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Abstract

In this paper, we consider Cauchy problem of a quasilinear Schrodinger equation which

has general form containing potential term, power type nonlinearity and Hartree type

nonlinearity. The space dimension is arbitrary, that is, it is larger than or equals to one.

First, we establish the local wellposedness of the solution and discuss the condition on

the global existence of the solution.

Next, we establish some conservation laws such as mass conservation law, energy conser-

vation law, pseudoconformal conservation law of the solution. Based on these conservation

laws, we give Morawetz type estimates, spacetime bounds for the global solution.

Last, we take two ideas to establish scattering theory for the global solution in different

functional spaces. The first idea is that we take different admissible pairs in Strichartz

estimates for different terms on the right side of Duhamel’s formula in order to keep each

term independent, another one is that we factitiously let a continuous function be the sum

of two piecewise functions and choose different admissible pairs in Strichartz estimates for

the terms containing these functions.
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1 Introduction

In this paper, we consider the following Cauchy problem:{
iut = ∆u+ 2uh′(|u|2)∆h(|u|2) + V (x)u+ F (|u|2)u+ (W ∗ |u|2)u, x ∈ RN , t > 0

u(x, 0) = u0(x), x ∈ RN .
(1.1)

Here h(s), F (s), V (x) and W (x) are some real functions, W (x) is even, N ≥ 1. (1.1) can

be used to model a lot of physical phenomena, such as the superfluid film equation in plasma

physics if h(s) = s, physics phenomenon in dissipative quantum mechanics if h(s) =
√
s and

the self-channelling of a high-power ultra short laser in matter if h(s) =
√

1 + s. It also appears

in condensed matter theory and nonlinear optical theory, see [3, 5, 6, 24, 31, 33, 34, 36, 41,

42, 43, 44]. There are many interesting topics on (1.1), such as local wellposedness, global

wellposeness, decay rate and scattering phenomenon for the global solution.

First, we need to deal with the local wellposedness of the solution to (1.1). In convenience,

we always assume that h(s) ≥ 0 for s ≥ 0, V (x) ≤ 0 and W (x) ≤ 0 for x ∈ RN in this paper. We

say that (1.1) is in defocusing case if F (s) ≤ 0 for s ≥ 0, while we say that (1.1) is in combined

defocusing and focusing case if F (s) ≥ 0 for s ≥ 0 or changes sign. Other assumptions on V (x)

and W (x) are as follows:

(WV1) If h(s) ≡ 0 for s ≥ 0, we require that V (x) ∈ Lp1(RN ) + L∞(RN ) for some

p1 > max(1, N2 ) and W (x) ∈ Lp2(RN ) + L∞(RN ) for some p2 > max(1, N4 )

or

(WV2) If h(s) ≥ 0, 6≡ 0 for s ≥ 0, we require that V (x) ∈ B∞(RN ), and W (x) ∈
L1(RN )∩{Lp2(RN ) +L∞(RN )} for some p2 > max(1, N4 ). Here B∞(RN ) denotes the space of

all functions in C∞(RN ) such that all partial derivatives are bounded in RN .

We will prove that: Besides the assumptions on V (x) and W (x), under certain conditions

on F (s), (1.1) posses a unique solution u ∈ X, where

X = {w ∈ H1(RN ),

∫
RN
|∇h(|w|2)|2dx < +∞}. (1.2)

The asymptotic behavior and scattering phenomenon are very important and interesting

topics on the study of nonlinear Schödinger equation. Pseudoconformal conservation law is

essential for the study of the asymptotic behavior for the solution, Morawetz estimate is an
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important tool to construct scattering operator on the energy space, see [4, 12, 14, 20, 21, 22,

23, 37, 38, 39].

However, two more interesting questions are as follows: 1. What is the relation between

pseudoconformal conservation law and Morawetz estimate? 2. How to establish the link between

pseudoconformal conservation law and spacetime estimate?

The first motivation of this paper is to obtain the answers of the two questions above.

To do this, we will establish Morawetz type estimates and weighted spacetime bounds based

on pseudoconformal conservation law, which reveals the relation among pseudoconformal con-

servation law, Morawetz type estimates and spacetime bounds. These results are also very

interesting discover in the study of quasilinear Schödinger equation in the following sense: To

our best knowledge, there are few results on Morawetz type estimates and weighted spacetime

bounds for the solution of (1.1) which contains potential and more general nonlinearities.

The second motivation of this paper is to show some applications of spacetime estimates

for the global solution. To do this, one thing is to consider the asymptotic behavior for the

solution of (1.1) as t→ +∞, another one is to establish scattering theory for (1.1) in the case

of (WV1), i.e.,{
iut = ∆u+ V (x)u+ F (|u|2)u+ (W ∗ |u|2)u, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .
(1.3)

Many authors obtained scattering results on (1.3) when at least one of V (x) ≡ 0, F (|u|2)u ≡ 0

and W (x) ≡ 0 holds. We can refer to [2, 7, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 25, 29, 30,

35, 38, 45, 46, 47, 48, 49, 50, 51] and the references therein. Especially, in Chapter 7 of the

book [12], Cazenave introduced systematically the scattering results on the Cauchy problem of

iut = ∆u+|u|αu. There are also many scattering results on the Cauchy problem of Schröodinger

equation containing either power type potential or Hartree nonlinearity, see [1, 9, 11, 26, 28, 32].

However, to our best knowledge, there are few scattering results on the following special case

of (1.3), i.e., containing both power type potential and Hartree nonlinearity,{
iut = ∆u− a

|x|mu− b|u|
2βu− ( c

|x|n ∗ |u|
2)u, x ∈ RN \ {0}, t > 0

u(x, 0) = u0(x), x ∈ RN ,
(1.4)

a 6= 0, b 6= 0 and c 6= 0, let alone in the general case of containing both V (x) 6≡ 0, F (|u|2)u 6≡ 0

and W (x) 6≡ 0.

Since we will establish several theorems, we will state and prove them in the corresponding

sections and don’t state the precise expressions of them here. However, we would like to say

something about them roughly below.

1. About the conditions on global existence of solution to (1.1) in the case of (WV2), if

F (s) = F1(s) − F2(s) in the combined defocusing and focusing case, F1(s) ≥ 0 and F2(s) ≥ 0

for s ≥ 0, G1(s) =
∫ s

0
F1(η)dη, then a criterion is to find

0 < γ < 1, γ′ > 1 satisfying
2∗(1− γ)

2(γ′ − γ)
≤ 1

such that

[|G1(s)|]γ ≤ c1s, [|G1(s)|]γ
′
≤ c′1[s

1
2 + h(s)]2

∗
when h(s) 6= 0.

2. We will establish pseoduconformal conservation law, which is essential for the study of

the asymptotic behavior for the global solution of (1.1). Based on it, we give Morawetz type
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estimates, which reveals the relation between pseoduconformal conservation law and Morawetz

type estimate.

3. About the decay rate of the solution to (1.1), we obtain∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2) +
1

2
(|W | ∗ |u|2)|u|2]dx ≤ C

tι

for some 0 < ι ≤ 2 and asymptotic behavior

|
∫
RN
|∇u(x, t)|2dx− 2E(u0)| ≤ C

tι
, lim

t→+∞

∫
RN
|∇u|2dx = 2E(u0).

under certain conditions.

4. Under certain assumptions, we establish Morawetz type estimates such as∫ +∞

0

∫
RN

[
|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2 (|W | ∗ |u|2)|u|2
]θ

a(x, t)
dxdt

≤M1(u0, θ),

and weighted spacetime bounds such as

‖G1(|u|2)‖Lqw(R+)Lrw(RN ) =

(∫ +∞

0

(∫
RN

w(x, t)[|G1(|u|2)|]rdx
) q
r

dt

) 1
q

≤ C(u0, r, q).

5. Under certain assumptions, we establish classic scattering theory for (1.3) with general

V (x), F (|u|2) and W (x),

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

Especially, if V (x) ≡ 0 and W (x) ≡ 0, we can obtain the scattering result on (1.3) with general

F (|u|2),

‖eit∆u(t)− u+‖Σ → 0 as t→ +∞.

To establish the scattering results, in the course of proof, we factitiously let a continuous

function be the sum of two piecewise functions and chose different admissible pairs in Strichartz

estimates for the two terms. For example, let 1
|x|m = V1(x) + V2(x), where

V1(x) =

{
1
|x|m , 0 < |x| ≤ 1,

0, |x| > 1,
and V2(x) =

{
0, 0 < |x| ≤ 1,

1
|x|m , |x| > 1.

Then we have

‖
∫ τ

t

eis∆[
1

|x|m
u(s)]ds‖L2 = ‖

∫ τ

t

eis∆[V1(x)u(s) + V2(x)u(s)]ds‖L2

≤ ‖
∫ τ

t

eis∆V1(x)u(s)ds‖L2 + ‖
∫ τ

t

eis∆V2(x)u(s)ds‖L2

≤ C
2∑
j=1

∫ τ

t

(∫
RN
|Vj(x)u|r

′
jdx

) q′j
r′
j
dt


1
q′
j

. (1.5)
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Here (qj , rj), j = 1, 2, are admissible pairs, q′j and r′j are the conjugated exponents of qj and

rj respectively.

The organization of this paper is as follows. In Section 2, we will give the local well-

posedness result, prove mass and energy conservation laws, obtain some sufficient conditions on

the global existence of the solution to (1.1) and establish pseudoconformal conservation law. In

Section 3, we will give Morawetz type estimates based on pseudoconformal conservation law.

In Section 4, we consider spacetime bound estimates for the solution. In Section 5, we will

establish scattering theory for (1.3) as the applications of these estimates.

2 Local well-posedness, global existence and pseudocon-

formal conservation law for the solution of (1.1)

In convenience, we will use C, C ′, and so on, to denote some constants in the sequels, the

values of it may vary line to line.

First, we state the local well-posedness result below.

Theorem A. 1. Assume that h(s) = 0, V (x) and W (x) satisfy (WV1), u0 ∈ H1(RN ),

F (s) = F1(s)+ ...+Fm(s) when N ≥ 1, or F (s) = F1(s)+ ...+Fm(s)−As 2∗
2 −1 with A > 0 when

N ≥ 3 where each Fj(s) is continuous in s and for every Kj > 0, there exists L(Kj) < +∞
such that

|Fj(|u|2)u− Fj(|v|2)v| ≤ L(Kj)|u− v|

for all |u|, |v| ≤ Kj, j = 1, 2...,m. Furthermore,
L(Kj) ∈ C([0,+∞)) if N = 1

L(Kj) ≤ C(1 +K
αj
j ) with 0 ≤ αj < 4

N−2 if N ≥ 2.

(2.1)

Then there exist a unique, strong H1-solution u of (1.1) defined in a maximal interval

(0, Tmax).

2. Suppose that V (x) and W (x) satisfy (WV2). For any K ∈ Z+, ∂KW (x) ∈ L1(RN ),

F (s), h(s) ∈ B∞([0,M ],R) for any M > 0 and u0 ∈ H∞(RN ), N ≥ 1.

Then there exist a > 0 and a unique solution u ∈ C1([0, a], H∞(RN ) of (1.1).

Proof: 1. By the classic results on semilinear Schrödinger equation(see Theorem 3.3.1 in

[12]), the conclusion in Case (WV1) is true.

2. Case (WV2). By the results of Theorem 1.1 in [13], Theorem A in [27]) and Theorem 6.4

in [40]), we only need to verify that for any J ∈ Z+ and M > 0, (W ∗ |u|2) ∈ CJb (RN ×BM (0)),

where BM (0) = {z ∈ C : |z| ≤M}, while CJb (RN ×BM (0)) is the space of all functions a(x, u)

such that all of the k-order(k = 0, 1, ..., J) partial derivatives are bounded on RN ×BM (0). In

fact, since ∂KW (x) ∈ L1(RN ), denoting (W ∗ |u|2) = a(x, u), it is easy to verify that

(W ∗ |u|2) =

∫
RN

W (x− y)|u(y)|2dy ∈ CJb (RN ×BM (0)),

(∂KW ∗ |u|2) =

∫
RN

∂KW (x− y)|u(y)|2dy ∈ CJb (RN ×BM (0))

for any J ∈ Z+ and M > 0. Therefore there exist a > 0 and a unique solution u ∈
C1([0, a], H∞) of (1.1). �
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We prove a lemma as follows.

Lemma 2.1. Assume that u is the solution of (1.1). Then in the time interval [0, t] when

it exists, u satisfies

(i) Mass conservation:

m(u) =

(∫
RN
|u(x, t)|2dx

) 1
2

=

(∫
RN
|u0(x)|2dx

) 1
2

= m(u0);

(ii) Energy conservation:

E(u) =
1

2

∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx− 1

2

∫
RN

V (x)|u|2dx

− 1

2

∫
RN

G(|u|2)dx− 1

4

∫
RN

(W ∗ |u|2)|u|2dx = E(u0); (2.2)

(iii)
d

dt

∫
RN
|x|2|u|2dx = −4=

∫
RN

ū(x · ∇u)dx;

(iv)

d

dt
=
∫
RN

ū(x · ∇u)dx

= −2

∫
RN
|∇u|2dx− (N + 2)

∫
RN
|∇h(|u|2)|2dx

− 8N

∫
RN

h′′(|u|2)h′(|u|2)|u|4|∇u|2dx−
∫
RN

(x · ∇V )|u|2dx

+N

∫
RN

[|u|2F (|u|2)−G(|u|2)]dx−
∫
RN

[
(x · ∇W )

2
∗ |u|2]|u|2dx. (2.3)

Proof: (i) Multiplying (1.1) by 2ū, taking the imaginary part of the result, we get

∂

∂t
|u|2 = =(2ū∆u) = ∇ · (2=ū∇u). (2.4)

Integrating (2.4) over RN × [0, t], we have∫
RN
|u|2dx =

∫
RN
|u0|2dx,

which implies mass conservation law.

(ii) Multiplying (1.1) by 2ūt, taking the real part of the result, then integrating it over

RN × [0, t], we obtain ∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx−
∫
RN

V (x)|u|2dx

−
∫
RN

G(|u|2)dx− 1

2

∫
RN

(W ∗ |u|2)|u|2dx

=

∫
RN

[|∇u0|2 + |∇h(|u0|2)|2]dx−
∫
RN

V (x)|u0|2dx

−
∫
RN

G(|u0|2)dx− 1

2

∫
RN

(W ∗ |u0|2)|u|2dx,
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which implies energy conservation law.

(iii) Multiplying (2.4) by |x|2 and integrating it over RN , we get

d

dt

∫
RN
|x|2|u|2dx =

∫
RN
|x|2∇ · (2=(ū∇u))dx = −4=

∫
RN

ū(x · ∇u)dx.

(iv) Let a(x, t) = <u(x, t) and b(x, t) = =u(x, t). Then

d

dt
=
∫
RN

ū(x · ∇u)dx =

∫
RN

N∑
k=1

[xk(bt)xka− xk(at)xkb]dx+

∫
RN

N∑
k=1

(xkbxkat − xkaxkbt)dx

= −2

∫
RN
|∇u|2dx− (N + 2)

∫
RN
|∇h(|u|2)|2dx

− 8N

∫
RN

h′(|u|2)h′′(|u|2)|u|4|∇u|2dx−
∫
RN

(x · ∇V )|u|2dx

+N

∫
RN

[|u|2F (|u|2)−G(|u|2)]dx−
∫
RN

[
(x · ∇W )

2
∗ |u|2]|u|2dx.

Lemma 2.1 is proved. �
Next, we establish some sufficient conditions on the global existence of the solution.

Theorem 1. Let u(x, t) be the solution of (1.1) with u0 ∈ X. Assume that V (x) ≤ 0,

W (x) ≤ 0 for x ∈ RN , and satisfy (WV1) or (WV2), F (s) and h(s) satisfy the assumptions of

Theorem A. Then u(x, t) is a global solution in one of the following cases:

Case 1. Defocusing case, i.e., F (s) = F2(s) ≤ 0 for s ≥ 0, N ≥ 1, and the initial data u0

satisfies 0 < M(u0) < +∞ and 0 ≤ E(u0) < +∞;

Case 2. h(s) 6= 0, F (s) = F1(s) − F2(s) in the combined defocusing and focusing case,

F1(s) ≥ 0 and F2(s) ≥ 0 for s ≥ 0, N ≥ 3, and there exist c1, c
′
1, c2, c

′
2 > 0, 0 < γ1, γ̃1 < 1 and

γ2, γ̃2 > 1 such that

2∗(1− γ1)

2(γ2 − γ1)
≤ 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
≤ 1, (2.5)

[|G1(s)|]γ1 ≤ c1s, [|G1(s)|]γ2 ≤ c′1[s
1
2 + h(s)]2

∗
for 0 ≤ s ≤ 1, (2.6)

[|G1(s)|]γ̃1 ≤ c2s, [|G1(s)|]γ̃2 ≤ c′2[s
1
2 + h(s)]2

∗
for s > 1, (2.7)

besides 0 ≤ E(u0) < +∞, the initial data u0 satisfies

2∗(1− γ1)

2(γ2 − γ1)
= 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
< 1, (c1‖u0‖2L2)

2
N (22∗−1c′1Cs)

N−2
N <

1

4
,

or
2∗(1− γ1)

2(γ2 − γ1)
< 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
= 1, (c2‖u0‖2L2)

2
N (22∗−1c′2Cs)

N−2
N <

1

4
,

or
2∗(1− γ1)

2(γ2 − γ1)
= 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
= 1,

2∑
j=1

(cj‖u0‖2L2)
2
N (22∗−1c′jCs)

N−2
N <

1

4
.

Here Gi(s) =
∫ s

0
Fi(η)dη(i = 1, 2) and G(s) = G1(s) − G2(s), Cs denotes the best constant in

the Sobolev’s inequality∫
RN

w2∗dx ≤ Cs
(∫

RN
|∇w|2dx

) 2∗
2

for any w ∈ H1(RN). (2.8)
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Remark 2.1. Before we give the proof of this theorem, we would like to point out that

there exist functions satisfy the assumptions of this theorem. For example, if h(s) = sp,

f1(s) = sp and p > 1
2∗−1 , then we can take γ1 = 1

p+1 , γ2 = 2∗p
p+1 . If h(s) = sp, f1(s) = sp + sq

and p > 1
2∗−1 , p < q < 2∗p−1, then we can take γ1, γ2 as above, while γ̃1 = 1

q+1 and γ̃2 = 2∗p
q+1 .

The proof of Theorem 1:

Case 1. By energy conservation law and the assumptions on V (x), W (x), we have

E(u) =
1

2

∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx+
1

2

∫
RN
|V (x)||u|2dx

+
1

2

∫
RN
|G(|u|2)|dx+

1

4

∫
RN

(|W | ∗ |u|2)|u|2dx = E(u0) < +∞. (2.9)

Case 2. Note the fact∫
RN
|G1(|u|2)|dx ≤

2∑
j=1

(cj‖u0‖2L2)
1
τ̃′
j (22∗−1c′jCs)

1
τ̃j

(∫
RN

[|∇u|2 + |∇h(|u|2)|2dx
) 2∗

2τ̃j

. (2.10)

Here

1

τ̃1
=

1− γ1

γ2 − γ1
,

1

τ̃ ′1
=

γ2 − 1

γ2 − γ1
,

1

τ̃2
=

1− γ̃1

γ̃2 − γ̃1
,

1

τ̃ ′2
=

γ̃2 − 1

γ̃2 − γ̃1
. (2.11)

If
2∗(1− γ1)

2(γ2 − γ1)
= 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
< 1, (c1‖u0‖2L2)

2
N (22∗−1c′1Cs)

N−2
N <

1

4
,

applying Young inequality to (2.10), we obtain∫
RN
|G1(|u|2)|dx ≤ C +

1

4

∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx. (2.12)

Similarly, if

2∗(1− γ1)

2(γ2 − γ1)
< 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
= 1, (c2‖u0‖2L2)

2
N (22∗−1c′2Cs)

N−2
N <

1

4

applying Young inequality to (2.10), we get∫
RN
|G(|u|2)|dx ≤ C +

1

4

∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx. (2.13)

If
2∗(1− γ1)

2(γ2 − γ1)
= 1,

2∗(1− γ̃1)

2(γ̃2 − γ̃1)
= 1,

2∑
j=1

(cj‖u0‖2L2)
2
N (22∗−1c′jCs)

N−2
N <

1

4
,

(2.10) becomes∫
RN
|G1(|u|2)|dx ≤

2∑
j=1

(cj‖u0‖2L2)
1
τ̃′
j (c′jCs)

1
τ̃j

∫
RN

[‖∇u|2 + |∇h(|u|2)|2]dx

<
1

4

∫
RN

[|∇u|2 + |∇h(|u|2)|2dx. (2.14)
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Noticing (2.12)–(2.14), in any case, we have

1

2

∫
RN

[|∇u|2 + |∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|]dx+
1

4

∫
RN

(|W | ∗ |u|2)|u|2dx

= E(u0) +
1

2

∫
RN
|G1(|u|2)|dx ≤ C +

1

4

∫
RN

[|∇u|2 + |∇h(|u|2)|2]dx, (2.15)

which implies that ∫
RN
|∇u|2dx+

∫
RN
|∇h(|u|2)|2dx ≤ C.

Theorem 1 is proved. �
Now we state pseudo-conformal conservation law as follows.

Theorem 2. (Pseudoconformal conservation law) Let u(x, t) be the global solution

of (1.1), V (x) ≤ 0, W (x) ≤ 0 for x ∈ RN , and satisfy (WV1) or (WV2), F (s) and h(s) satisfy

the assumptions of Theorem A, u0 ∈ X and xu0 ∈ L2(RN ). Then

P (t) =

∫
RN
|(x− 2it∇)u|2dx+ 4t2

∫
RN
|∇h(|u|2)|2dx− 4t2

∫
RN

G(|u|2)dx

− 4t2
∫
RN

V (x)|u|2dx− 2t2
∫
RN

(W ∗ |u|2)|u|2dx

=

∫
RN
|xu0|2dx+ 4

∫ t

0

τθ(τ)dτ. (2.16)

Here

θ(t) =

∫
RN
−4N [2h′′(|u|2)h′(|u|2)|u|2 + (h′(|u|2))2]|u|2|∇u|2dx

−
∫
RN

[(N + 2)G(|u|2)−NF (|u|2)|u|2]dx

−
∫
RN

[2V + (x · ∇V )]|u|2dx−
∫
RN

(
[W +

(x · ∇W )

2
] ∗ |u|2

)
|u|2dx. (2.17)

Proof of Theorem 2: Assume that u is the solution of (1.1), u0 ∈ X and xu0 ∈ L2(RN ).

Using energy conservation law, we get

P (t) =

∫
RN
|xu|2dx+ 4t=

∫
RN

ū(x · ∇u)dx+ 8t2E(u0). (2.18)

Recalling that
d

dt

∫
RN
|x|2|u|2dx = −4=

∫
RN

ū(x · ∇u)dx,

9



using (2.18), we get

P ′(t) =
d

dt

∫
RN
|xu|2dx+ 4=

∫
RN

ū(x · ∇u)dx+ 4t
d

dt
=
∫
RN

ū(x · ∇u)dx+ 16tE(u0)

= 4t
d

dt
=
∫
RN

ū(x · ∇u)dx+ 16tE(u0)

= 4t

∫
RN
−4N [2h′′(|u|2)h′(|u|2)|u|2 + (h′(|u|2))2]|u|2|∇u|2dx

+ 4t

∫
RN

[N |u|2F (|u|2)− (N + 2)G(|u|2)]dx− 4t

∫
RN

[2V + (x · ∇V )]|u|2dx

− 4t

∫
RN

(
[W +

(x · ∇W )

2
] ∗ |u|2

)
|u|2dx. (2.19)

Integrating (2.19) from 0 to t, we obtain (2.16). �

3 Morawetz type estimates based on pseudoconformal con-

servation law

In this section, we will establish Morawetz type estimates based on pseudoconformal con-

servation law.

Theorem 3. Let u(x, t) be the global solution of (1.1) in energy space X, u0 ∈ X and

xu0 ∈ L2(RN ). Assume that V (x) ≤ 0, W (x) ≤ 0 for x ∈ RN , and satisfy (WV1) or (WV2),

F (s) and h(s) satisfy the assumptions of Theorem A, the space dimension N ≥ 1 in defocusing

case, N ≥ 3 in combined defocusing and focusing case, 0 < M(u0) < +∞ and 0 ≤ E(u0) < +∞.

In addition, suppose that h(s) ≥ 0, 6≡ 0, F (s) = F1(s) − F2(s) in the combined defocusing and

focusing case, F1(s) ≥ 0 and F2(s) ≥ 0 for s ≥ 0, and there exist c3, c
′
3, c4, c

′
4 > 0, 0 < γ3, γ̃3 < 1

and γ4, γ̃4 > 1 such that

2∗(1− γ3)

2(γ4 − γ3)
= 1,

2∗(1− γ̃3)

2(γ̃4 − γ̃3)
= 1, (3.1)

Cr(u0) :=

4∑
j=3

(cj‖u0‖2L2)
2
N (22∗−1c′jCs)

N−2
N < 1 (3.2)

[|G1(s)|]γ3 ≤ c3s, [|G1(s)|]γ4 ≤ c′3[h(s)]2
∗

for 0 ≤ s ≤ 1, (3.3)

[|G(s)|]γ̃3 ≤ c4s, [|G2(s)|]γ̃4 ≤ c′4[h(s)]2
∗

for s > 1. (3.4)

1. Assume that [2h′′(s)h′(s)s+(h′(s))2] ≥ 0, [(N+2)G1(s)−NF1(s)s] ≥ 0 and [NF2(s)s−
(N + 2)G2(s)] ≥ 0 for s ≥ 0, [2V + (x · ∇V )] ≥ 0 and [2W + (x · ∇W )] ≥ 0 for x ∈ RN . Then

Estimate (A):

∫ ∞
0

∫
RN

[
|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2 (|W | ∗ |u|2)|u|2
]θ

a1(x, t)
dxdt

≤M1(u0, θ), (3.5)

where the function a1(x, t) satisfies a1(x, t) ≥ a(x) ≥ 0 for x ∈ RN and t ≥ 0, and the function

a(x) satisfies 1
a(x) ∈ L

1
1−θ (RN ), 1

2 < θ < 1, M1(u0, θ) is a positive constant depending on u0

and θ.
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Estimate (B):∫ ∞
0

∫
RN

t2
[
|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2 (|W | ∗ |u|2)|u|2
]

a2(x, t)
dxdt

≤M2(u0, k), (3.6)

where the function a2(x, t) satisfies a2(x, t) ≥ b(x) + tk for x ∈ RN and t ≥ 0, 1 < k < 3 if the

function b(x) satisfies b(x) ≥ 0, or 1 < k if the function b(x) satisfies b(x) ≥ b > 0; M2(u0, k)

is a positive constant depending on u0 and k.

Especially, let b(x) ≡ 0, k = 2, then

Estimate (C):∫ ∞
0

∫
RN

[
|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2
(|W | ∗ |u|2)|u|2

]
dxdt

≤M3(u0). (3.7)

Here M3(u0) is a positive constant depending on u0.

2. Assume that

(i) −k1(h′(s))2 ≤ [2h′′(s)h′(s)s+ (h′(s))2] ≤ 0 for some k1 > 0;

(ii) −k2|G1(s)| ≤ (N + 2)G1(s)−NF1(s)s ≤ 0 for some k2 > 0;

(iii) −k3|G2(s)| ≤ NF2(s)s− (N + 2)G2(s) ≤ 0 for some k3 > 0;

(iv) −k4|V | ≤ 2V + (x · ∇V ) ≤ 0 for some k4 > 0;

(v) −k5|W | ≤ 2W + (x · ∇W ) ≤ 0 for some k5 > 0.

Let

l = max(Nk1, k2, k3, k4, k5). (3.8)

Then

Estimate (D):∫ ∞
0

∫
RN

t2
[
|∇h(|u|2)|2 + |G1(|u|2)|+ |G2(|u|2)|+ |V (x)||u|2 + 1

2 (|W | ∗ |u|2)|u|2
]

a3(x, t)
dxdt

≤M4(u0, k, l) (3.9)

Here the function a3(x, t) satisfies a3(x, t) ≥ (c(x) + t)k for x ∈ RN and t ≥ 0, l + 1 < k < 3

if l < 2 in defocusing case, k > 1 + l[1+Cr(u0)]
1−Cr(u0) in combined defocusing and focusing case, if

the function c(x) ≥ 0. While l + 1 < k in defocusing case, k > 1 + l[1+Cr(u0)]
1−Cr(u0) in combinied

defocusing and focusing case, if the function c(x) ≥ c > 0. M4(u0, k, l) is a positive constant

depending on u0, k and l.

Especially, if c(x) ≡ 0, l < 1 and k = 2, then

Estimate (E):∫ ∞
0

∫
RN

[
|∇h(|u|2)|2 + |G1(|u|2)|+ |G2(|u|2)|+ |V (x)||u|2 +

1

2
(|W | ∗ |u|2)|u|2

]
dxdt

≤M5(u0, l). (3.10)

Here M5(u0, l) is a positive constant depending on u0 and l.

We divide this section into two subsection according to Case 1 and Case 2.
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3.1 The proof of Theorem 3 in Case 1

In this subsection, we prove Theorem 3 in Case 1.

The proof of Theorem 3 in Case 1: First, we give estimates for∫
RN

Φ(V, u,W )dx :=

∫
RN

[|∇h(|u|2)|2 + |G1(|u|2)|+ |G2(|u|2)|]dx

+

∫
RN

[|V (x)||u|2 +
1

2
(|W | ∗ |u|2)|u|2]dx (3.11)

in two subcases.

Subcase (1). Defocusing case, N ≥ 1. By energy conservation law, we get∫
RN

Φ(V, u,W )dx ≤ 2E(u0) for t ≥ 0(especially for 0 ≤ t ≤ 1). (3.12)

Using (2.16) and (2.17), we have

4t2
∫
RN

Φ(V, u,W )dx ≤
∫
RN
|xu0|2dx,

∫
RN

Φ(V, u,W )dx ≤ C(u0)

4t2
for t ≥ 1. (3.13)

Here

C(u0) =

∫
RN
|xu0|2dx. (3.14)

Subcase (2). Combined defocusing and focusing case, N ≥ 3.

By energy conservation law, we get

[1− Cr(u0)]

∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|+ 1

2
(|W | ∗ |u|2)|u|2]dx

≤
∫
RN

[|∇h(|u|2)|2 − |G1(|u|2)|+ |G2(|u|2) + |V (x)||u|2 +
1

2
(|W | ∗ |u|2)|u|2]dx

= 2E(u0),

and ∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|+ 1

2
(|W | ∗ |u|2)|u|2]dx ≤ 2E(u0)

[1− Cr(u0)]
, (3.15)

consequently,∫
RN

Φ(V, u,W )dx ≤ 2E(u0)[1 + Cr(u0)]

[1− Cr(u0)]
for t ≥ 0 (especially for 0 ≤ t ≤ 1). (3.16)

Using (2.16) and (2.17), we obtain

[1− Cr(u0)]

(
4t2
∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|]dx+ 2t2
∫
RN

(|W | ∗ |u|2)|u|2dx
)

≤ [1− Cr(u0)]4t2
∫
RN
|∇h(|u|2)|2dx+ 4t2

∫
RN

[|V (x)||u|2 + |G2(|u|2)|]dx

+ 2t2
∫
RN

(|W | ∗ |u|2)|u|2dx ≤
∫
RN
|xu0|2dx,
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which implies that∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|+ 1

2
(|W | ∗ |u|2)|u|2]dx

≤ C(u0)

4[1− Cr(u0)]t2
, (3.17)

and consequently ∫
RN

Φ(V, u,W )dx ≤ C(u0)[1 + Cr(u0)]

4[1− Cr(u)]t2
for t ≥ 1. (3.18)

Now Morawetz estimates can be proved below.

Estimate (A):

For any 1
2 < θ < 1, a1(x, t) ≥ a(x) and 1

a(x) ∈ L
1

1−θ (RN ), using (3.12)–(3.18), we have∫ ∞
0

∫
RN

[Φ(V, u,W )]
θ

a1(x, t)
dxdt ≤

∫ 1

0

∫
RN

[Φ(V, u,W )]
θ

a(x)
dxdt

≤
[∫ 1

0

Cdt+

∫ ∞
1

C ′

t2θ
dt

](∫
RN

1

[a(x)]
1

1−θ
dx

)1−θ

≤M1(u0, θ). (3.19)

Estimate (B):

If b(x) ≥ 0, 1 < k < 3, we get∫ ∞
0

∫
RN

t2Φ(V, u,W )

a2(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

b(x) + tk
dxdt

≤
∫ 1

0

t2−k
∫
RN

Φ(V, u,W )dxdt+

∫ ∞
1

1

tk

∫
RN

t2Φ(V, u,W )dxdt ≤M2(u0, k). (3.20)

If b(x) ≥ b > 0, 1 < k, we obtain∫ ∞
0

∫
RN

t2Φ(V, u,W )

a2(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

b(x) + tk
dxdt

≤
∫ 1

0

Ct2

b
dt+

∫ ∞
1

C ′

tk
dt ≤M ′2(u0, k). (3.21)

Especially, if b(x) ≡ 0 and k = 2, we have

Estimate (C):∫ ∞
0

∫
RN

[
|∇h(|u|2)|2 + |G(|u|2)|+ |V (x)||u|2 +

1

2
(|W | ∗ |u|2)|u|2

]
dxdt

≤M3(u0). (3.22)

3.2 The proof of Theorem 3 in Case 2

In this subsection, we prove Theorem 3 in Case 2.

The proof of Theorem 3 in Case 2:

Estimate (D): We prove it in two subcases.

Subcase (i). Defocusing case, N ≥ 1. By energy conservation law, we also have∫
RN

Φ(V, u,W )dx ≤ 2E(u0) for t ≥ 0(especially for 0 ≤ t ≤ 1).
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Letting

A(t) =4

∫ t

0

τ

∫
RN

Φ(V, u,W )dxdτ, (3.23)

using (2.16) and (2.17), we have

tA′(t) ≤
∫
RN
|xu0|2dx+ lA(t) = C(u0) + lA(t),

i.e.,

A′(t) ≤ l

t
A(t) +

C(u0)

t
. (3.24)

Applying Gronwall inequality to (3.24), we get

A(t) ≤ e
∫ t
1
l
η dη[A(1) +

∫ t

1

C(u0)

η
e−

∫ η
1
l
ξ dξdη] ≤ [4E(u0) +

C(u0)

l
]tl (3.25)

for t ≥ 1. (3.24) and (3.25) mean that∫
RN

Φ(V, u,W )dx ≤ C(u0)

4t2
+

[4lE(u0) + C(u0)]

4t2−l
for t ≥ 1. (3.26)

In defocusing case, for c(x) ≥ 0, l + 1 < k < 3 if l < 2, we obtain∫ ∞
0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤ C. (3.27)

Similarly, for c(x) ≥ c > 0, l + 1 < k, we have∫ ∞
0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤ C. (3.28)

Subcase (ii). Combined defocusing and focusing case, N ≥ 3. Recall that (3.16)∫
RN

Φ(V, u,W )dx ≤ 2E(u0)[1 + Cr(u0)]

[1− Cr(u0)]

for t ≥ 0(especially for 0 < t ≤ 1).

Using (2.16) and (2.17), we get

[1− Cr(u0)]4t2
∫
RN
|∇h(|u|2)|2dx+ 4t2

∫
RN

[|V (x)||u|2 + |G2(|u|2)|]dx

+ 2t2
∫
RN

(|W | ∗ |u|2)|u|2dx

≤ C(u0) + 4l[1 + Cr(u0)]

∫ t

0

τ

∫
RN

[|∇h(|u|2)|2dx+ |V (x)||u|2 + |G2(|u|2)|

+
1

2
(|W | ∗ |u|2)|u|2]dxdτ. (3.29)

Letting

B(t) = 4

∫ t

0

τ

∫
RN

[|∇h(|u|2)|2dx+ |V (x)||u|2 + |G2(|u|2)|+ 1

2
(|W | ∗ |u|2)|u|2]dxdτ,
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we have from (3.29)

B′(t) ≤ C(u0)

[1− Cr(u0)]t
+
l[1 + Cr(u0)]

[1− Cr(u0)]t
B(t). (3.30)

Applying Gronwall inequality to (3.30), and using (3.15), we obtain

B(t) ≤ [
4lE(u0)[1 + Cr(u0)] + C(u0)[1− Cr(u0)]

l[1− C2
r (u0)]

]t
l[1+Cr(u0)]

1−Cr(u0) ,

and ∫
RN
|∇h(|u|2)|2 + |V (x)||u|2 +

1

2
(|W | ∗ |u|2)|u|2]dx

≤ C(u0)

4[1− Cr(u0)]t2
+

4lE(u0)[1 + Cr(u0)] + C(u0)[1− Cr(u0)]

4[1− Cr(u0)]2t
2− l[1+Cr(u0)]

1−Cr(u0)

(3.31)

for t ≥ 1. Consequently, ∫
RN

Φ(V, u,W )dx ≤ C

(
1

t2
+

1

t
2− l[1+Cr(u0)]

1−Cr(u0)

)
(3.32)

for t ≥ 1.

Similar to (3.27), in combined defocusing and focusing case,∫ ∞
0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤ C (3.33)

for c(x) ≥ 0, k > 1 + l[1+Cr(u0)]
1−Cr(u0) . Combining (3.27) and (3.33), we have∫ ∞

0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤ C. (3.34)

Similarly to (3.28), (3.33) in combined defocusing and focusing case,∫ ∞
0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤ C (3.35)

for c(x) ≥ c > 0, k > 1 + l[1+Cr(u0)]
1−Cr(u0) . Combining (3.28) and (3.35), we get∫ ∞

0

∫
RN

t2Φ(V, u,W )

a3(x, t)
dxdt ≤

∫ ∞
0

∫
RN

t2Φ(V, u,W )

(c(x) + t)k
dxdt ≤M4(u0, k, l). (3.36)

Estimate (E):

Especially, if c(x) ≡ 0, k = 2, l < 1−Cr(u0)
1+Cr(u0) , by the discussions above, we have∫ ∞

0

∫
RN

Φ(V, u,W )dxdt ≤M5(u0, l). (3.37)

Remark 3.1. 1. The assumptions of Case 2 can be weaken as: Assume that at least one

of (i)–(iv) holds. And the corresponding value of l can be take one of Nk1, k2, k3 and 2k4.

2. By the proof of Theorem 3, in defocusing case, we obtain∫
RN
|(x− 2it∇)u|2dx ≤ C in Case 1,

∫
RN
|(x− 2it∇)u|2dx ≤ Ctl in Case 2. (3.38)
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4 Spacetime bound estimates based on pseudoconformal

conservation law

In this section, we will establish spacetime bound estimates based on pseudoconformal

conservation law.

Theorem 4. Let u(x, t) be the solution of (1.1) in energy space X, u0 ∈ X and xu0 ∈
L2(RN ). Assume that V (x) ≤ 0, W (x) ≤ 0 for x ∈ RN , and satisfy (WV1) or (WV2), F (s)

and h(s) satisfy the assumptions of Theorem A and Theorem 3, the space dimension N ≥ 1

in defocusing case, N ≥ 3 in combined defocusing and focusing case, 0 < M(u0) < +∞ and

0 ≤ E(u0) < +∞. Then

Bound (F): Weighted spacetime bound(∫ +∞

0

(∫
RN

w(x, t) [Φ(V, u,W )]
θ
dx

)p
dt

) 1
p

≤ C(u0, p, θ). (4.1)

Here

Φ(V, u,W ) = |∇h(|u|2)|2 + |G1(|u|2)|+ |G2(|u|2)|+ |V (x)||u|2 +
1

2
(|W | ∗ |u|2)|u|2. (4.2)

0 < θ ≤ 1, w(x, t) satisfies (w1) 0 ≤ w(x, t) ≤ cw for all x ∈ RN and t ≥ 0 if θ = 1, or

(w2) 0 ≤ w(x, t) for all x ∈ RN and t ≥ 0,
∫
RN |w(x, t)|

1
1−θ dx ≤ c′w if 0 < θ < 1, p > 1

2θ in

defocusing case, and

p > max

(
1

2θ
,

[1− Cr(u0)]

θ[2(1− Cr(u0))− l(1 + Cr(u0))]

)
, 0 < l <

2[1− Cr(u0)]

[1 + Cr(u0)]

in combined defocusing and focusing case.

Moreover, if N ≥ 3, then

Bound (G): Weighted spacetime norm

‖G1(|u|2)‖Lqw(R+)Lrw(RN ) =

(∫ +∞

0

(∫
RN

w(x, t)[|G1(|u|2)|]rdx
) q
r

dt

) 1
q

≤ C(u0, r, q, γ1, γ2, γ̃1, γ̃2). (4.3)

Here 1 ≤ r < γ2, 1 ≤ r < γ̃2, w(x, t) satisfies (w1) 0 ≤ w(x, t) ≤ cv for all x ∈ RN and t ≥ 0 if

1 ≤ r < γ2, 1 ≤ r < γ̃2, or (w2) 0 ≤ w(x, t) for all x ∈ RN and t ≥ 0,
∫
RN |w(x, t)|

δ
δ−1 dx ≤ c′w

for some 1 < δ < γ2
r ≤ γ2 and 1 < δ < γ̃2

r ≤ γ̃2.

q >
rσ(γ2 − γ1)

2∗(rσ − γ1)
, q >

rσ(γ̃2 − γ̃1)

2∗(rσ − γ̃1)

for combined defocusing and focusing subcase of Case 1 in Theorem 3,

q >
2rσ(γ2 − γ1)[1− Cr(u0)]

2∗(rσ − γ1)[2(1− Cr(u0))− l(1 + Cr(u0))]
,

q >
2rσ(γ̃2 − γ̃1)[1− Cr(u0)]

2∗(rσ − γ̃1)[2(1− Cr(u0))− l(1 + Cr(u0))]
,

0 < l < 2[1−Cr(u0)]
[1+Cr(u0)] for combined defocusing and focusing subcase of Case 2 in Theorem 3, where

σ = 1 if (w1) holds, while σ = δ if (w2) holds.
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Proof of Theorem 4: Similar to (2.10), we get∫
RN
|G1(|u|2)|dx ≤

2∑
j=1

(cj‖u0‖2L2)
1
τ̃′
j (22∗−1c′jCs)

1
τ̃j

∫
RN
|∇h(|u|2)|2dx

:= Cr(u0)

∫
RN
|∇h(|u|2)|2dx. (4.4)

if N ≥ 3. τ̃1, τ̃ ′1, τ̃2 and τ̃ ′2 are the same as those in (2.11).

Bound (F): We will prove (4.1) in three cases. We only give the details in Case (I), the

proofs in Case (II) and Case(III) are similar to that in Case (I).

Case (I). Defocusing subcase in Case 2 of Theorem 3. In this case,∫
RN

Φ(V, u,W )dx ≤ 2E(u0) for 0 ≤ t ≤ 1,∫
RN

Φ(V, u,W )dx ≤ C(u0)

4t2
+

[4lE(u0) + C(u0)]

4t2−l
for t > 1.

We discuss it in two subcases.

Subcase (i). 0 ≤ w(x, t) ≤ cw for all x ∈ RN and t ≥ 0 if θ = 1. By (3.12) and (3.26), we

obtain (∫ +∞

0

(∫
RN

w(x, t)Φ(V, u,W )dx

)p
dt

) 1
p

≤ cw
(∫ 1

0

[2E(u0)]pdt+

∫ +∞

1

(
C(u0)

4t2
+

4lE(u0) + C(u0)

4t(2−l)

)p
dt

) 1
p

≤ C. (4.5)

Subcase (ii). 0 ≤ w(x, t) for all x ∈ RN and t ≥ 0,
∫
RN |w(x, t)

1
1−θ dx < c′w if 0 < θ < 1,

we get (∫ +∞

0

(∫
RN

w(x, t)[Φ(V, u,W )]θdx

)p
dt

) 1
p

≤

(∫ +∞

0

{(∫
RN
|w(x, t)

1
1−θ dx

)1−ϑ(∫
RN

Φ(V, u,W )dx

)θ}p
dt

) 1
p

≤ C. (4.6)

Case (II). Combined defocusing and focusing subcase in Case 2 of Theorem 3. In this

case, ∫
RN

Φ(V, u,W )dx ≤ C, 0 ≤ t ≤ 1, (4.7)∫
RN

Φ(V, u,W )dx ≤ C

(
1

t2
+

1

t
2− l[1+Cr(u0)]

1−Cr(u0)

)
, t ≥ 1. (4.8)

Similarly, we get (∫ +∞

0

(∫
RN

w(x, t)[Φ(V, u,W )]θdx

)p
dt

) 1
p

≤ C. (4.9)

Case (III). Case 1 of Theorem 3. In this case,∫
RN

Φ(V, u,W )dx ≤ C for 0 ≤ t ≤ 1,

∫
RN

Φ(V, u,W )dx ≤ C ′

t2
for t ≥ 1.
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Similarly, we have (∫ +∞

0

(∫
RN

w(x, t)[Φ(V, u,W )]θdx

)p
dt

) 1
p

≤ C. (4.10)

Bound (G): We only give the details in Case 2 in combined defocusing and focusing case

of Theorem 3, the proof in Case 1 in combined defocusing and focusing case of Theorem 3 is

similar.

We also discuss it in two subcases.

Subcase (i). 0 ≤ w(x, t) ≤ cw for any x ∈ RN and t ≥ 0, 1 ≤ r < min(γ2, γ̃2).

(∫ +∞

0

(∫
RN

w(x, t)|G1(|u|2)|rdx
) q
r

dt

) 1
q

≤ (cw)
1
rC


(∫ 1

0

[2E(u0)]
2∗q
2rτ4 dt

) 1
q

+

∫ +∞

1

(
C

4t2
+

C

t
2− l[1+Cr(u0)]

1−Cr(u0)

) 2∗q
2rτ4

dt


1
q


+ (cw)

1
rC


(∫ 1

0

[2E(u0)]
2∗q
2rτ̃4 dt

) 1
q

+

∫ +∞

1

(
C

4t2
+

C

t
2− l[1+Cr(u0)]

1−Cr(u0)

) 2∗q
2rτ̃4

dt


1
q


≤ C. (4.11)

Subcase (ii). 0 ≤ w(x, t) for any x ∈ RN and t ≥ 0,
∫
RN |w(x, t)|

δ
δ−1 dx ≤ c′w for some

1 < δ < γ2
r ≤ γ2 and 1 < δ < γ̃2

r ≤ γ̃2. We have(∫ +∞

0

(∫
RN

w(x, t)|G1(|u|2)|rdx
) q
r

dt

) 1
q

≤

∫ +∞

0

{(∫
RN
|w(x, t)|

δ
δ−1 dx

) δ−1
δ
(∫

RN
|G1(|u|2)|rδdx

) 1
δ

} q
r

dt


1
q

≤ (c′v)
δ−1
rδ C


(∫ 1

0

[2E(u0)]
2∗q

2rδτ4 dt

) 1
q

+

∫ +∞

1

(
C

t2
+

C

t
2− l[1+Cr(u0)]

1−Cr(u0)

) 2∗q
2rδτ4

dt


1
q


+ (c′v)

δ−1
rδ C


(∫ 1

0

[2E(u0)]
2∗q

2rδτ̃4 dt

) 1
q

+

∫ +∞

1

(
C

t2
+

C

t
2− l[1+Cr(u0)]

1−Cr(u0)

) 2∗q
2rδτ̃4

dt


1
q


≤ C. (4.12)

Theorem 4 is proved. �
As a corollary of Theorem 3 and Theorem 4, we can obtain the decay rate and asymptotic

behavior for the solution as t→ +∞.
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Corollary 4.1. Let u(x, t) be the global solution of (1.1). Under the assumptions of

Theorem 3 and Theorem 4,∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2
(W ∗ |u|2)|u|2]dx ≤ C

t2
(4.13)

in Case 1, ∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G2(|u|2)|+ 1

2
(W ∗ |u|2)|u|2]dx ≤ C

t2−l
(4.14)

in defocusing subcase of Case 2,

∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G1(|u|2)|+ |G2(|u|2)|+ 1

2
(W ∗ |u|2)|u|2]dx

≤ C

t
2− l(1+Cr(u0))

1−Cr(u0)

(4.15)

in combined defocusing and focusing subcase of Case 2, and

lim
t→+∞

∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G(|u|2)|+ 1

2
(W ∗ |u|2)|u|2]dx = 0, (4.16)

lim
t→+∞

∫
RN
|∇u|2dx = 2E(u0), lim

t→+∞

∫
RN

[|u|2 + |∇u|2]dx = M(u0) + 2E(u0). (4.17)

Consequently, for any 2 ≤ r < 2∗, 2∗ = 2N
N−2 if N ≥ 3, 2∗ = +∞ if N = 1, 2,∫
RN
|u|rdx ≤ C. (4.18)

Proof of Corollary 4.1: (4.13),(4.14), (4.15) and (4.16) are the direct results of (3.13),

(3.18), (3.26) and (3.32).

By mass and energy conservation laws, we have

1

2

∫
RN
|∇u|2dx = E(u0)− 1

2

∫
RN

[|∇h(|u|2)|2 + |V (x)||u|2 + |G(|u|2)|+ 1

2
(W ∗ |u|2)|u|2]dx,

which means (4.17). (4.16) and (4.17) imply that∫
RN
|u|2dx ≤ C,

∫
RN
|∇u|2dx ≤ C,

by embedding theorem, we get (4.18). �
We give two examples to show the results on Theorem 3 and Theorem 4.

Remark 4.1. 1. If h(s) ≡ 0, F (|u|2) = −|u|2β , V (x) = − 1
|x|m and W (x) = − 1

|x|n , x 6= 0,

β,m, n > 0, then we can verify the assumptions of Theorem 3 and 4 and especially have∫ ∞
0

∫
RN

[
|u|2β+2

β + 1
+

1

|x|m
|u|2 +

1

2
(

1

|x|n
∗ |u|2)|u|2

]
dxdt ≤ C, (4.19)∫ ∞

0

(∫
RN

[
|u|2β+2

β + 1
+

1

|x|m
|u|2 +

1

2
(

1

|x|n
∗ |u|2)|u|2

]
dx

)p
dt ≤ C, (4.20)

‖u‖Lq(R+)Lr̃(RN ) =

(∫ ∞
0

(∫
RN
|u|r̃dx

) q
r̃

dt

) 1
q

≤ C. (4.21)
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2. Consider the following Cauchy problem:{
iut = ∆u+ 2α|u|2α−2u∆(|u|2α)− |x|2u

|x|2+1 ∓ |u|
2βu− ( |x|2

(a|x|2+1)m ∗ |u|
2)u, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .
(4.22)

Here α, β ∈ Z+. Then

2h′′(s)h′(s)s+ (h′(s))2 = (2α− 1)α2s2α−2,

NF (s)s− (N + 2)G(s) = ∓[N − N + 2

β + 1
]sβ+1,

2V + (x · ∇V ) ≤ 0, 2W + (x · ∇W ) ≤ 0 for suitable a, m.

We can verify the assumptions of Theorem 3 and 4, and get

k1 = 2α− 1, k2 =
|Nβ − 2|
β + 1

, l = max(k1, k2),

∫ ∞
0

∫
RN

[
|∇h(|u|2)|2 +

|u|2β+2

β + 1
+ |V (x)||u|2 +

1

2
(|W (x)| ∗ |u|2)|u|2

]
dxdt ≤ C,∫ ∞

0

(∫
RN

[
|∇h(|u|2)|2 +

|u|2β+2

β + 1
+ |V (x)||u|2 +

1

2
(|W (x)| ∗ |u|2)|u|2

]
dx

)p
dt ≤ C,

‖u‖Lq(R+)Lr̃(RN ) =

(∫ ∞
0

(∫
RN
|u|r̃dx

) q
r̃

dt

) 1
q

≤ C.

5 Scattering theory for (1.3) in defocusing case and arbi-

trary space dimension

In this section, applying the results of Theorem 3 and Theorem 4, we will establish scat-

tering theory in L2(RN ) and Σ (N ≥ 1) under certain assumptions. Here

Σ = {f ∈ H1(RN ), |x|f ∈ L2(RN )}. (5.1)

5.1 Scattering theory in L2(RN) for (1.3) in defocusing case and arbi-

trary space dimension

In this subsection, we will establish scattering theory in L2(RN ) for (1.3) in defocusing

case and arbitrary space dimension.

Theorem 5. Let u ∈ C(R,Σ) be the solution of (1.3) in defocusing case, i.e., h(s) ≡ 0,

F (s) ≤ 0 for s ≥ 0, V (x) ≤ 0 and W (x) ≤ 0, W (x) is even for x ∈ RN , N ≥ 1, and u0 ∈ Σ.

Assume that there exist C > 0, θ1, p1, θ2 and p2 such that

[|F (s)|s 1
2 ]θ1 ≤ Cs, [|F (s)|s 1

2 ]p1 ≤ C|G(s)|, 0 < s < 1, (5.2)

[|F (s)|s 1
2 ]θ2 ≤ Cs, [|F (s)|s 1

2 ]p2 ≤ C|G(s)|, s > 1, (5.3)

and there exist c1, c2, V1(x), V2(x), W1(x) and W2(x) such that

V (x) = V1(x) + V2(x), c1(|V1(x)|+ |V2(x)|) ≤ |V (x)|, (5.4)

W (x) = W1(x) +W2(x), c2(|W1(x)|+ |W2(x)|) ≤ |W (x)|. (5.5)
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In addition, suppose that there exist admissible pairs (q1, r1), (q2, r2), (q3, r3), (q̃1, r̃1) and

(q̃2, r̃2) such that

V1(x) ∈ L
r1
r1−2 (RN ), V2(x) ∈ L

r2
r2−2 (RN ), (5.6)

W1(x) ∈ L
r̃1

2(r̃1−2) (RN ), W2(x) ∈ L
r̃2

2(r̃2−2) (RN ), (5.7)

and

q′1 > 1, q′2 > 1,
2q′3(r′3 − θ1)

r′3(p1 − θ1)
> 1,

2q′3(r′3 − θ2)

r′3(p2 − θ2)
> 1, q̃′1 > 1, q̃′2 > 1 (5.8)

if [(N + 2)G(s) − NF (s)s] ≥ 0 for s ≥ 0, [2V + (x · ∇V )] ≥ 0 and [2W + (x · ∇W )] ≥ 0 for

x ∈ RN , while

(2− l)q′1
2

> 1,
(2− l)q′2

2
> 1,

(2− l)q′3(r′3 − θ1)

r′3(p1 − θ1)
> 1, (5.9)

(2− l)q′3(r′3 − θ2)

r′3(p2 − θ2)
> 1,

(2− l)q̃′1
2

> 1,
(2− l)q̃′2

2
> 1 (5.10)

if at least one of the following cases holds:

(i) −k1|G(s)| ≤ (N + 2)G(s)−NF (s)s ≤ 0 for some k1 > 0;

(iv) −k2|V | ≤ 2V + (x · ∇V ) ≤ 0 for some k2 > 0;

(v) −k3|W | ≤ 2W + (x · ∇W ) ≤ 0 for some k3 > 0.

Here

l = max(k1, k2, k3), (5.11)

q′j, r
′
j, q̃
′
m, r̃′m are the conjugated exponents of qj, rj, q̃m, r̃m respectively.

Then there exists u+ ∈ L2(RN ) such that

eit∆u(t) −→ u+ in L2(RN ) as t→ +∞.

Proof: Duhamel’s principle implies that

u(t) = e−it∆u0 − i
∫ t

0

e−i(t−s)∆
(
V (x)u(s) + F (|u|2)u(s) + (W ∗ |u|2)u(s)

)
ds.

By Strichartz estimates, for any 0 < t < τ , we obtain

‖eit∆u(t)− eiτ∆u(τ)‖L2

≤ ‖
∫ τ

t

eis∆V (x)u(s)ds‖L2 + ‖
∫ τ

t

eis∆F (|u|2)u(s)ds‖L2 + ‖
∫ τ

t

eis∆(W ∗ |u|2)u(s)ds‖L2

≤
2∑
j=1

‖
∫ τ

t

eis∆Vj(x)u(s)ds‖L2 + ‖
∫ τ

t

eis∆F (|u|2)u(s)ds‖L2

+

2∑
m=1

‖
∫ τ

t

eis∆(Wm ∗ |u|2)u(s)ds‖L2
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≤ C
2∑
j=1

∫ τ

t

(∫
RN
|Vj(x)u|r

′
jdx

) q′j
r′
j
dt


1
q′
j

+ C

∫ τ

t

(∫
RN

[|F (|u|2)||u|]r
′
3dx

) q′3
r′3
dt


1
q′3

+ C

2∑
m=1

∫ τ

t

(∫
RN

[(|Wm| ∗ |u|2)|u|]r̃
′
mdx

) q̃′m
r̃′m

dt


1
q̃′m

:= (I) + (II) + (III). (5.12)

Using Hölder inequality, it is easy to get

(I) ≤ C

∫ τ

t

(∫
RN
|V1(x)||u|2dx

) q′1
2

(∫
RN
|V1(x)|

r′1
2−r′1 dx

) q′1(2−r′1)

2r′1

dt


1
q′1

+ C

∫ τ

t

(∫
RN
|V2(x)||u|2dx

) q′2
2

(∫
RN
|V2(x)|

r′2
2−r′2 dx

) q′2(2−r′2)

2r′2

dt


1
q′2

−→ 0 as t, τ → +∞, (5.13)

(II) ≤ C

∫ τ

t

(∫
{|u|≤1}

[|F (|u|2)||u|]θ1dx

) q′3
τ′1r
′
3

(∫
{|u|≤1}

[|F (|u|2)||u|]p1dx

) q′3
τ1r
′
3

dt


1
q′3

+ C

∫ τ

t

(∫
{|u|>1}

[|F (|u|2)||u|]θ2dx

) q′3
τ′2r
′
3

(∫
{|u|>1}

[|F (|u|2)||u|]p2dx

) q′3
τ2r
′
3

dt


1
q′3

≤ C

∫ τ

t

(∫
RN

G(|u|2)dx

) q′3
τ1r
′
3

dt


1
q′3

+ C

∫ τ

t

(∫
RN
|G(|u|2)|dx

) q′3
τ2r
′
3

dt


1
q′3

−→ 0 as t, τ → +∞, (5.14)

(III) ≤
2∑

m=1

C


∫ τ

t

(∫
RN

(|Wm| ∗ |u|2)|u|2dx
) q̃′m

2
(∫

RN
|u(x)|

r′m
r′m−1 dx

) q̃′m(r̃′m−1)

r̃′m

(∫
RN

∫
RN
|Wm(x− y)|

r̃′m
2−r̃′m dydx

) q̃′m(2−r̃′m)

2r̃′m
dt


1
q̃′m

−→ 0 as t, τ → +∞, (5.15)

because ∫
RN
|u|2dx =

∫
RN
|u0|2dx,

∫
RN
|∇u|2dx ≤ C,

∫
RN
|u(x)|

r̃′m
r̃′m−1 dx ≤ C

by the results of Section 3 and Section 4, moreover,∫
RN
|V (x)||u|2dx ≤ C

t2
,

∫
RN
|G(|u|2)|dx ≤ C

t2
,

∫
RN

(|W | ∗ |u|2)|u|2dx ≤ C

t2
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and (5.8) in Case 1, while∫
RN
|V (x)||u|2dx ≤ C

t2−l
,

∫
RN
|G(|u|2)|dx ≤ C

t2−l
,

∫
RN

(|W | ∗ |u|2)|u|2dx ≤ C

t2−l

and (5.9), (5.10) in Case 2. Here

1

τ1
=
r′3 − θ1

p1 − θ1
,

1

τ ′1
=
p1 − r′3
p1 − θ1

,
1

τ2
=
r′3 − θ2

p2 − θ2
,

1

τ ′2
=
p2 − r′3
p2 − θ2

.

Consequently, there exists u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

That is, every solution in Σ of (1.3) has scattering state in L2(RN ). �
Remark 5.1. 1. A special case in the assumptions of Theorem 5 is θ1 = θ2 = θ,

p1 = p2 = p. For example, if F (|u|2)u = b|u|2βu, then θ1 = θ2 = 2
2β+1 , p1 = p2 = 2β+2

2β+1 , and

the assumptions of Theorem 5 can be satisfied.

2. In the proof of Theorem 5, we take different admissible pairs in Strichartz estimates for

different terms on the right side of Duhamel’s formula in order to keep the terms containing

V (x)u, F (|u|2)u and (W ∗|u|2)u independent each other. Consequently, Theorem 5 can directly

deduce scattering theory in L2(RN ) for Cauchy problem of the equation contains one of V (x)u,

F (|u|2)u and (W ∗ |u|2)u.

Corollary 5.1. Let u be the solution of the following problem{
iut = ∆u+ V (x)u, x ∈ RN , t > 0

u(x, 0) = u0(x) ∈ Σ, x ∈ RN .
(5.16)

Assume that V (x) ≤ 0 for x ∈ RN , N ≥ 1, and (5.4), (5.6), (5.8) and (5.9) hold. Then there

exists u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

Corollary 5.2. Let u be the solution of the following problem{
iut = ∆u+ F (|u|2)u, x ∈ RN , t > 0

u(x, 0) = u0(x) ∈ Σ, x ∈ RN .
(5.17)

Assume that F (s) satisfies (G):

(G) |G(s)|

s
2∗
2

→ 0 as s→ +∞, where G(s) =
∫ s

0
F (η)dη,

F (s) ≤ 0 for s ≥ 0, N ≥ 1, and (5.2), (5.3), (5.8), (5.9) and (5.10) hold. Then there exists

u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

Corollary 5.3. Let u be the solution of the following problem{
iut = ∆u+ (W ∗ |u|2)u, x ∈ RN , t > 0

u(x, 0) = u0(x) ∈ Σ, x ∈ RN .
(5.18)
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Assume that W (x) is even and W (x) ≤ 0 for x ∈ RN , N ≥ 1, and (5.5), (5.7), (5.8) and

(5.10) hold. Then there exists u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

2. If the nonlinearities of a semilinear Schödinger equation are combined by any two terms

of V (x)u, F (|u|2)u and (W ∗ |u|2)u, then we also can establish the scattering theory in L2(RN )

directly. For example, we have

Corollary 5.4. Let u be the solution of{
iut = ∆u+ V (x)u+ (W ∗ |u|2)u, x ∈ RN , t > 0

u(x, 0) = u0(x) ∈ Σ, x ∈ RN .
(5.19)

Assume that V (x) ≤ 0 and W (x) ≤ 0 for x ∈ RN , N ≥ 1, W (x) is even, and (5.4)–(5.10) hold.

Then there exists u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞.

As a corollary of Theorem 5, we give the scattering theory in L2(RN ) of (1.4) below.

Corollary 5.5. Assume that u(x, t) is the solution of (1.4) and u0 ∈ Σ. Then there exists

u+ ∈ L2(RN ) such that

‖eit∆u(t)− u+‖L2 → 0 as t→ +∞

if one of the following cases holds:

(I). N ≥ 2, 4
3 < m < 2, m < n < 4, 4

3 < m < Nβ < 2∗, 8 < 4m+ n;

(II). N ≥ 2, β0 < Nβ < m < 2, β0 < Nβ < n < 4, 4 < 2Nβ +m, 8 < 4Nβ + n;

(III). N ≥ 2, 8
5 < n < m < 2, n < Nβ < 2∗.

Here

β0 =
4− 3N +

√
9N2 + 40N + 16

8N
,

2∗ = 2N
N−2 if N ≥ 3 and 2∗ = +∞ if N = 2.

Proof: Let

V1(x) =

{
− 1
|x|m , 0 < |x| ≤ 1,

0, |x| > 1,
and V2(x) =

{
0, 0 < |x| ≤ 1,

− 1
|x|m , |x| > 1,

F (|u|2)u = |u|2βu, θ1 = θ2 =
2

2β + 1
, p1 = p2 =

2β + 2

2β + 1
,

W1(x) =

{
− 1
|x|n , 0 < |x| ≤ 1,

0, |x| > 1,
and W2(x) =

{
0, 0 < |x| ≤ 1,

− 1
|x|n , |x| > 1.

Since

− (2−m)|V (x)| = 2V (x) + x · ∇V (x) = − (2−m)

|x|m
< 0,

2W (x) + x · ∇W (x) =
(n− 2)

|x|n
= (n− 2)|W (x)|,

NF (s)s− (N + 2)G(s) = − (2−Nβ)

β + 1
|u|2β+2 = −(2−Nβ)|G(s)|,
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it belongs to Case 2 of Theorem 6.

We can take r′1, r′2, r′3, r̃′1 and r̃′2 respectively as follows:

(I). min(m,Nβ, n) = m.

2N

N + 2
< r′1 <

2N

N +m
,

2N

N + 2
< r̃′1 <

4N

2N + n
,

2N

N +m
< r′2 <

2N

N + 4− 2m
,

4N

2N + n
< r̃′2 <

2N

N + 4− 2m
,

max(
2N

N + 2
,

4m− 2Nβ

2m+ 4mβ − 4β −Nβ
) < r′3 <

2β + 2

2β + 1
if 2m > Nβ,

2N

N + 2
< r′3 <

2β + 2

2β + 1
if 2m ≤ Nβ, 2m+ 4mβ − 4β −Nβ ≥ 0,

2N

N + 2
< r′3 < min(

2β + 2

2β + 1
,

2Nβ − 4m

4β +Nβ − 2m− 4mβ
)

if 2m < Nβ, 2m+ 4mβ − 4β −Nβ < 0;

(II). min(m,Nβ, n) = Nβ.

2N

N + 2
< r′1 <

2N

N +m
,

2N

N + 2
< r̃′1 <

4N

2N + n
,

2N

N +m
< r′2 <

2N

N + 4− 2Nβ
,

4N

2N + n
< r̃′2 <

2N

N + 4− 2Nβ
,

max(
2N

N + 2
,

2

2β + 1
,

2N

N + 4Nβ − 4
) < r′3 <

2β + 2

2β + 1
;

(III). min(m,Nβ, n) = n.

2N

N + 2
< r′1 <

2N

N +m
,

2N

N + 2
< r̃′1 <

4N

2N + n
,

2N

N +m
< r′2 <

2N

N + 4− 2n
,

4N

2N + n
< r̃′2 <

2N

N + 4− 2n
,

max(
2N

N + 2
,

4n− 2Nβ

2n+ 4nβ − 4β −Nβ
) < r′3 <

2β + 2

2β + 1
if 2n > Nβ,

2N

N + 2
< r′3 <

2β + 2

2β + 1
if 2n ≤ Nβ, 2n+ 4nβ − 4β −Nβ ≥ 0,

2N

N + 2
< r′3 < min(

2β + 2

2β + 1
,

2Nβ − 4n

4β +Nβ − 2n− 4nβ
)

if 2n < Nβ, 2n+ 4nβ − 4β −Nβ < 0;

It is easy to verify the assumptions of Theorem 5 and establish scattering theory in L2(RN )

for (1.4). �
Remark 5.2. Our idea can be applied to deal with the following problem:{

iut = ∆u+
∑M
m=1 Vm(x)u+

∑K
k=1 Fk(|u|2)u+

∑L
l=1(Wl ∗ |u|2)u, x ∈ RN , t > 0

u(x, 0) = u0(x), x ∈ RN .

And we can obtain the general scattering results similar to Theorem 5.
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5.2 Scattering theory in Σ for (1.3) in defocusing case and arbitrary

space dimension

In this subsection, we will establish classic scattering theory in Σ for the solution of (1.3)

in defocusing case and arbitrary space dimension.

Theorem 6. Let u ∈ C(R,Σ) be the solution of (1.3) in defocusing case with u0 ∈ Σ.

Assume that V (x) ≡ 0 and W (x) ≡ 0 for x ∈ RN , F (s) satisfies (G) and there exist C > 0,

θ1, p1, θ2, p2, 2 < r < 2N
N−2 if N ≥ 3, 2 < r < +∞ if N = 1, 2, 0 < l < 2, such that

θ1 <
r

r − 2
< p1, θ2 <

r

r − 2
< p2, (5.20)

[|F (s)|+ |F ′(s)|s 1
2 ]θ1 ≤ Cs, [|F (s)|+ |F ′(s)|s 1

2 ]p1 ≤ C|G(s)|, 0 < s < 1, (5.21)

[|F (s)|+ |F ′(s)|s 1
2 ]θ2 ≤ Cs, [|F (s)|+ |F ′(s)|s 1

2 ]p2 ≤ C|G(s)|, s > 1. (5.22)

Moreover,

4[r(1− θj) + 2θj ]

[2N − (N − 2)r](pj − θj)
> 1, j = 1, 2, (5.23)

in Case 1: [NF (s)s− (N + 2)G(s)] ≤ 0 for s ≥ 0,

2(2− l)[r(1− θj) + 2θj ]

[2N − (N − 2)r](pj − θj)
> 1, j = 1, 2, (5.24)

in Case 2: 0 ≤ (N + 2)G(s)−NF (s)s ≤ l|G(s)|.
Then there exists u+ ∈ Σ such that

eit∆u(t)→ u+ in Σ as t→ +∞.

Proof: We only prove it in Case (B). The proof in Case (A) can be obtained similarly.

Let (q, r) be the admissible pair satisfying

2

q
= N(

1

2
− 1

r
),

where 2 < r < 2N
N−2 if N ≥ 3, 2 < r < +∞ if N = 1, 2.

First, we prove that

‖u‖Lq((0,t),W 1,r) ≤ C for t > 0. (5.25)

Duhamel’s principle implies that

u(t) = e−it∆u0 − i
∫ t

0

e−i(t−s)∆F (|u|2)u(s)ds.
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By Strichartz estimates, using Hölder’s inequality, we have

‖u‖Lq((0,t),W 1,r) ≤ C‖u0‖H1 + C‖F (|u|2)u‖Lq′ ((0,t),W 1,r′ )

≤ C + C

∫ T

0

(∫
RN

[|F (|u|2)|+ |F ′(|u|2)||u|2]
r
r−2 dx

) q(r−2)
r(q−2)

dt


q−2
q

‖u‖Lq((0,T ),W 1,r)

+ C

∫ t

T

(∫
RN

[|F (|u|2)|+ |F ′(|u|2)||u|2]
r
r−2 dx

) q(r−2)
r(q−2)

dt


q−2
q

‖u‖Lq((T,t),W 1,r)

≤ C ′ + C

2∑
j=1

∫ t

T

{(∫
RN
|u|2dx

) 1
τ′
j

(∫
RN
|G(|u|2)|dx

) 1
τj

} q(r−2)
r(q−2)

dt


q−2
q

‖u‖Lq((T,t),W 1,r)

≤ C ′ + C

2∑
j=1

∫ t

T

(∫
RN
|G(|u(x)|2)|dx

) q[r(1−θj)+2θj ]

r(q−2)(pj−θj)

dt


q−2
q

‖u‖Lq((T,t),W 1,r)

≤ C +
1

2
‖u‖Lq((0,t),W 1,r) (5.26)

if T is large enough because∫
RN
|G(|u|2)|dx ≤ C

t2
,

4[r(1− θj) + 2θj ]

[2N − (N − 2)r](pj − θj)
> 1, j = 1, 2,

in Case 1, while∫
RN
|G(|u|2)|dx ≤ C

t2−l
,

2(2− l)[r(1− θj) + 2θj ]

[2N − (N − 2)r](pj − θj)
> 1, j = 1, 2,

in Case 2. Here

1

τj
=

r(1− θj) + 2θj
(r − 2)(pj − θj)

,
1

τ ′j
=

(r − 2)(pj − θj)− [r(1− θj) + 2θj ]

(r − 2)(pj − θj)
, j = 1, 2.

(5.26) implies (5.25).

As a byproduct of (5.26), we get

‖F (|u|2)u‖Lq′ ((t,τ),W 1,r′ ) −→ 0 as t, τ → +∞. (5.27)

Consequently, we obtain

‖eit∆u(t)− eiτ∆u(τ)‖H1 ≤ ‖
∫ τ

t

eis∆F (|u|2)u(s)ds‖H1

≤ C‖F (|u|2)u‖Lq′ ((t,τ),W 1,r′ ) −→ 0 as t, τ → +∞ (5.28)

by the result of (5.27).

Therefore, there exists u+ ∈ H1(RN ) such that

eit∆u(t)→ u+ in H1(RN ) as t→ +∞.

Now we will prove that

‖(x− 2it∇)u‖Lq((0,t),W 1,r) ≤ C for t > 0. (5.29)
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Since

(x− 2it∇)u(t) = e−it∆xu0 − i
∫ t

0

e−i(t−s)∆(x− 2is∇)[F (|u|2)u(s)]ds,

by Strichartz estimates, we obtain

‖(x− 2it∇)u‖Lq((0,t),Lr) ≤ C‖xu0‖L2 + C‖(x− 2it∇)[F (|u|2)u]‖Lq′ ((0,t),Lr′ ). (5.30)

Letting H(t) := (x− 2it∇), it is easy to verify that

H(t)[F (|u|2)u] = ∂u[F (|u|2)u]H(t)u− ∂ū[F (|u|2)u]H(t)u

and

‖(x− 2it∇)[F (|u|2)u]‖Lq′ ((0,t),Lr′ )
≤ ‖∂u[F (|u|2)u]H(t)u‖Lq′ ((0,t),Lr′ ) + ‖∂ū[F (|u|2)u]H(t)u‖Lq′ ((0,t),Lr′ )
≤ C‖[|F (|u|2) + |F ′(|u|2)|u|2](x− 2it∇)u‖Lq′ ((0,t),Lr′ ). (5.31)

By (5.30) and (5.31), we get

‖(x− 2it∇)u‖Lq((0,t),Lr)

≤ C‖xu0‖L2 + C‖[|F (|u|2)|+ |F ′(|u|2)||u|2]|(x− 2is∇)u|‖Lq′ ((0,t),Lr′ )
≤ C ′ + C‖[|F (|u|2)|+ |F ′(|u|2)||u|2]|(x− 2is∇)u|‖Lq′ ((0,t),Lr′ ). (5.32)

Similar to the discussion of (5.26) and (5.27), we have (5.29) and

‖[F (|u|2) + |F ′(|u|2)||u|2](x− 2is∇)u‖Lq′ ((t,τ),Lr′ ) −→ 0 as t, τ → +∞. (5.33)

Consequently,

‖xeit∆u(t)− xeiτ∆u(τ)‖L2 = ‖
∫ τ

t

eis∆(x− 2is∇)[F (|u|2)u(s)

≤ C‖[|F (|u|2) + |F ′(|u|2)|u|2]|(x− 2is∇)u|‖Lq′ ((t,τ),Lr′ ) −→ 0 (5.34)

as t, τ → +∞ by the result of (5.33).

Hence, there exists u+ ∈ Σ such that

eit∆u(t)→ u+ in Σ as t→ +∞.

That is, if V (x) ≡ 0 and W (x) ≡ 0, under the assumptions on F (s), every solution with initial

data u0 ∈ Σ of (1.3) has scattering state in Σ. �
Remark 5.3. The typical example of F (|u|2)u satisfying the assumptions of Theorem 6

is

F (|u|2)u = a1|u|2β1u+ ...+ am|u|2βmu, aj < 0, j = 1, 2, ...,m,

2−N +
√
N2 + 12N + 4

4N
< β1 < ... < βm <

2∗

N
.

In the last part of this subsection, we considered the following Cauchy problem{
iut = ∆u+ F̃ (|u|2)u−A|u|2∗−2u, x ∈ RN , t > 0,

u(x, 0) = u0(x) ∈ Σ, x ∈ RN ,
(5.35)
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where F̃ (s) and G̃(s) =
∫ s

0
F̃ (η)dη satisfies (G).

We would like to say something about the nonlinearities in (5.35) below.

1. Let F (|u|2)u = F̃ (|u|2)u−A|u|2∗−2u. Then G(s) satisfies

(G̃) |G(s)|

s
2∗
2

≥M for some M > 0 as s→ +∞,

which is a complementary condition of (G) in Theorem 6.

2. If NF̃ (s)s− (N + 2)G̃(s) ≤ 0, then∫
RN

[
|G̃(|u|2)|+ 2A

2∗
|u|2

∗
]
dx ≤ C

t2

by the result of Corollary 4.1 because

NF (s)s− (N + 2)G(s) = NF̃ (s)s− (N + 2)G̃(s)− 4A

N
|u|2

∗
≤ 0,

which satisfies the assumptions of Case 1 in Theorem 3 if h(s) ≡ 0 and

F (s) = −F2(s) = F̃ (|u|2)u−A|u|2
∗−2u.

Now we will give the following scattering result on (5.35).

Theorem 7(Scattering theory in Σ) Let u ∈ C(R,Σ) be the global solution of (5.35),

N ≥ 3, A > 0 and u0 ∈ Σ. Suppose that NF̃ (s)s− (N + 2)G̃(s) ≤ 0 for s ≥ 0, and there exist

C > 0, θ1 <
N
2 < p1 and θ2 <

N
2 < p2 such that

[|F̃ (s)|+ |F̃ ′(s)|s]θ1 ≤ Cs, [|F̃ (s)|+ |F̃ ′(s)|s]p1 ≤ C|G̃(s)|, 0 < s < 1, (5.36)

[|F̃ (s)|+ |F̃ ′(s)|s]θ2 ≤ Cs, [|F̃ (s)|+ |F̃ ′(s)|s]p2 ≤ C|G̃(s)|, s > 1. (5.37)

Then there exists u+ ∈ Σ such that

‖eit∆u(t)− u+‖Σ → 0 as t→ +∞.

Proof: Note that (2, 2∗) is an admissible pair (q, r) satisfying

2

q
= N(

1

2
− 1

r
). (5.38)

We first prove that for this admissible pair

‖u‖Lq((0,t),W 1,r) ≤ C for t > 0. (5.39)

Duhamel’s principle implies that

u(t) = e−it∆u0 − i
∫ t

0

e−i(t−s)∆
(
F̃ (|u|2)u(s) +A|u|2

∗−2u(s)
)
ds.
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By Strichartz estimates, using Hölder’s inequality, we have

‖u‖Lq((0,t),W 1,r)

≤ C‖u0‖H1 + C‖F̃ (|u|2)u‖Lq′ ((0,t),W 1,r′ ) + C‖|u|2
∗−2u‖Lq′ ((0,t),W 1,r′ )

≤ C + C

(∫ T

0

(∫
RN

[|F̃ (|u|2)|+ |F̃ ′(|u|2)||u|2]
N
2 dx

) 4
N
(∫

RN
[|u|r + |∇u|r]dx

) 2
r

dt

) 1
2

+ C

(∫ t

T

(∫
RN

[|F̃ (|u|2)|+ |F̃ ′(|u|2)||u|2]
N
2 dx

) 4
N
(∫

RN
[|u|r + |∇u|r]dx

) 2
r

dt

) 1
2

+ C

(∫ T

0

(∫
RN

[|u|2
∗
dx

) 4
N
(∫

RN
[|u|r + |∇u|r]dx

) 2
r

dt

) 1
2

+ C

(∫ t

T

(∫
RN

[|u|2
∗
dx

) 4
N
(∫

RN
[|u|r + |∇u|r]dx

) 2
r

dt

) 1
2

≤ C
2∑
j=1

max
[T,t]

{(∫
RN
|u|2dx

) 1
τj
(∫

RN
|G̃(|u|2)|dx

) 1
τ′
j

} 4
N

‖u‖Lq((T,t),W 1,r)

+ C ′ +
1

4
‖u‖Lq((T,t),W 1,r)

≤ C
2∑
j=1

max
[T,t]

(∫
RN
|G̃(|u(x)|2)|dx

) 2[N−2θj ]

N(pj−θj)

‖u‖Lq((T,t),W 1,r)

+ C ′ +
1

4
‖u‖Lq((T,t),W 1,r)

≤ C +
1

2
‖u‖Lq((0,t),W 1,r) (5.40)

if T is large enough because
2[N−2θj ]
N(pj−θj) > 0 and

∫
RN |G̃(|u(x)|2)|dx ≤ c

t2 , we have

C

2∑
j=1

max
[T,t]

(∫
RN
|G̃(|u(x)|2)|dx

) 2[N−2θj ]

N(pj−θj)

<
1

4
.

Here
1

τ
=

2pj −N
2(pj − θj)

,
1

τ ′j
=

N − 2θj
2(pj − θj)

.

(5.40) implies (5.39).

As a byproduct of (5.40), we get

‖F̃ (|u|2)u‖Lq′ ((0,t),W 1,r′ ) + ‖|u|2
∗−2u‖Lq′ ((0,t),W 1,r′ ) ≤ C, t > 0,

which implies that

‖F̃ (|u|2)u‖Lq′ ((t,τ),W 1,r′ ) + ‖|u|2
∗−2u‖Lq′ ((t,τ),W 1,r′ ) −→ 0 as t, τ → +∞. (5.41)
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Therefore, we obtain

‖eit∆u(t)− eiτ∆u(τ)‖H1

≤ ‖
∫ τ

t

eis∆F̃ (|u|2)u(s)ds‖H1 + ‖
∫ τ

t

eis∆A|u|2
∗−2u(s)ds‖H1

≤ C‖F̃ (|u|2)u‖Lq′ ((τ,t),W 1,r′ ) + C‖|u|2
∗−2u‖Lq′ ((τ,t),W 1,r′ )

−→ 0 as t, τ → +∞. (5.42)

Next, we prove that for this admissible pair (q, r),

‖(x− 2it∇)u‖Lq((0,t),W 1,r) ≤ C for t > 0. (5.43)

In fact, since

(x− 2it∇)u(t) = e−it∆xu0 − i
∫ t

0

e−i(t−s)∆(x− 2is∇)
(
F̃ (|u|2)u(s) +A|u|2

∗−2u(s)
)
ds,

by Strichartz estimates, we have

‖(x− 2it∇)u‖Lq((0,t),Lr) ≤ C‖xu0‖L2 + C‖(x− 2it∇)[F̃ (|u|2)u]‖Lq′ ((0,t),Lr′ )
+ C‖(x− 2it∇)[|u|2

∗−2u]‖Lq′ ((0,t),Lr′ ). (5.44)

Letting H(t) := (x− 2it∇), it is easy to verify that

H(t)[F̃ (|u|2)u] = ∂u[F̃ (|u|2)u]H(t)u− ∂ū[F̃ (|u|2)u]H(t)u, (5.45)

H(t)[|u|2
∗−2u] = ∂u[|u|2

∗−2u]H(t)u− ∂ū[|u|2
∗−2u]H(t)u. (5.46)

By Strichartz estimates (5.44), we get

‖(x− 2it∇)u‖Lq((0,t),Lr) ≤ C‖xu0‖L2 + C‖F̃ (|u|2)(x− 2is∇)u‖Lq′ ((0,t),Lr′ )
+ C‖|u|2

∗−2(x− 2is∇)u‖Lq′ ((0,t),Lr′ ). (5.47)

Similar to the discussion of (5.40) and (5.41), we obtain (5.43) and

‖F (|u|2)(x− 2is∇)u‖Lq′ ((t,τ),Lr′ ) + ‖|u|2
∗−2(x− 2is∇)u‖Lq′ ((t,τ),Lr′ )

−→ 0 as t, τ → +∞. (5.48)

Consequently,

‖xeit∆u(t)− xeiτ∆u(τ)‖L2

= ‖
∫ τ

t

eit∆(x− 2is∇)
(
F̃ (|u|2)u(s) +A|u|2

∗−2u(s)
)
ds‖L2

≤ C‖F̃ (|u|2)(x− 2is∇)u‖Lq′ ((t,τ),Lr′ ) + C‖|u|2
∗−2(x− 2is∇)u‖Lq′ ((t,τ),Lr′ )

−→ 0 as t, τ → +∞ (5.49)

by the result of (5.48).

Hence, the solution of (5.35) has scattering state in Σ. �
Remark 5.4 1. A typical example of F̃ (s) satisfying (5.36) and (5.37) is

F̃ (|u|2)u = a1|u|2β1u+ ...+ am|u|2βmu.
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If 2
N < β1 ≤ ... ≤ βm < 2

N−2 and u0 ∈ Σ. Taking

θ1 =
1

β1
, p1 =

β1 + 1

β1
, θ2 =

1

βm
, p2 =

βm + 1

βm
,

we can verify the assumptions of Theorem 7 and obtain the corresponding scattering results.

2. Especially, if F̃ (|u|2) ≡ 0 and F̃ (|u|2)u = a1|u|2β1u, then our results meet those of [50]

and [47] respectively.

3. Obviously, Theorem 6 and Theorem 7 are complementary each other, the equation

in (1.3) only contains nonlinearities with subcritical Sobolev exponent, while the equation in

(5.35) contains nonlinearities with subcritical and critical Sobolev exponent. However, the

constrictions on space dimensions and nonlinearities are different. For example, if F (|u|2)u =

a1|u|2β1u+ ...+ am|u|2βmu, aj < 0, j = 1, 2, ...,m, we can take

2−N +
√
N2 + 12N + 4

4N
< β1 < ... < βm <

2∗

N

and N ≥ 1, that is, each βj can be smaller than 2
N or larger than 2

N in Theorem 6. However,

if F̃ (|u|2)u = a1|u|2β1u + ... + am|u|2βmu, aj < 0, j = 1, 2, ...,m, we have to require that
2
N < β1... < βm < 2∗

N and N ≥ 3, i.e., every βj must be larger than 2
N in Theorem 7.
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