the large number of images required still makes it an extremely labour-intensive task. Crowdsourcing (via citizen science or by micropayment sites such as Amazon’s Mechanical Turk (Mason & Suri 2012)) can overcome this, but can be expensive – both financially (in the case of professional annotation) or in terms of accuracy (variation in annotations can prove challenging). Nevertheless, the combination of the annotations of five to ten volunteers over the same image provides sufficient information to train the counting CNN successfully (Arteta, Lempitsky & Zisserman 2016) (Fig. 2), and the CNN continues to learn as more annotations are added.

Computer vision for unique identification

Many animals carry unique patterns that are stable over their lifetime – a leopard cannot change its spots any more than a human can change their fingerprints or iris patterns. The constancy and uniqueness of such patterns makes them ideal to recognize specific individuals in a non-invasive fashion. As such, they can be used to estimate survival, movement and demography using the techniques discussed below. Unique markings have been used to successfully identify individuals in a number of species. In some cases, such as whale sharks (Arzoumanian, Holmberg & Norman 2005) or humpback whales (www.happywhale.org) researchers or citizen scientists encounter and photograph animals as part of voyages. In other cases, images are obtained from remote camera traps or CCTV systems (Barham, Burghardt & Sherley 2010; Sherley et al. 2010b).  Once the images have been obtained, the pattern is extracted, indexed, and matched with a database of known animals. Sometimes this step can be automated, but often it is done entirely manually, or manually with machine assistance (Arzoumanian, Holmberg & Norman 2005). Even where animals do not have a unique phenotypic id, time-lapse monitoring could be used to increase the frequency of observations of tags and increase precision in mark-recapture studies.

Automated systems of image capture are subject to environmental conditions. For example, in the African penguin system(Sherley et al. 2010b) where individuals can be identified by a spot pattern, lighting conditions or dirt can change the number of spots detected, and the relative positions of spots can change with orientation and posture of the animal. Therefore, spots (or other features of interest) must be stored as a pattern in a robust form, such as a set of vectors connecting each spot to every other spot (Fig. 4). Within a recognition algorithm, shorter vectors are given higher weight as they are more reliable (shorter vectors are less susceptible to deformation across the surface of a body as they are closer together (Sherley et al. 2010a)). Individual identification systems frequently reject many images offered, and require decisions on the false acceptance rate versus true acceptance rate. 

Individual recognition is most efficient in relatively small populations. Once the number of entries in a database becomes large (in the thousands), it becomes increasingly difficult to determine whether images that are not matched come from individuals that are not in the database and hence need to be added, or are poor quality images of individuals already in the database. In addition, the time taken to compare patterns and identify individuals increases with the second power of the number of database entries. These challenges can partly met by the increases in availability and decreasing cost of cloud computing that provide opportunities to quickly and cheaply process these large datasets.

[bookmark: _cvg18ca7btgf]For some species (such as the Pygoscelis penguins monitored through Penguin Watch), individual recognition is not possible. However, if a unique pattern is present, and images are of good quality, then time-lapse photography provides a way of non-invasively tracking individuals over time. Furthermore, novel approaches can be adopted when it comes to monitoring unmarked species. For example, individuals may be recognisable during part of their life-cycle, such as prior to fledge, when they are restricted to a nest.

Data Analysis

Survival analysis – following individuals or features of interest

For automated camera networks to be useful in either an ecological or management context, robust demographic parameters must be derived. These should be comparable to (or better than) those obtained by direct observation. Measures such as survivorship or breeding success, estimated using large sample sizes and across large areas with contrasting environmental conditions or manipulations, can be used to disentangle confounded variables, test hypotheses and permit large-scale monitoring.
 
Frameworks developed for ‘mark-recapture’ studies have proved particularly useful in estimating survivorship within camera networks (Lorentzen, Choquet & Steen 2012). Mark-recapture studies mark (or use a unique pattern, such as natural fingerprints (Sherley et al. 2010b) or nest position (Youngflesh et al. 2020) individuals in a population and then attempt to recapture those individuals on subsequent occasions to estimate survival(Schaub et al. 2004; Casale et al. 2007). Each of these individuals has a probability of being captured or of dying between capture attempts, along with a probability of recapture. When monitoring nest survival (Fig. 5), we need to estimate the observation (‘capture’) probability and survival probabilities of eggs or chicks separately. ‘State-space’ models have proven useful where the true state (alive or dead) of an individual (chick or egg) for a given nest is modelled as an unobserved state, with the observed state of the individual (captured/not-captured) being the input data for the model at each time step (in our case, time-lapse image). Bayesian state-space models have proven useful on such data (Black et al. 2018) and allow error estimates to be carried all the way through analyses. While we have focused on breeding season level observations, finer scale observations could also be used to determine foraging/feeding rates and activity or energy budgets.

Parameter estimation and pattern recognition

Obtaining metrics of interest, for example the first egg lay date of a penguin or the duration of flowering of an iris, is an important step to analysing large-scale network data. These metrics could be simple and user defined, such as: ‘the first arrival of an individual after winter’, or ‘the date at which any chick is last seen.’ Such metrics – e.g. first arrival or peak laying – have been used in direct monitoring programmes for many years (Joint Nature Conservation Committee, 1995). They could also exist in repeating combinations (arrival, followed by courtship, followed by laying), referred to here as ‘motifs’. Large datasets 
 from camera networks permit new machine-learning approaches to search for complex patterns and key features. Motif-driven techniques (Fig. 6) look for common patterns to understand: 1) common events occurring across sites; 2) shifts in periodicities over time and 3) co-occurrence of motifs (for example, which motifs happen with a particular time lag).

[bookmark: _el3rjgmvdckg]To find patterns in time series data, we need to first create an approximation, or simplified version of the data (Fig. 6). Approximations help to remove noise and increase the probability of finding overlapping patterns in a set of series. There are a number of time-series approximation techniques available, including Fourier transforms, discrete wavelet transformations, and piecewise aggregated or linear approximations (Wang & Wang 2000; Golyandina, Nekrutkin & Zhigljavsky 2001; Lin et al. 2003; Cazelles 2004; Cazelles et al. 2008). In Fig. 6, we show the symbolic approximation (SAX) approach (Lin et al. 2003), which uses alphabetic characters to represent averages of windows (periods of, for instance, three images, three days, five days, or one month) in the time series. The benefit of such an approach is that it makes searching easier and uses existing measurements of co-occurrence that have been developed to support DNA and amino acid analyses (Lin et al. 2003; Lin et al. 2011). These transformations to letter sequences are used to discover overlapping string patterns (Fig. 6), with common strings used as motif candidates. From a set of motifs, we can understand their occurrence across a dataset, and investigate co-occurrences and lags. For example, a motif would be the pattern of arrival, presence through the breeding period, and departure from a site.


Applications and advantages of time-lapse technologies 

Historically, the quantity of data produced via camera networks has proved an obstacle for researchers.  Automated data processing requires large amounts of data and training time, yet citizen science can provide a proven first (and ongoing) step in the analysis and interpretation of time-lapse data.

If constructed carefully (i.e. with an appealing, clearly-explained task) citizen science projects can be used to process hundreds of thousands of data points, and actively engage the public in scientific research (Bonney et al. 2009; Dickinson et al. 2012). The use of computer vision is unlikely to render citizen science redundant, rather each can be used where most appropriate. For example, citizen science could be used to validate or train computer vision, and computer vision could be used to analyse ‘less interesting’ images. Citizen science can also be used to analyse images that computer vision may currently struggle with, such as those containing crowds of individuals (Jones et al. 2020). Both approaches are generalizable to a wide range of study types, for example, population censuses (where individuals are ‘tagged’ or have unique patterns), habitat studies (where animals or plants are identified to species level), and studies on foraging ecology, which could be enhanced with animal-borne cameras. 

Cameras that can capture time-lapse imagery over periods of interest (e.g. a breeding period) across multiple years allow researchers to address questions relating to seasonal dynamics, breeding phenology, and behaviour. They also facilitate large-scale monitoring studies that may have previously been unmanageable owing to high costs or logistical constraints (e.g. the requirement to frequently return to remote study sites). Replication of studies to look at the generality of patterns or core vs edge of range effects could be particularly important for understanding climate envelopes and changes in realised niches (May & McLean 2007). Co-ordinated monitoring programs over such scales enable studies of ecological phenomena such as climate impacts and other human and non-human induced ‘local’ impacts. 

Time-lapse monitoring can be used to answer a wide range of questions about the study system of interest. These could involve counting subjects within an image (something easily achievable using citizen science or computer vision), or processed to relate to a metric of interest, such as first arrival (Fig. 1) or nest survival (Fig. 5). For the latter, modelling techniques – such as the mark-recapture model shown in Fig. 5 – and individual recognition (Fig. 4) can be used. The time series nature of these data mean that durations of behaviour and sequential behaviour can be investigated (Figure 6).

Challenges and future directions

There is huge potential for bespoke camera devices, which are tailored to suit different environments, study species and research fields, and these are likely to become both cheaper and more capable of producing higher resolution images in the future. Advances to improve the energy efficiency and operational life of cameras will facilitate higher temporal resolution monitoring, in addition to reducing costs (Hill et al. 2019). Miniaturization and cost reduction will enable deployment of mobile time-lapse cameras on a wider range of species to investigate behaviour and ecology away from fixed locations or colonies (Kooyman 2007). Ideally, cameras will become connected sensors that provide appropriate data and metadata transmitted over great distances at low expense (Kays et al. 2009; Steenweg et al. 2017). 
 
The challenge is to determine whether existing solutions can be identified and reapplied to a remote setting, where power supply is limited. For example, the Raspberry Pi microcomputer has a low power consumption, but requires more than can be supplied uninterrupted by most remote power systems. Hence, solutions like ‘Instant Detect’ (Instant Detect, n.d.), a monitoring system combining audio and visual sensors with camera traps and satellite links, usually have to engineer deep sleep functions. Once cameras are built around microcomputers, some of the computer vision or AI could be integrated into the camera to allow onboard decision making. For instance, dark or blurry images could be discarded prior to transmission, saving money and processing time downstream, or the device could identify the start of a ‘period of interest’, and capture images at a higher frequency from that point. For example, cameras monitoring nest or den sites could take an image every hour, but trigger an image every minute when patterns of movement consistent with establishment of the breeding site are detected.

No field-ready time-lapse thermal imaging camera exists yet, but cheap laboratory-ready versions (FLIR 2020) do exist, and could be ruggedized. Paired thermal/visible spectrum imagery may facilitate self-learning in computer vision (and therefore allow rapid development of computer vision to new taxa or questions). Different sensors may already be paired through experimental design; for example, animal-borne loggers may be linked with time-lapse nest cameras. One change in experimental design would be to pair cameras on land so that stereo images would allow 3D structure and photogrammetry (Lavy et al. 2015). This process has already been used to examine nest site preference (McDowall & Lynch 2017), but could be used on individual animals, for example to examine size class distribution (Durban et al. 2016), or body condition over time (Berger 2012) and reproductive status (Waite et al. 2007).

Conclusions

The potential use of time-lapse imagery, both in terms of geographic or temporal range and diversity of study species, is vast with landscape level behavioural studies become possible; arguably for the first time outside the field of biotelemetry. Time-lapse technologies enable species or habitats to be monitored over large scales at very little cost, meaning the methodology can be used for new potential research areas with minimal financial risk, by teams who may otherwise lack the resources to do so. Time-lapse camera networks can provide data on site attendance (Black et al. 2018), breeding phenology (Southwell & Emmerson 2015) and breeding success (Hinke et al. 2018) as well as identify prey and interactions with other species (Hooker et al. 2002; Gremillet et al. 2010). This can in turn be used to investigate the causes of population declines, demonstrating their use in addressing the ‘grand challenges’ of ecology and conservation biology. With further developments in camera technology and processing capability, studies covering the entire biogeographic range of species will be possible, and indeed commonplace, providing researchers and decision-makers with the data and tools necessary to implement suitable and effective conservation measures.

Data Accessibility:
Scripts associated with the processing of data and example and processed are available via Jones et al. 2020 and at https://github.com/zooniverse/Data-digging/blob/master/example_scripts/Penguin_Watch/Penguin_Watch_ImageProcessingScript.R. There are no new data associated with this manuscript.
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Figure Legends:
[bookmark: _4uc29b7wlzwn]Figure 1: An overview of data collection, processing and analysis with reference to further detail in other figures. The ‘data collection’ step shows the phenology of a penguin colony, as viewed by a remote camera (centre) throughout a breeding cycle and over the winter. Cameras can also provide detail on the timing of breeding failures, and possibly even the causative factors (e.g. predation, abandonment, infrequent meal provisioning). Such imagery requires ‘processing’ and ‘analysis’ and these can feed back into the ‘data collection’, either by modification of the network design, or by integration into the cameras whereby the cameras can respond to events that they record. The ultimate goal is for data to feed into conservation ‘policy’ management decisions.




Figure 2: Data reduction of volunteer classifications (clicks on a time-lapse image) aggregated using agglomerative hierarchical clustering to identify penguins a and b. Coloured dots represent ‘clicks’ by ten different volunteers and the coloured branches of the dendrogram show how these markings have been clustered by distance. Object c has been (incorrectly) marked by two volunteers, meaning it will be filtered out if an appropriate threshold is applied (e.g. there must be >3 clicks in a cluster for the ‘consensus click’ to be carried forward). Chick markings have been excluded for clarity, and would be clustered separately, as chicks and eggs are annotated with different labels, and potentially analysed using different filtering thresholds.

Figure 3: A) input data, in this case a time-lapse image of a Gentoo penguin (Pygoscelis papua) colony at Port Lockroy, Antarctica with two regions of interest highlighted in orange, and a population count of these two regions. B) Output data, showing the same population totals in each box, but derived from pixel densities. Pixels further away from the camera appear brighter as they represent a ‘higher density’ of penguins (individuals appear smaller in the distance and therefore fewer pixels are required to form one penguin). For the opposite reason, penguin pixels in the foreground appear dimmer (individuals are larger, so more pixels are required to form one penguin). C) Shows data from the same site as a time series derived of 1 minute- interval images over an entire breeding season. Patterns of nest attendance are clearly visible.










Figure 4: Left) an image of a penguin with unique markings taken by a remote camera system; centre) the chest of the same penguin as identified by a computer vision system and labelled with vectors connecting every pair of spots; right) a representation of the unique identifier for the penguin illustrating the reduced weight given to pairs of spots that have greater separation.






Figure 5: Schematic diagram of a ‘virtual’ mark-recapture process; represents the observed state of nest i at time step t, represents the true state of a nest, represents the capture probability of that nest, and represents the survival probability of a nest from one time step to the next. For example, the final step shows how chick presence is inferred if it is detected in a subsequent observation.


Figure 6: A summary of motif approaches to large-scale data exploration, showing changes in the state of three different colonies through the number of penguins in an image. Three colonies are represented – black, orange and blue. Raw data are approximated or reduced to a sequence of letters based on the number of penguins and classified ‘a-e’ (where ‘a’ is the smallest frequency class with few penguins, and ‘e’ is the largest frequency class where most penguins are present). Common features are identified, detected and compared between sites through lag analyses and co-occurrence.




