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This paper is mainly devoted to the existence of pseudo anti-periodic solutions of parabolic boundary differential equations

by the measure theory. A new class of functions called Stepanov-like (µ0, ν0)-pseudo anti-periodic functions is proposed,

which generalizes the classical weighted pseudo anti-periodic functions in Stepanov sense. The completeness of the space

composed of these functions is proved. Translation invariance and two composition theorems are also established. As

an application different from parabolic equations with linear boundary conditions, one shows that semi-linear parabolic

evolution equations with inhomogeneous boundary conditions admit a (µ0, ν0)-pseudo anti-periodic solution in interpolation

and extrapolation spaces. An example is presented to verify the existence of pseudo anti-periodic solution. The Copyright

c© 2021 John Wiley & Sons, Ltd.
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1. Introduction

Since Poincaré researched the periodic solution of three-body problem,1–3 periodicity has always been one of the central topics in

the study of dynamic systems so far. With further research of periodicity, it is found that generally non-coercive evolution equations

cannot be shown to have a classical periodic solution, but possesses an anti-periodic solution, such as g(t) ∈ ∂φ(y(t)) + y ′(t),

a. e. t ∈ R in paper.4 By the virtue of maximal monotone operator theory and self-adjoint mapping, Aftabizadeh, Aizicovici and

Pavel5, 6 discussed the anti-periodic solutions of second-order and higher order anti-periodic boundary value problems, respectively.

Afterward, the investigation of the existence of anti-periodic solutions attaches much attention because of its applications in

physics, control theory, engineering and other subjects (see studies7–13). Using semigroup theory, Liu14 studied anti-periodic

solutions of semi-linear evolution equations in Banach space. Many other researchers established some theorems about anti-

periodic solutions of different systems and one refers readers to references.15–26 Among these references, anti-periodic functions

are investigated with various boundary conditions and most of them are linear type. The generalized anti-periodic boundary value

problem of impulsive fractional differential equations was researched by Li et al. in the paper.27

As we all know, weights play an increasingly important role in the study of anti-periodic functions, which results in the properties

of weighted pseudo anti-periodic functions with values in Banach spaces are more complicated than the general anti-periodic

functions, such as S-asymptotically anti-periodic functions. Moreover, anti-periodic functions with weight have uncertain due
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to the diversity of weighted functions. By weight, Al-Islam et al.28 proposed weighted pseudo anti-periodic functions in 2012.

Zhou and Shao29 researched weighted pseudo-anti-periodic SICNNs with mixed delays. To discuss unbounded or discontinuous

functions, Alvarez et al.30 further put forward weighted pseudo anti-periodic functions in Stepanov sense, which are by far the

widely used functions of anti-periodic type. However, it appears that little discussion is devoted to (µ0, ν0)-pseudo anti-periodic

functions in Stepanov sense, let alone studying (µ0, ν0)-pseudo anti-periodic solutions of semi-linear parabolic evolution equations

with inhomogeneous boundary conditions.

Using exponential dichotomy, this paper is devoted to investigate the (µ0, ν0)-pseudo anti-periodic solutions of the following

equation  y ′(t) = Bhy(t) + g(t, y(t)) t ∈ R,

Ly(t) = η(t, y(t)) t ∈ R,
(1)

where (Bh, D(Bh)) is a densely defined closed linear operator on Banach space Y and ∂Y is a boundary space such that

L : D(Bh)→ ∂Y composes a linear bounded boundary operator. Here, functions g : R× Yα1 → Y and η : R× Yα1 → ∂Y are

(µ0, ν0)-pseudo anti-periodic functions in Stepanov sense, where Yα1 , 0 < α1 < 1 are certain continuous interpolation spaces

about the linear operator B := Bh|kerL. The theory of semilinear initial-boundary value problems is based on the theory of

strongly continuous semigroups, which is designed to solve issues arising in differential equations with delay and mathematical

biology. Note that retarded differential equations, boundary control systems and population equations can be abstracted as these

equations which are formed by partial differential equations with semilinear terms at the boundary.

Similar to,31 the boundary equations (1) turns equivalently into semi-linear evolution equations given by

y ′(t) = Bα2−1y(t) + g(t, y(t)) + (µ− Bα2−1)Lµη(t, y(t)) for t ∈ R, (2)

where Bα2−1, 0 < α2 < 1, constitutes the continuous extension of B := Bh|kerL to the extrapolated Banach spaces Yα2−1

of Yα2 . As Greiner’s assumptions, the operator Lµ := (L|ker(µ− Bh))−1 from ∂Y to Y is bounded and the semi-linear term

G(t, y(t)) = g(t, y(t)) + (µ− Bα2−1)Lµη(t, y(t)) belongs to Yα2−1.

For the above equation, Baroun, Maniar, NGuerékata studied almost periodic and almost automorphic solutions in the paper.32

Baroun, Ezzinbi, Khalil, Maniar researched pseudo almost periodic solutions in reference.33 It is well known that the existence

of anti-periodic solutions plays a key function in characterizing the behavior of nonlinear differential equations. For example,

similar to the periodic Lasalle oscillation theorem of Lasalle in 1950, Wu34 in 2007 presented an anti-periodic Lasalle oscillation

theorem. Recently, Edgardo Alvarez et al.30 researched Stepanov-like weighted pseudo anti-periodic functions for fractional

integro-differential equations. And solutions to some equations describing the propagation of heat or waves in solid state physics

are often expected to have the Bloch type periodicity in paper,35 which includes both periodicity and anti-periodicity. Moreover,

anti-periodic boundary conditions have been considered for the Schrödinger and Hill differential operator.36, 37 Note that these

anti-periodic boundary conditions appear in physics in a variety of situations. In order to study deeper complex dynamic behavior,

can one investigate Stepanov-like (µ0, ν0)-pseudo anti-periodic functions for the equation (2)? And the natural question is raised:

what are asymptotic properties of mild solutions about equation (2) provided that the nonlinear term g satisfies Stepanov-like

(µ0, ν0)-pseudo anti-periodic condition? That is to say, is the solution y of equation (2) more regular than the function g? Besides,

can one find a pseudo anti-periodic solution in extrapolation and interpolation spaces instead of in the usual Banach space? This

thought constitutes the motivation of this paper. Note that the decomposition of weighted pseudo anti-periodic functions in the

classical sense are not unique, which results that the weighted pseudo anti-periodic solution based on the completion is not true.

To fill these gaps, one investigates the weighted pseudo anti-periodic function in Stepanov sense by adopting a new approach

proposed by Blot in paper.38 Precisely, one defines an ergodic function by the measure theory and explores some interesting

properties of it including composition theorems. And one also studies the applications of Stepanov-like weighted pseudo anti-

periodic functions to semi-linear parabolic boundary differential equations in interpolation and extrapolation spaces. And all these

results give a positive response to the above questions. Based on our conclusions, one believes that the generalized Stepanov-like

(µ0, ν0)-pseudo anti-periodic function not only paves a way for the research of pseudo anti-periodic solutions of integro-differential

equations and fractional differential equations, but also helps investigating (µ0, ν0)-pseudo S-asymptotic periodic functions in

Stepanov sense.

The rest of the paper is structured as follows: In Section 2, one reviews some theory of the extrapolation and interpolation
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of generators, then one makes estimates on the dichotomy in the extrapolated spaces which play a key role to show our results.

In Section 3, one shows the completion of Banach space in Stepanov sense and some composition theorems. Further, one

shows that some parabolic evolution equations admit a unique pseudo anti-periodic solution. In Section 4, one devotes to the

(µ0, ν0)-pseudo anti-periodic solution to (1) under Greiner’s assumptions and presents an illustrating application. In Section 5,

one gives some conclusions and discussions.

2. Notations and preliminaries

Note that N, N+, R and (Y, ‖·‖) are correspondingly the set of natural numbers, positive natural numbers, real numbers and

Banach space. Let C(R, Y ) (resp. C(R× Y, Y )) be the set of continuous functions from R to Y (resp. from R× Y to Y ) and

(BC(R, Y ), ‖·‖∞) (resp. BC(R× Y, Y )) be the Banach space (set) of bounded continuous functions from R to Y (resp. from

R× Y to Y ), where the normal ‖·‖∞ is given by ‖ψ‖∞ = sup
t∈R
‖ψ(t)‖. Denote by ‖·‖p = (

∫ r+1

r
‖f (σ)‖p dσ)

1
p . By Lp(R, Y ) (resp.

Lploc(R, Y )), one represents the space of all equivalent classes of measurable functions f from R to Y so that ‖f (·)‖p is integrable

(resp. locally integrable).

Now, let us review some basic results on interpolation and extrapolation spaces for certainly associated semigroup. One refers

the reader to references39, 40 for more details. Set R(ω0, B) = (B − ω0)−1. Denote that (B,D(B)) is a closed linear operator

defined on a Banach space Y , which is sectorial i.e. there are constants ω0 ∈ R, θ0 ∈ ( π
2
, π) and M0 > 0 satisfying

for all µ ∈Σθ0 := {µ ∈ C : µ 6= 0, | arg(µ)| ≤ θ0} ⊂ ρ(B − ω0), (3)

‖µR(µ,B − ω0)‖L(Y ) ≤ M0 . (4)

The conditions (3) and (4) imply that (B,D(B)) produces an analytic semigroup (Φ(t))t≥0 on Y .

Set α2 ∈ (0, 1). One utilizes the real interpolation space

Yα2 := D(B)
‖·‖α2 ,

with ‖y‖α2
:= sup

µ>0
‖µα2 (B − ω0)R(µ,B − ω0)y‖ for all y ∈ Y . Therefore one supposes that ω0 > ω1(Φ(t)t≥0) with ω1(Φ(t)t≥0)

being the growth bound of (Φ(t))t≥0. That means ω0 ∈ ρ(B) and the norms ‖·‖α2
are equivalent for any other ω′ ∈ ρ(B)

according to the resolvent equation. Then (Yα2 , ‖·‖α2
) composes a Banach space.

Further, one writes

• Y0 := Y , Y1 := D(B) and ‖y‖0 = ‖y‖;
• ‖y‖1 = ‖(B − ω0)y‖;
• Ŷ := D(B);

• the norm ‖y‖−1 = ‖R(ω0, B)y‖ for y ∈ Y .

Then, the completion of (Ŷ , ‖·‖−1) is said to be the extrapolation space of Y about B and will be described as Y−1, which means

that B admits a unique extension B−1 : Ŷ → Y−1. Because Φ(t) commutes with the resolvent operator R(ω0, B) for each t ≥ 0,

the extension of Φ(t) to Y−1 exists and B−1 generates an analytic semigroup (Φ(t))t≥0. Naturally, one can give the space

Yα2−1 := (Y−1)α2 = Ŷ
‖·‖α2−1

,

where ‖y‖α2−1 := sup
µ>0
‖µα2R(µ,B−1 − ω0)y‖. The restriction Bα2−1 : Yα2 → Yα2−1 of B−1 produces the analytic semigroup

(Φα2−1(t))t≥0 on Yα2−1 such that it is the extension of Φ(t) to Yα2−1. One will make use of the continuous embeddings

D(B) ↪→ Yα1 ↪→ Yα2 ↪→ Y, Y ↪→ Yα1−1 ↪→ Yα2−1 ↪→ Y−1,

for all 0 < α2 < α1 < 1.
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Denote that B is the Lebesgue σ-field on R. Note that M is the set of all positives measures µ0 on B fulfilling µ0(R) = +∞
and µ0([b, c]) <∞, for all b, c ∈ R(b ≤ c).

(H1) Let µ0, ν0 ∈M satisfy

lim sup
S→∞

µ0([−S, S])

ν0([−S, S])
<∞;

(H2) For all τ ∈ R, there are a bounded interval I0 and a number β > 0 so that µ0(b + τ : b ∈ D) ≤ βµ0(D) for D ∈ B fulfilling

D
⋂
I0 = ∅.

One first gives a condition before presenting hyperbolic semigroups about the generator B and its spectrum σ(B).

(H) (Φ(t))t≥0 is an analytic semigroup satisfying σ(B) ∩ iR = ∅.

Theorem 2.1 (Baroun et al.32) Let (Φ(t))t≥0 be a semigroup satisfying (H) and let 0 < α2 ≤ 1 and ε > 0 satisfy 0 < α2 − ε <
1. Then the operators Ps and Pu have continuous extensions P α2−1

u : Yα2−1 → Y and P α2−1
s : Yα2−1 → Yα2−1 respectively.

Moreover, one has the following assertions:

(a1) P α2−1
u Yα2−1 = PuY ;

(a2) Φα2−1(t)P α2−1
s = P α2−1

s Φα2−1(t);

(a3) Φα2−1(t) : P α2−1
u Yα2−1 → P α2−1

u Yα2−1 is invertible with inverse Φα2−1(−t) for t ≥ 0;

(a4) for 0 < α2 − ε < 1, one has

∥∥Φα2−1(t)P α2−1
s y

∥∥ ≤ mtα2−1−εe−γt ‖y‖α2−1 for y ∈ Yα2−1 and t ≥ 0,∥∥Φα2−1(t)P α2−1
u y

∥∥ ≤ ceδt ‖y‖α2−1 for y ∈ Yα2−1 and t ≤ 0.

Theorem 2.2 (Baroun et al.32) Let y ∈ Yα2−1, 0 ≤ α1 ≤ 1, 0 < α2 ≤ 1 and ε > 0 satisfy 0 < α1 + ε < α2 and 0 < α2 − ε < 1.

Then, statements (a1)− (a2) hold:

(a1) there is a constant c(α1, α2) satisfying

∥∥Φα2−1(t)P α2−1
u y

∥∥
α1
≤ c(α1, α2)eδt ‖y‖α2−1 , for t ≤ 0;

(a2) there is a constant m(α1, α2) so that for 0 < α2 − ε < 1

∥∥Φα2−1(t)P α2−1
s y

∥∥
α1
≤ m(α1, α2)tα2−α1−1−εeγt ‖y‖α2−1 , for t ≥ 0.

Now, one reviews some notations, basic knowledge about measures and results of (pseudo) anti-periodic type functions.

Provided that µ0, ν0 ∈M, one then defines

PAP0(Y, µ0, ν0) :=

{
g ∈ BC(R, Y ) : lim

S→∞

1

ν0([−S, S])

∫
[−S,S]

‖g(σ)‖ dµ0(σ) = 0

}
.

Definition 2.1 A function g ∈ C(R, Y ) is said to be anti-periodic provided that g(t + ω) = −g(t) for all t ∈ R. Let Pap(R, Y )

represent the set of these functions.

Definition 2.2 Set µ0, ν0 ∈M. A function g ∈ C(R, Y ) is defined as (µ0, ν0)-pseudo anti-periodic provided that it can be

decomposed into g = g1 + g2, where g1 ∈ Pap(R, Y ) and g2 ∈ PAA0(R, Y, µ0, ν0). Let PPap(R, Y, µ0, ν0) represent the collect

of these functions.

One now introduces Stepanov functions and related properties, which are from literatures.41, 42 A function g ∈ Lploc(R, Y ) with

1 ≤ p <∞ is called bounded in Stepanov sense provided that

sup
ζ∈R

(∫
[ζ,ζ+1]

‖g(r)‖p dr
) 1

p

<∞.
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For the same function g, the Bochner transform of it for all t ∈ R given by

(gb(t))(r) = g(t + r) for r ∈ [0, 1],

equipped with the norm ‖g‖Sp := sup
ζ∈R
‖g(ζ + ·)‖Lp(0,1;Y ) = sup

ζ∈R

(∫ ζ+1

ζ
‖g(τ)‖p dτ

) 1
p

, these Stepanov bounded functions compose

a Banach space.

Now, one gives some definitions of (µ0, ν0)-pseudo anti-periodicity in Stepanov sense.

Definition 2.3 A function g ∈ BSp(R, Y ) is defined as Stepanov anti-periodic if gb ∈ Pap(R, Lp(0, 1; Y )). One remembers the

set of all such functions as PapS
p(R, Y ).

Note that the preceding definition implies

sup
ζ∈R

(∫ ζ+1

ζ

‖g(r + ω) + g(r)‖p dr
) 1

p

= 0,

which means that g(r + ω) = −g(r) a. e. r ∈ R; that is

‖g(r + ω) + g(r)‖p = 0.

Definition 2.4 A function g ∈ BSp(R, Y ) is defined as Stepanov (µ0, ν0)-pseudo anti-periodic provided that it is decomposed

into g = g1 + g2, where gb1 ∈ Pap(R, Lp(0, 1; Y )) and gb2 ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0).

Definition 2.5 (Blot et al.38) Set ν1 and ν2 belong to M. ν1 and ν2 are said to be equivalent provided that there are

constants α0 > 0 and β0 > 0 and a bounded interval I0 (eventually I0 = ∅) fulfilling α0µ1(D) ≤ µ2(D) ≤ β0µ1(D), for D ∈ B
and D

⋂
I0 = ∅.

Setting ν0 ∈M and τ ∈ R, let ν0,τ represent the positive measure on (R,B) expressed as,

ν0,τ (D) = ν0({a + τ : a ∈ D}), for D ∈ B.

Lemma 2.1 (Blot et al.38) Let ν0 ∈M satisfy (H2). Then for all τ ∈ R the measures ν0 and ν0,τ are equivalent.

In the following, one presents an example to illustrate that ρ-weighted pseudo anti-periodic functions are ν-pseudo anti-periodic

functions.

Example 2.1 Let ν be given as: ν(B) = ν1(B) + ν2(B) for all B ∈ B, where ν2 is Lebesgue measure on (R,B) and ν1 the

measure on (R,B) expressed as  ν
1(B) = card(B ∩ Z) when (B ∩ Z) is finite,

ν1(B) =∞ when (B ∩ Z) is infinite.

dν1 = ρdt, where ρ represents the Radon-Nikodym derivative.

The Radon-Nikodym derivative ρ of the measure ν1 expresses as ρ(s) = e−θs , when θ > 0, s ≥ 0,

ρ(s) = 1, when s < 0,

for the Lebesgue measure on R.
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One obtains that

ν([−S, S]) = ν1([−S, S]) + ν2([−S, S]) =

∫ S

−S
ρ(s)ds + card([−S, S] ∩ Z)

= S + 2[S] + 1 +
1

θ
− 1

θ
e−θS,

where [·] denotes the greatest integer function. Since

lim
S→+∞

ν([−S, S]) = lim
S→+∞

S + 2[S] + 1 +
1

θ
− 1

θ
e−θS = +∞,

then ν ∈M.

Next, one gives two examples to say that the (µ0, ν0)-pseudo anti-periodicity in Stepanov sense is an generalization of classical

weighted anti-periodicity in Stepanov sense.

Example 2.2 Define g : R+ → R by

g(t) =


(−1)n+12

7k
for k ≤ t ≤ k +

1

4× 7k
with k ∈ N+, n ∈ N,

0 otherwise.

When p = 1, one has

1

2S

∫ S

−S

∫ ζ+1

ζ

|g(r + ω) + g(r)|drdζ ≤ 1

2S

∫ +∞

1

∫ ζ+1

ζ

(|g(r + ω)|+ |g(r)|)drdζ

≤ 1

S

∫ +∞

1

∫ [ζ]+2

[ζ]

|g(r)|drdζ

≤ 1

S

∑
k≥1

1

72k
→ 0 as S →∞.

Since g is not continuous, g /∈ PPap(Y ).

Example 2.3 Define h : R+ → R by

h(t) =

 − n
6

(
t − n4 − 1

n

)2

+ n4, t ∈
[
n4, n4 +

2

n

]
, n ∈ N,

0, otherwise.

Obviously, h is unbounded. For any N1 > 0, there is an integer n0 large enough such that h(t + ω) = 0 for all n ≥ n0 and

t ∈ [n4, n4 + 2
n

]. Set p = 1. S is large enough and k0 is the largest integer fulfilling n4
0 + 2

n0
≤ k4

0 + 2
k0
≤ S.

According to Fubini theorem, one gains that

1

2S

∫ S

−S

(∫ ζ+1

ζ

‖h(σ + ω) + h(σ)‖ dσ
)
dζ =

1

2S

∫ S

−S

(∫ 1

0

‖h(σ + ζ + ω) + h(σ + ζ)‖ dζ
)
dσ

=

∫ 1

0

(
1

2S

∫ S

−S
‖h(σ + ζ + ω) + h(σ + ζ)‖ dσ

)
dζ

≥ 1

2

∫ 1

0

1

(k0 + 1)4 + 2
k0+1

{
k0∑
n=n0

∫ n4+ 2
n

n4

[
−n6

(
ζ − n4 − 1

n

)2

+ n4

]
dζ

}
dσ

=
1

2

1

(k0 + 1)4 + 2
k0+1

k0∑
n=n0

2n3

=
1

2

1

(k0 + 1)4 + 2
k0+1

(
k0(k0 + 1)

2

)2

→ 1

8
(k0 →∞).
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This means that g /∈ PPapSp(Y ).

Taking dµ0(t) = ρ1(t)dt = 1
t4 dt, dν0(t) = ρ2(t)dt = 1

t6 dt, by Fubini theorem, one has

lim
S→∞

1

ν0(S, ρ2)

∫ S

−S
ρ1(ζ)

(∫ ζ+1

ζ

‖g(r + ω) + g(r)‖ dr
)
dζ

= lim
S→∞

∫ 1

0

(
1

ν0(S, ρ2)

∫ S

−S
ρ1(ζ) ‖g(r + ω + ζ) + g(r + ζ)‖ dζ

)
dr

≤ lim
N1→∞

2

∫ 1

0

1∫ N4
1

N−4
1

ζ−6dζ

{
N1∑
n=1

∫ n4+ 2
n

n4

1

ζ4

[
−n6

(
ζ − n4 − 1

n

)2

+ n4

]
dζ

}
dr

≤ lim
N1→∞

5N20
1

−1 + N40
1

N1∑
n=1

1

3n12
= 0,

which means that g ∈ PPapSp(Y ).

Now, one gives a lemma.

Lemma 2.2 Let µ0, ν0 ∈M satisfy conditions (H1)− (H2) and I0 is a bounded interval (eventually I0 = ∅). Assume that

g ∈ BSp(R, Y ). Then gb ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0) if and only if for every ε > 0, Cε is a (µ0, ν0)-ergodic zero set; that

is lim
S→∞

µ0([−S,S]\I0∩Cε)
ν0([−S,S]\I0)

= 0, where Cε := {t ∈ R : ‖g(t + ·)‖p ≥ ε}, ‖·‖p is the norm of Lp(0, 1; Y ).

Proof. ”Sufficiency”. Let A = µ0(I0). For any ε > 0.

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ)

=
1

ν0([−S, S])

∫
[−S,S]\Cε

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ) +
1

ν0([−S, S])

∫
[−S,S]∩Cε

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ)

≤ ε

ν0([−S, S])

∫
[−S,S]\Cε

dµ0(ζ) + ‖g‖Sp
1

ν0([−S, S])

∫
[−S,S]∩Cε

dµ0(ζ)

≤ ε

ν0([−S, S])

∫
[−S,S]\Cε

dµ0(ζ) + ‖g‖Sp
1

ν0([−S, S])

∫
[−S,S]\I0∩Cε

dµ0(ζ) + ‖g‖Sp
1

ν0([−S, S])

∫
[−S,S]∩I0∩Cε

dµ0(ζ)

≤ εµ0([−S, S]\Cε)
ν0([−S, S])

+ ‖g‖Sp
ν0([−S, S] \ I0)

ν0([−S, S])
· µ0([−S, S] \ I0 ∩ Cε)

ν0([−S, S] \ I0)
+ ‖g‖Sp

A

ν0([−S, S])
.

If Cε is a (µ0, ν0)-ergodic zero set, that is lim
S→∞

µ0([−S,S]\I0∩Cε)
ν0([−S,S]\I0)

=0. Combining the arbitrariness of ε and I0 is a bounded interval,

one gains

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ) = 0,

which means that gb ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0).

”Necessity” If gb ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0), one obtains that

0 =
1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ)

=
1

ν0([−S, S])

∫
[−S,S]\Cε

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ) +
1

ν0([−S, S])

∫
[−S,S]∩Cε

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ)

≥ 1

ν0([−S, S])

∫
[−S,S]\Cε

(∫ ζ+1

ζ

‖g(r)‖p dr
) 1

p

dµ0(ζ) +
ε

ν0([−S, S])

∫
[−S,S]∩Cε

dµ0(ζ)

≥ ε

ν0([−S, S])

∫
[−S,S]∩Cε

dµ0(ζ) ≥ ν0([−S, S] \ I0)

ν0([−S, S])
· ε

ν0([−S, S] \ I0)

∫
[−S,S]\I0∩Cε

dµ0(ζ),

which proves that lim
S→∞

1
ν0([−S,S]\I0)

∫
[−S,S]\I0∩Cε

dµ0(ζ) = 0; it means that for every ε > 0, Cε is a (µ0, ν0)-ergodic zero set.
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3. Stepanov-like (µ0, ν0)-pseudo anti-periodicity

In this section, one first gives two lemmas to prove that (PPapS
p(R, Y, µ0, ν0), ‖·‖Sp ) is a Banach space.

Lemma 3.1 (PapS
p(R, Y ), ‖·‖Sp ) composes a Banach space for all 1 ≤ p <∞.

Proof. Let 1 ≤ p <∞. Then PapS
p(R, Y ) is a linear subspace of BSp(R, Y ). To conclude it is enough to show that PapS

p is

complete in BSp(R, Y ). Let (gn)n∈N be a sequence in PapS
p(R, Y ) satisfying gn → g as n →∞ in BSp(R, Y ). Therefore, for all

ε > 0, there is ω ∈ R such that

(∫ ζ+1

ζ

‖gn(s + ω) + gn(s)‖p ds
) 1

p

= 0 for all ζ ∈ R.

Based on the triangle inequality, one has

0 ≤
(∫ ζ+1

ζ

‖g(s + ω) + g(s)‖p ds
) 1

p

≤
(∫ ζ+1

ζ

‖g(s + ω)− gn(s + ω)‖p ds
) 1

p

+

(∫ ζ+1

ζ

‖gn(s + ω) + gn(s)‖p ds
) 1

p

+

(∫ ζ+1

ζ

‖gn(s)− g(s)‖p ds
) 1

p

.

Therefore,

0 ≤
(∫ ζ+1

ζ

‖g(s + ω) + g(s)‖p ds
) 1

p

<
2ε

3
+

(∫ ζ+1

ζ

‖gn(s + ω) + gn(s)‖p ds
) 1

p

for all n ∈ N, which is obtained by gn → g as n →∞ in BSp(R, Y ). Further, since (gn)n∈N is in PapS
p(R, Y ), one derives

0 ≤
(∫ ζ+1

ζ

‖g(s + ω) + g(s)‖p ds
) 1

p

<
2

3
ε for all ζ ∈ R.

Due to the arbitrary of ε, it follows that
(∫ ζ+1

ζ
‖g(s + ω) + g(s)‖p ds

) 1
p

= 0. Thus g ∈ PapSp(R, Y ).

Lemma 3.2 Let µ0, ν0 ∈M. Assume that conditions (H1) and (H2) are satisfied. Then PAA0(R, Lp(0, 1; Y ), µ0, ν0) composes

a closed linear subspace of BSp(R, Y ).

Proof. Set 1 ≤ p <∞. Because PAA0(R, Lp(0, 1; Y ), µ0, ν0) composes a linear subspace of BSp(R, Y ), one only needs to show

that PAA0(R, Lp(0, 1; Y ), µ0, ν0) is closed in BSp(R, Y ). Take (gn)n∈N as a sequence in PAA0(R, Lp(0, 1; Y ), µ0, ν0) satisfying

gn → g as n →∞ in BSp(R, Y ). For sufficiently large S > 0

∫
[−S,S]

(∫
[ζ,ζ+1]

‖gn(r)‖p dr
) 1

p

dµ0(ζ)

≤ (µ0([−S, S]))
1
q

(ν0([−S, S]))
1
q

(ν0([−S, S]))

[∫
[ζ,ζ+1]

1

ν0([−S, S])

∫
[−S,S]

‖gn(r)‖p dµ0(ζ)dr

] 1
p

.

Therefore, according to the Lebesgue dominated convergence theorem and gn ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0), it yields that

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

(∫
[ζ,ζ+1]

‖gn(s)‖p ds
) 1

p

dµ0(ζ)

= lim sup
S→∞

(µ0([−S, S]))
1
q

(ν0([−S, S]))
1
q

[∫
[ζ,ζ+1]

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

‖gn(s)‖p dµ0(ζ)ds

] 1
p

= 0. (5)
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On the other hand,

1

ν0([−S, S])

∫
[−S,S]

(∫
[ζ,ζ+1]

‖g(r)‖p dr
) 1

p

dµ0(ζ)

≤ 1

ν0([−S, S])

∫
[−S,S]

(∫
[ζ,ζ+1]

‖g(r)− gn(r)‖p dr
) 1

p

dµ0(ζ) +
1

ν0([−S, S])

∫
[−S,S]

(∫
[ζ,ζ+1]

‖gn(r)‖p dr
) 1

p

dµ0(ζ),

hence, it follows from (5) and gn → g as n →∞ in BSp(R, Y ) that g ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0).

From Lemmas 3.1 and 3.2, one can obtain that for all 1 ≤ p <∞, (PPapS
p(R, Y, µ0, ν0), ‖·‖Sp ) composes a Banach space

equipped with the norm

‖g‖Sp = ‖g1‖Sp + ‖g2‖Sp

where g = g1 + g2 with gb1 ∈ Pap(R, Lp(0, 1; Y )) and gb2 ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0).

To show the translation invariance of Stepanov (µ0, ν0)-pseudo anti-periodicity, one presents the following proposition.

Proposition 3.1 Assume that (H1)− (H2) hold. If µ0 ∼ µ1, ν0 ∼ ν1 for µi , νi ∈M (i = 0, 1), then PPapS
p(R, Y, µ0, ν0) =

PPapS
p(R, Y, µ1, ν1).

Proof. Since µ0 ∼ µ1, ν0 ∼ ν1 and B is the Lesbegue σ-field, according to Definition 2.5, there exist θi > 0, γi > 0, (i =

1, 2) satisfying θ1µ1(A) ≤ µ0(A) ≤ γ1µ1(A), θ2ν1(A) ≤ ν0(A) ≤ γ2ν1(A). Then for all interval I ∈ B and I ⊂ [−S, S] fulfilling

ν1([−S, S]\I) > 0 , one has

θ1

γ2
×
µ1

({
ζ ∈ [−S, S]\I :

(∫ ζ+1

ζ
‖g(r)‖p dr

) 1
p
> ε

})
ν1([−S, S]\I)

≤
µ0

({
ζ ∈ [−S, S]\I :

(∫ ζ+1

ζ
‖g(r)‖p dr

) 1
p
> ε

})
ν0([−S, S]\I)

≤ γ1

θ2
×
µ1

({
ζ ∈ [−S, S]\I :

(∫ ζ+1

ζ
‖g(r)‖p dr

) 1
p
> ε

})
ν1([−S, S]\I) .

According to Lemma 2.2, one deduces that PAA0(R, Lp(0, 1; Y ), µ0, ν0) = PAA0(R, Lp(0, 1; Y ), µ1, ν1). In the light of the

definition of Stepanov-like (µ0, ν0)-pseudo anti-periodic function, it follows that PPapS
p(R, Y, µ0, ν0) = PPapS

p(R, Y, µ1, ν1).

Now one gives the translation invariance of Stepanov (µ0, ν0)-pseudo anti-periodicity.

Proposition 3.2 If (H2) holds and g ∈ PPapSp(R, Y, µ0, ν0), then g(· − τ) ∈ PPapSp(R, Y, µ0, ν0).

Proof. One divides the proof into two parts. To begin with, for g ∈ PapSp, one proves that g(· − τ) ∈ PapSp. For ν0 ∈M,

because ν0(R) = +∞, there is S0 > 0 satisfying ν0([−S − |τ |, S + |τ |]) > 0 for all S > S0. One always assumes that S > S0 in

this proof. Set τ+ = max(τ, 0), τ− = max(−τ, 0), then it yields |τ |+ τ = 2τ+, |τ | − τ = 2τ−, so

[−S − |τ |+ τ, S + |τ |+ τ ] = [−S − 2τ−, S + 2τ+]. (6)

For S > S0 and τ ∈ R, one gains

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(σ − τ + ω) + g(σ − τ)‖p dσ
) 1

p

dµ0(ζ) (7)

≤ 1

ν0([−S, S])

∫
[−S−2τ−,S+2τ+]

(∫ ζ+1

ζ

‖g(σ − τ + ω) + g(σ − τ)‖p dσ
) 1

p

dµ0(ζ)

≤ ν0([−S − 2τ−, S + 2τ+])

ν0([−S, S])
Φτ (S),
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where

Φτ (S) =

∫
[−S−2τ−,S+2τ+]

(∫ ζ+1

ζ
‖g(σ − τ + ω) + g(σ − τ)‖p dσ

) 1
p
dµ0(ζ)

ν0([−S − 2τ−, S + 2τ+])
.

By (H2) and (6), one has

Φτ (S) =

∫
[−S−|τ |+τ,S+|τ |+τ ]

(∫ ζ+1

ζ
‖g(σ − τ + ω) + g(σ − τ)‖p dσ

) 1
p
dµ0(ζ)

ν0([−S − |τ |+ τ, S + |τ |+ τ ])

=

∫
[−S−|τ |,S+|τ |]

(∫ ζ+1

ζ
‖g(σ + ω) + g(σ)‖p dσ

) 1
p
dµ0,τ (ζ)

ν0,τ ([−S − |τ |, S + |τ |]) .

Note that by Lemma 2.1 it yields µ0 ∼ µ0,τ , ν0 ∼ ν0,τ . Additionally, by Proposition 3.1 and g ∈ PPap(R, Y, µ0,τ , ν0,τ ), one has

lim
S→∞

Φτ (S) = 0.

By (7), one has

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(σ − τ + ω) + g(σ − τ)‖p dσ
) 1

p

dµ0(ζ) = 0,

that is, g(· − τ) ∈ PapSp(R, Y ) for all τ ∈ R. Now one will show that the second part is that if gb(·) ∈ PAA0(R, Lp(0, 1; Y ),

µ0, ν0), then gb(· − τ) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0) for all τ ∈ R. Set g ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0) and τ ∈ R. For S > S0

and τ ∈ R, one obtains that

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(σ − τ)‖p dσ
) 1

p

dµ0(ζ)

≤ ν0([−S − 2τ−, S + 2τ+])

ν0([−S, S])
Θτ (S)

with

Θτ (S) =

∫
[−S−2τ−,S+2τ+]

(∫ ζ+1

ζ
‖g(σ − τ)‖p dσ

) 1
p
dµ0(ζ)

ν0([−S − 2τ−, S + 2τ+])

By (H2) and (6), one has

Θτ (S) =

∫
[−S−|τ |+τ,S+|τ |+τ ]

(∫ ζ+1

ζ
‖g(σ − τ)‖p dσ

) 1
p
dµ0(ζ)

ν0([−S − |τ |+ τ, S + |τ |+ τ ])

=

∫
[−S−|τ |,S+|τ |]

(∫ ζ+1

ζ
‖g(σ)‖p dσ

) 1
p
dµ0,τ (ζ)

ν0,τ ([−S − |τ |, S + |τ |]) .

By Lemma 2.1, it follows that µ0 ∼ µ0,τ , ν0 ∼ ν0,τ . Further, in the light of Proposition 3.1 and f b ∈ PAA0(R, Lp(0, 1; Y ),

µ0,τ , ν0,τ ), it follows that lim
S→∞

Θτ (S) = 0. By (7), one has

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(σ − τ)‖p dσ
) 1

p

dµ0(ζ) = 0,

it means that gb(· − τ) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0) for all τ ∈ R. Hence g(· − τ) ∈ PPapSp(R, Y, µ0, ν0). This ends the proof.

The next two theorems show that the composition of two (µ0, ν0)-pseudo anti-periodic function in Stepanov sense is still an

(µ0, ν0)-pseudo anti-periodic function in Stepanov sense.
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Theorem 3.1 Suppose that G : R× Y → Y is a BSp-bounded function that satisfy

(a) there is ω > 0 satisfying G(t + ω,−y) = −G(t, y) for a. e. t ∈ R and for all y ∈ Y ;

(b) there is a function LG(·) ∈ BSp(R,R) for all p ≥ 1 so that for all t ∈ R and y1, y2 ∈ Y

‖G(t, y1)− G(t, y2)‖ ≤ LG(t) ‖y1 − y2‖ ;

(c) v ∈ PapSp(R, Y ).

Then G(s, v(s)) ∈ PapSp(R, Y ).

Proof. According conditions (a)− (c), one has

0 ≤
(∫

[ζ,ζ+1]

‖G(r + ω, v(r + ω)) + G(r, v(r))‖p dr
) 1

p

≤
(∫

[ζ,ζ+1]

‖G(r + ω, v(r + ω))− G(r + ω,−v(r))‖p dr
) 1

p

+

(∫
[ζ,ζ+1]

‖G(r + ω,−v(r)) + G(r, v(r))‖p dr
) 1

p

≤ sup
ζ∈R
|LbG(ζ)|Lp(0,1;R)

(∫
[ζ,ζ+1]

‖v(r + ω) + v(r)‖p dr
) 1

p

+

(∫
[ζ,ζ+1]

‖G(r + ω,−v(r)) + G(r, v(r))‖p dr
) 1

p

= 0.

Therefore G(r + ω, v(r + ω)) = −G(r, v(r)) a. e. r ∈ R and consequently G(·, v(·)) ∈ PPapSp(R, Y ).

Theorem 3.2 Let µ0, ν0 ∈M satisfy condition (H1)− (H2), p ≥ 1, g = g1 + g2 ∈ PPapSp(R× Y, Y, µ0, ν0) with gb1 ∈ Pap(R×
Y, Lp(0, 1; Y )) and gb2 ∈ PAA0(R× Y, Lp(0, 1; Y ), µ0, ν0). Assume that

(a1) there is ω > 0 such that g1(t + ω,−y) = −g1(t, y);

(a2) there exist Lg(t), Lg1 (t) ∈ BSp(R,R) such that

‖g(t, y1)− g(t, y2)‖ ≤ Lg(t) ‖y1 − y2‖ , ‖g1(t, y1)− g1(t, y2)‖ ≤ Lg1 (t) ‖y1 − y2‖ , t ∈ R, y1, y2 ∈ Y ;

(a3) h = α+ β ∈ PPapSp(R, Y, µ0, ν0) with αb ∈ Pap(R, Lp(0, 1; Y )) and βb ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0) is such that the set

K := {α(t) : t ∈ R} is compact in Y . Then g(·, h(·)) ∈ PPapSp(R, Y, µ0, ν0).

Proof. g(t, h(t)) can be decomposed into

g(t, h(t)) = g1(t, α(t)) + g(t, h(t))− g(t, α(t)) + g2(t, α(t)).

Let G1(t) = g1(t, α(t)), G(t) = g(t, h(t))− g(t, α(t)), G2(t) = g2(t, α(t)). Since α ∈ PapSp(R, Y ) and g1 ∈ PapSp(R× Y, Y ),

by Theorem 3.1, one obtains that Gb1 (t) ∈ Pap(R, Lp(0, 1; Y )). Next one shows that Gb(t) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0). Indeed

∫ ζ+1

ζ

‖G(r)‖p dr =

∫ ζ+1

ζ

‖g(r, h(r))− g(r, α(r))‖p dr

≤
∫ ζ+1

ζ

Lpg(r) ‖h(r)− α(r)‖p dr =

∫ ζ+1

ζ

Lpg(r) ‖β(r)‖p dr.
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Then

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖G(r)‖p dr
) 1

p

dµ0(ζ)

≤ h0 lim sup
S→∞

(µ0([−S, S]))
1
q

(ν0([−S, S]))
1
q

[∫ 1

0

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

‖β(r + ζ)‖p dµ0(ζ)dr

] 1
p

.

where h0 = sup
ζ∈R
|Lbg(ζ)|Lp(0,1;R). Since βb(·) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0), one obtains that Gb(·) ∈ PAA0(R, Lp(0, 1; Y ),

µ0, ν0). Next, one proves that Gb2 (·) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0). Since gb2 ∈ PAA0(R× Y, Lp(0, 1; Y ), µ0, ν0), then for any

ε > 0 there exist r0 > 0 such that r > r0 implies that

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(s, u)‖p ds
) 1

p

dµ0(ζ) < ε, (u ∈ Y )

Since K is compact i.e. P{α(t) ∈ Kε} ≥ 1− ε, one can find a finite sequence y1, y2, · · · , ym such that

Kε ⊂ ∪mi=1B

(
yi ,

ε

‖Lf + Lg‖Sp

)
By Minkowski inequality, for r > r0 one has

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, α(r))‖p dr
) 1

p

dµ0(ζ)

≤ min
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, α(r))− g2(r, yi)‖p dr
) 1

p

dµ0(ζ)

+ max
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, yi)‖p dr
) 1

p

dµ0(ζ)

≤ min
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g(r, α(r))− g(r, yi)‖p dr
) 1

p

dµ0(ζ)

+ min
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g1(r, α(r))− g1(r, yi)‖p dr
) 1

p

dµ0(ζ)

+ max
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, yi)‖p dr
) 1

p

dµ0(ζ)

≤ (sup
t∈R
|Lbg(t)|+ sup

t∈R
|Lbg1

(t)|) (µ0([−S, S]))
1
q

(ν0([−S, S]))
1
q

ε+ max
1≤i≤m

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, yi)‖p dr
) 1

p

dµ0(ζ).

Then

1

ν0([−S, S])

∫
[−S,S]

(∫ ζ+1

ζ

‖g2(r, α(r))‖p dr
) 1

p

dµ0(ζ)

≤ (sup
t∈R
|Lbg(ζ)|+ sup

t∈R
|Lbg1

(ζ)|) (µ0([−S, S]))
1
q

(ν0([−S, S]))
1
q

ε+ ε(r > r0).

Therefore, Hb(·) ∈ PAA0(R, Lp(0, 1; Y ), µ0, ν0). Whence g(·, h(·)) ∈ PPapSp( R, Y, µ0, ν0).

4. Applications to semi-linear parabolic boundary differential equations

Now, one presents the existence and uniqueness of (µ0, ν0)-pseudo anti-periodic solutions of equation (1).
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(H3) There exists ω > 0 satisfying g1(t + ω,−y) = −g1(t, y) and the set K := {g1(t) : t ∈ R} is compact in Yα2−1;

(H4) There exist constants Lg(t), Lg1 (t) ∈ BSp such that

‖g(t, y1)− g(t, y2)‖α2−1 ≤ Lg(t) ‖y1 − y2‖α1
,

‖g1(t, y1)− g1(t, y2)‖α2−1 ≤ Lg1 (t) ‖y1 − y2‖α1
;

(H5) The family of closed linear operator B(t) for t ∈ R on Y with domain D(B(t)) satisfy Acquistapace-Terreni conditions

and condition (H) is satisfied.

Definition 4.1 A function y : R→ Yα1 of continuous is defined as a mild solution corresponding to (1) provided that it holds

for

y(t) = Φ(t − r)y(r) +

∫ t

r

Φα2−1(t − s)g(s, y(s))ds, t ≥ r. (8)

Theorem 4.1 Let µ0, ν0 ∈M, p ≥ 1, g : R× Yα1 → Yα2−1, 0 ≤ α1 < α2 and g = g1 + g2 ∈ PPapSp(R× Yα1 , Yα2−1, µ0, ν0) be

given. Suppose that conditions (H1)− (H5) hold, then there exists pseudo anti-periodic solution.

Proof. One shows that y(t) is (µ0, ν0)-pseudo anti-periodic solution. Take into account the operator Υ : PPap(R, Yα1 , µ0, ν0)→
PPap(R, Yα1 , µ0, ν0) defined by

(Υy)(ζ) =

∫ ζ

−∞
Φα2−1(ζ − s)P α2−1

s g(s, y(s))ds −
∫ +∞

ζ

Φα2−1(ζ − s)P α2−1
u g(s, y(s))ds.

First, one shows that Υ(PPap(R, Yα1 )) ⊂ PPap(R, Yα1 ). Set h(t) = g(t, y(t)). By Theorem 3.2 one knows that h ∈
PPapS

p(R, Yα2−1, µ0, ν0). Now denote h = φ+ ψ, where φ ∈ PapSp(R, Yα2−1), ψb ∈ PAA0(R, Lp(0, 1; Yα2−1), µ0, ν0). Consider

the integrals

un(ζ) =

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s h(s)ds

=

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s φ(s)ds +

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s ψ(s)ds, n = 1, 2, · · · ,

and set

Xn,1(ζ) =

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s φ(s)ds, Xn,2(ζ) =

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s ψ(s)ds.

First, one proves that Xn,1 ∈ Pap(R, Xα1 ). Fix n ∈ N and t ∈ R, using equation (8) and the fact that the projection P α−1
s are

necessary periodic, one obtains that

‖Xn,1(ζ + ω) + Xn,1(ζ)‖α1
=

∥∥∥∥∫ ζ+ω−n+1

ζ+ω−n
Φα2−1(ζ + ω − s)P α2−1

s φ(s)ds +

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s φ(s)ds

∥∥∥∥
α1

=

∥∥∥∥∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s (φ(s + ω) + φ(s))ds

∥∥∥∥
α1

≤ m(α1, α2) (qγ)
−α2+α1+ε

q (Γ(q(α2 − α1 − ε)))
1
q

(∫ ζ−n+1

ζ−n
‖φ(s + ω) + φ(s)‖pα2−1 ds

) 1
p

= 0,

so Xn,1 ∈ Pap(R, Yα1 ) for n ∈ N. By the Hölder inequality, one has

‖Xn,1(ζ)‖α1
≤
∫ ζ−n+1

ζ−n

∥∥Φα2−1(ζ − s)P α2−1
s φ(s)

∥∥ ds
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≤ m(α1, α2)

∫ ζ−n+1

ζ−n
e−γ(ζ−s)(ζ − s)α2−α1−ε̃−1 ‖φ(s)‖α2−1 ds

≤ m(α1, α2)

(
2

qγ

) α2−α1−ε
q

(Γ(q(α2 − α1 − ε)))
1
q

(∫ ζ−n+1

ζ−n
e−

pγ(ζ−s)
2 ‖φ(s)‖pα2−1 ds

) 1
p

≤ m(α1, α2) ‖φ‖Spα2−1

(
2

qγ

) α2−α1−ε
q

(Γ(q(α2 − α1 − ε)))
1
q

(
1− e−

pγ
2

)− 1
p
<∞.

Let X1(ζ) =
∞∑
n=1

Xn,1(ζ), ζ ∈ R, then

X1(ζ) =

∫ ζ

−∞
Φα2−1(ζ − s)P α2−1

s φ(s)ds, ζ ∈ R.

Dealing with like Lemma 3.1, one gets X1(ζ) =
∞∑
n=1

Xn,1(ζ) ∈ Pap(R, Yα1 ). For the rest, one just needs to show that

Xn,2 ∈ PAA0(R, Yα1 , µ0, ν0). With a similar view above, one obtains that
∞∑
n=1

Xn,2(ζ) is convergent on R uniformly. Let

X2(ζ) =
∫ ζ
−∞Φα2−1(ζ − s)P α2−1

s ψ(s)ds =
∞∑
n=1

Xn,2(ζ), then

Xn,2(ζ) =

∫ ζ−n+1

ζ−n
Φα2−1(ζ − s)P α2−1

s ψ(s)ds, ζ ∈ R.

Obviously, X2 ∈ BC(R, Yα1 ). Next one needs to prove that

lim
S→∞

1

ν0([−S, S])

∫
[−S,S]

‖X2(ζ)‖α1
dµ0(ζ) = 0.

In fact, by the Hölder inequality, one has

‖Xn,2(ζ)‖α1
≤
∫ ζ−n+1

ζ−n

∥∥Φα2−1(ζ − s)P α2−1
s ψ(s)

∥∥
α1
ds

≤ m(α1, α2)

∫ ζ−n+1

ζ−n
e−γ(ζ−s)(ζ − s)α2−α1−ε̃−1 ‖ψ(s)‖α2−1 ds

≤ D0

(∫ ζ−n+1

ζ−n
‖ψ(s)‖pα2−1 ds

) 1
p

,

where D0 = m(α1, α2) (qγ)
−α2+α1+ε

q (Γ(q(α2 − α1 − ε)))
1
q , then

1

ν0([−S, S])

∫
[−S,S]

‖Xn,2(ζ)‖α1
dµ0(ζ) ≤ D0

ν0([−S, S])

∫
[−S,S]

(∫ ζ−n+1

ζ−n
‖ψ(s)‖pα2−1 ds

) 1
p

dµ0(ζ).

Since ψb ∈ PAA0(R, Lp(0, 1; Yα2−1), µ0, ν0), Xn,2 ∈ PAA0(R, Yα1 , µ0, ν0). From Xn,2 ∈ PAA0(R, Yα1 , µ0, ν0) and

1

ν0([−S, S])

∫
[−S,S]

‖X2(ζ)‖α1
dµ0(ζ)

≤ 1

ν0([−S, S])

∫
[−S,S]

∥∥∥∥∥X2(ζ)−
N∑
n=1

Xn,2(ζ)

∥∥∥∥∥
α1

dµ0(ζ) +

N∑
n=1

1

ν0([−S, S])

∫
[−S,S]

‖Xn,2‖α1
dµ0(ζ),

it follows from X2 ∈ PAA0(R, Yα1 , µ0, ν0) that one has
∫ ζ
−∞Φα2−1(ζ − s)P α2−1

s h(s)ds ∈ PPap(R, Yα1 , µ0, ν0). Next one shows∫∞
ζ

Φα2−1(ζ − s)P α2−1
u h(s)ds ∈ PPap(R, Yα1 , µ0, ν0). Let

Yn(ζ) =

∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u φ(s)ds +

∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u ψ(s)ds, n = 1, 2, · · · ,
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and set

Yn,1(ζ) =

∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u φ(s)ds, Yn,2(ζ) =

∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u ψ(s)ds.

Now, one proves that Yn,1 ∈ Pap(R, Yα1 ). Fix n ∈ N and ζ ∈ R, it follows that

‖Yn,1(ζ + ω) + Yn,1(ζ)‖α1

=

∥∥∥∥∫ ζ+ω+n

ζ+ω+n−1

Φα2−1(ζ + ω − s)P α2−1
u φ(s)ds +

∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u φ(s)ds

∥∥∥∥
α1

=

∥∥∥∥∫ ζ+n

ζ+n−1

Φα2−1(ζ − s)P α2−1
u (φ(s + ω) + φ(s))ds

∥∥∥∥
α1

≤ c(α1, α2)

∫ ζ+n

ζ+n−1

eδ(ζ−s) ‖φ(s + ω) + φ(s)‖α2−1 ds

≤ c(α1, α2)

(∫ ζ+n

ζ+n−1

eqδ(ζ−s)ds

) 1
q
(∫ ζ+n

ζ+n−1

‖φ(s + ω) + φ(s)‖pα2−1 ds

) 1
p

≤ c(α1, α2) (qδ)−
1
q

(∫ ζ+n

ζ+n−1

‖φ(s + ω) + φ(s)‖pα2−1 ds

) 1
p

= 0,

so Yn,1 ∈ Pap(R, Yα2−1) for n ∈ N. According to Hölder inequality, one gets

‖Yn,2(t)‖α1
≤
∫ ζ+n

ζ+n−1

∥∥Φα2−1(ζ − s)P α2−1
u φ(s)

∥∥ ds
≤c(α1, α2)

∫ ζ+n

ζ+n−1

eδ(ζ−s) ‖φ(s)‖α2−1 ds

≤c(α1, α2) ‖φ‖Spα2−1

(
2

qδ

) 1
q (

1− e−
pδ
2

)− 1
p
<∞.

For the rest part, similar to the process of X2(ζ) ∈ PAA0(R, Yα2−1, µ0, ν0), one can gain Y2(ζ) ∈ PAA0(R, Yα2−1, µ0, ν0), whence

Υy ∈ PPap(R, Yα2−1, µ0, ν0).

Next, one will prove that equation (1) admits a unique solution.

Theorem 4.2 Let µ0, ν0 ∈M, g : R× Yα1 → Yα2−1, 0 ≤ α1 < α2 and ε > 0. Suppose that (H2), (H4) and (H) hold. Besides,

it also satisfies:

(a1) 0 < α2 − ε < 1 and 0 < α1 + ε < α2,

(a2) for each y ∈ Yα1 , g(·, y) ∈ PPapSp(R, Yα2−1, µ0, ν0) satisfies (H4) with

‖Lg‖BSp ≤
(
a0

(
1− e−

pγ
2

)− 1
p

+ c(α1, α2) (qδ)−
1
q

(
1− e−

pδ
2

)− 1
p

)−1

,

where

a0 = m(α1, α2)

(
2

qr

) α2−α1−ε
q

(Γ(q(α2 − α1 − ε)))
1
q .

Thus equation (1) admits a unique solution y ∈ PPap(R, Yα1 , µ0, ν0).

Proof. Define an operator Υ as

(Υy)(ζ) : =

∫ ζ

−∞
Φα2−1(ζ − s)P α2−1

s g(s, y(s))ds −
∫ +∞

ζ

Φα2−1(ζ − s)P α2−1
u g(s, y(s))ds.
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One can see that Υ(PPap(R, Yα1 , µ0, ν0)) ⊂ PPap(R, Yα1 , µ0, ν0). Next, one shows that Υ composes a contraction operator.

Indeed, for every u1, u2 ∈ PPap(R, Yα1 , µ0, ν0) one has

‖(Υu1)(ζ)− (Υu2)(ζ)‖α1
≤m(α1, α2)

∫ ζ

−∞
e−γ(ζ−s)(ζ − s)α2−α1−ε−1 ‖g(s, u1(s))− g(s, u2(s))‖α2−1 ds

+ c(α1, α2)

∫ +∞

ζ

e−δ(ζ−s) ‖g(s, u1(s))− g(s, u2(s))‖α2−1 ds

≤‖Lg‖BSp

m(α1, α2)

(
2

qγ

) α2−α1−ε
q

(Γ(q(α2 − α1 − ε̃)))
1
q

(
1− e−

pγ
2

)− 1
p

+c(α1, α2)

(
2

qδ

) 1
q (

1− e−
pδ
2

)− 1
p

)
‖u1 − u2‖∞ .

Thus, Υ admits a unique fixed point of PPap(R, Yα1 , µ0, ν0).

Next one takes into account the (µ0, ν0)-pseudo anti-periodic solution for semi-linear boundary differential equations. Take

into consideration the following equation  y
′(t) = Bhy(t) + g(t, y(t)) for t ∈ R,

Ly(t) = η(t, y(t)) for t ∈ R,
(9)

where (Bh, D(Bh)) is a linear densely operator defined on a Banach space Y , L : D(Bh)→ ∂Y , composes a linear boundary

operator, g : R× Yh → Y and η : R× Yh → ∂Y are certain given functions. One shall have the below assumptions given by

G.Greiner:43

(E1) There is a new norm | · | that is better than ‖·‖Y so that the space Xh = (D(Ah), | · |h) is complete, i. e. Yh is continuously

embeded in Y and Bh ∈ C(Yh, Y );

(E2) The operator B := Bh| ker(L) composes a closed sectorial operator satisfying σ(B) ∩ iR = ∅;
(E3) The operator L : Yh → ∂Y is surjective and bounded, i. e. ih(L) = ∂Y ;

(E4) Yh is continuously embeded on Yα2 . i. e., Yh → Yα2 for certain 0 < α2 < 1;

(E5) The function g : R× Yα1 → Y and η : R× Yα1 → ∂Y are locally integrable for the first variable and continuous for the

second one concerning 0 ≤ α1 < α2.

Definition 4.2 A continuous function y : R→ Yα1 is defined as a solution of (1) provided that it fulfills:

(a1)
∫ t
s
y(r)dr ∈ Yh;

(a2) y(t)− y(s) = Bh
∫ t
s
y(r)dr +

∫ t
s
g(r, y(r))dr ;

(a3) L
∫ t
s
y(r)dr =

∫ t
s
η(r, y(r))dr .

As in44 one changes (1) to the equivalent equation given by

y ′(t) = Bα2−1y(t) + g(t, y(t)) + Bα2−1L0η(t, y(t)) for all t ∈ R, (10)

where L0 = (L|ker(Bh))−1.

Now, one presents our main results:

Theorem 4.3 Let µ0, ν0 ∈M satisfy (H1) and (H2). Suppose that (E1)− (E5) hold and the functions g = g1 + g2 ∈
PPapS

p(R× Yα1 , Y, µ0, ν0), η = η1 + η2 ∈ PPapSp(R× Yα1 , ∂Y, µ0, ν0) satisfy

‖g(t, y1)− g(t, y2)‖ ≤ Lg ‖y1 − y2‖ , ‖η(t, y1)− η(t, y2)‖ ≤ Lη ‖y1 − y2‖ ,

g1(t + ω,−y) = −g1(t, y), η1(t + ω,−y) = −η1(t, y),
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where Lg, Lη are small constants and g1 ∈ PapSp(R× Yα1 , Y ), η1 ∈ PapSp(R× Yα1 , ∂Y ), gb2 ∈ PAA0(R× Yα1 , L
p(0, 1; Y ), µ0, ν0),

ηb2 ∈ PAA0(R× Yα1 , L
p(0, 1; ∂Y ), µ0, ν0). Further, g1 and η1 satisfy that the sets K1 := {g1(t) : t ∈ R} and K2 := {η1(t) : t ∈

R} are compact in Yα2−1. Then, (10) admits a unique solution y ∈ PPap(R, Yα1 , µ0, ν0) satisfy the following formula

y(ζ) =

∫ ζ

−∞
Φ(ζ − s)P sg(s, y(s))ds −

∫ +∞

ζ

Φ(ζ − s)P ug(s, y(s))ds (11)

− B
[∫ ζ

−∞
Φ(ζ − s)P sL0η(s, y(s))ds −

∫ +∞

ζ

Φ(ζ − s)P uL0η(s, y(s))dζ

]
, ζ ∈ R.

Proof. Because Bh ↪→ Yα2−1, we obtain that the operator Bα2−1L0 ∈ L(∂Y, Yα2−1). Since g ∈ PPapSp(R× Yα1 , Y, µ0, ν0) and

η ∈ PPapSp(R× Yα1 , ∂Y, µ0, ν0) and through the injection Y ↪→ Yα2−1, the function G(t, y) = g(t, y) + Bα2−1L0η(t, y) belongs

to PPapS
p(R× Yα1 , Yα2−1, µ0, ν0). Moreover, the function g satisfies with constant of Lipschitz LG = Lg + Aα−1L0Lη, then, by

choosing Lg and Lη appropriately, LG can be sufficiently small. Therefore, according to last Theorems 4.1 and 4.2, it follows

that equation (1) admits a unique mild solution y ∈ PPap(R, Yα1 ) fulfilling

y(ζ) =

∫ ζ

−∞
Φα2−1(ζ − s)P α2−1

s G(s, y(s))ds −
∫ +∞

ζ

Φα2−1(ζ − s)P α2−1
u G(s, y(s))ds

for all ζ ∈ R. By replacing g with G and then it follows that the formula (11) and that y ∈ PPap(R, Yα1 ) is the unique mild

solution of (1).

Now, one presents the following example to illustrate the effectiveness of our results.

Example 4.1 One considers the equation:
∂v(t, y)

∂t
= 4v(t, y) + av(t, y(t)) for t ∈ R and y ∈ Ω

∂v(t, y)

∂n
= Φ1(t, n(y)v(t, y)) for t ∈ R and y ∈ ∂Ω,

(12)

where a ∈ R, Ω is a bounded open subset of Rn with smooth boundary ∂Ω and n is a C1 function. The function ψ : R× ∂Y → ∂Y

defined by

ψ(t, ϕ)(y) = Φ1(t, n(y)ϕ(y)) =
l · d(t)

4 + |n(y)ϕ(y)|

where d(t) = d1(t) + d2(t) with d1(t) =
∞∑
n=1

sin((2n+1)t)

n2 and d2(t) = 1
1+t2 . Let R1(t, ϕ)(y) = l ·d1(t)

4+|n(y)ϕ(y)| and R2(t, ϕ)(y) =

l ·d2(t)
4+|n(y)ϕ(y)| . Note that R1(t + π,ϕ)(y) = −R1(t, ϕ)(y) for all t. Hence R1(t, ϕ) ∈ PapSp(R× Y, Y ) with ω = π. On the other

hand, by,30 one knows that R2 ∈ PAA0(R× Yα2−1, Yα1 , µ0, ν0).∫
Ω

|ψ(t, ϕ1)(y)− ψ(t, ϕ2)(y)|2dy

= (l · d(t))2

∫
Ω

∣∣∣∣ 1

4 + |n(y)ϕ1(y)| −
1

4 + |n(y)ϕ2(y)|

∣∣∣∣2 dy
≤ (l · d(t))2|n|2∞ ‖ϕ1 − ϕ2‖2 for all t ∈ R.

Since d ∈ PPapSp(R× Yα2−1, Yα1 ), one deduces that ψ satisfies Lipschitz with Lψ = (ld(·))|n|∞.

5. Conclusion and discussion

One introduces a new class of functions named Stepanov-like (µ0, ν0)-pseudo anti-periodic functions via the measure theory,

which generalizes the classical weighted pseudo anti-periodic function in Stepanov sense. On the other hand, there are kinds

of literatures on various equations with anti-periodic boundary value. However, there is little work on anti-periodic solutions for

evolution equations with inhomogeneous boundary conditions. Note that anti-periodic functions with weight are more complex
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and uncertain due to the diversity of weighted functions. Moreover, the uniqueness of decomposition of the vector-valued

functions is one of the keys for deep analysis of these functions and their applications to various equations. By exponential

dichotomy, one is devoted to the existence of (µ0, ν0)-pseudo anti-periodic solutions to semi-linear parabolic equations with

inhomogeneous boundary conditions in interpolation and extrapolation spaces. These results generalize the results in the related

literature.14

Despite the results for Stepanov-like (µ0, ν0)-pseudo anti-periodic boundary condition in this article, there is still room for

improvement. For example, apply the theoretical results obtained above to other equations such as integro-differential (or

fractional) equations so that one can better understand the dynamic behavior of them. Moreover, can one find a unified

framework to study functions which include both Sp-pseudo S-asymptotic periodic function in paper45 and S-asymptotically

Bloch type periodic functions in literature46? Furthermore, can one find some interesting properties of such functions? This is

worth our studying.

Statement This work does not have any conflicts of interest and not have any funding.
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