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Asymptotic analysis of time dependent
solutions for the coagulation equation
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Abstract: This article provides mathematical proof of the existence of stationary so-
lutions for the coagulation equation including source and efflux terms. We demonstrate
the convergence of time dependent solutions to these stationary solutions and highlight
the exponential rate of convergence. These properties are analyzed for affine linear
coagulation kernels, non-negative source terms and positive efflux rates. Numerical ex-
amples are included to demonstrate the predicted convergence behaviour.
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1 Introduction
The integro-differential equation modeling coagulation processes was originally pro-
posed by Smoluchowski in 1917 [24] and the continuous form of the coagulation equa-
tion was introduced in [19]. These equations appear in various scientific fields, includ-
ing astrophysics [7], chemical and process engineering [21] and aerosol science [22].
As in many application a source of new particles and a efflux of particles exists we will
takes these phenomena into account in the contribution. The mentioned coagulation
equation including a source and efflux term is presented in e.g. [4, 18] as the following
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integro-partial differential equation:

𝜕𝑡𝑐(𝑥, 𝑡) = 1
2

𝑥∫︁
0

𝐾(𝑥− 𝑦, 𝑦)𝑐(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) d𝑦 − 𝑐(𝑥, 𝑡)
∞∫︁

0

𝐾(𝑥, 𝑦)𝑐(𝑦, 𝑡) d𝑦

+ 𝑞(𝑥) − 𝑎(𝑥)𝑐(𝑥, 𝑡) (1)

𝑐(𝑥, 0) = 𝑐0(𝑥),

for all (𝑥, 𝑡) ∈ R>0 × R>0. In this equation 𝑐(𝑥, 𝑡) is the concentration of particles of
size 𝑥 at time 𝑡 and the function 𝐾 is the so called coagulation kernel. 𝐾(𝑥, 𝑦) gives
the rate at which a particle of size 𝑥 and particles of size 𝑦 form a new particle of size
𝑥 + 𝑦. The term 𝑞 is the source function and 𝑎(𝑥)𝑐(𝑥, 𝑡) is the efflux term. A brief
physical interpretation of the model described in Equation (1) can be found in [18].

Definition 1.1 (Stationary solution). A solution 𝑐 to Equation (1) is said to be a sta-
tionary or equilibrium solution if it satisfies

1
2

𝑥∫︁
0

𝐾(𝑥− 𝑦, 𝑦)𝑐(𝑥− 𝑦)𝑐(𝑦) d𝑦 − 𝑐(𝑥)
∞∫︁

0

𝐾(𝑥, 𝑦)𝑐(𝑦) d𝑦 = 𝑎(𝑥)𝑐(𝑥) − 𝑞(𝑥) (2)

∀𝑥 ∈ R>0. That is, 𝑐(·, 𝑡) ≡ 𝑐 is a solution of (1) with – by construction – vanishing
time derivative.

To further characterize the behaviour of the solution 𝑐 to the initial value problem (IVP)
defined in Equation (1) for 𝑡 → ∞, we define the following:

Definition 1.2 (Stability of the system). If the time dependent solution 𝑐 to the IVP de-
fined in Equation (1) tends to the equilibrium solution as 𝑡 → ∞, then the system is said
to be stable. If the rate of this convergence is proportional to exp(−𝑘0𝑡) for 𝑘0 ∈ R>0,
then we call the system exponentially or asymptotically stable.

In the literature, the coagulation equation with a source and efflux term have also been
studied in a discrete setting including a spatial coordinate 𝑧 ∈ R𝑑 with 𝑑 ∈ N≥1. This
results in the following equation:

𝜕𝑡𝑐𝑖(𝑧, 𝑡) + div𝑧(𝑣𝑖(𝑧, 𝑡)𝑐𝑖) = 1
2

𝑖−1∑︁
𝑗=1

𝐾𝑖−𝑗,𝑗𝑐𝑖−𝑗(𝑧, 𝑡)𝑐𝑗(𝑧, 𝑡) (3)

− 𝑐𝑖(𝑧, 𝑡)
∞∑︁

𝑗=1
𝐾𝑖,𝑗𝑐𝑖(𝑧, 𝑡) (4)

+ 𝑞𝑖(𝑧, 𝑡) − 𝑎𝑖(𝑧, 𝑡)𝑐𝑖(𝑧, 𝑡)
𝑐𝑖(𝑧, 0) = 𝑐0

𝑖 (𝑧),
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where 𝑐𝑖(𝑧, 𝑡) is the concentration of the 𝑖th particle size at spatial location 𝑧 and time
𝑡, 𝑣𝑖 is the spatial velocity of particles of size 𝑖 and 𝐾𝑖,𝑗 is the coagulation kernel of
particles of size 𝑖 and 𝑗 forming a new particle of size 𝑖+ 𝑗. The function 𝑐0

𝑖 (𝑧) denotes
the concentration of particles of size 𝑖 at the location 𝑧 and initial time 𝑡 = 0. A brief
study on this can be found in [1, 11].

In this contribution we prove the following for the coagulation equation (1) with a
linear coagulation kernel:

(i) the existence and uniqueness of a stationary solution and
(ii) the convergence of time dependent solutions to this stationary solution.

It is important to note that, prior to this article, these two problems have only been
studied for a constant coagulation kernel. Moreover, it is worth noting that this article
is the first to analyze the problems for any continuous source function. To the best of
the authors knowledge, in all earlier works the source function was assumed to have a
special form, such as an exponential function [4].

This work is organized as follows: In Section 2, we prove the existence and unique-
ness of a stationary solution. Section 3 centres on proving convergence of time depen-
dent solution to their respective stationary solution. A numerical example, showing the
proved convergence behaviour, is shown in Section 4. In the final Section 5, we provide
a brief conclusion and propose some future directions for this study.

1.1 Literature

For the discrete case, in [26] the authors analyze the existence of solutions of the
coagulation-fragmentation equation with a source function and efflux term, i.e. they
consider equation (4) without the term div𝑧(𝑣𝑖(𝑧, 𝑡)𝑐𝑖). In [11] the authors prove the
existence of a stationary solution and the convergence of the time dependent solution
to a stationary solution. The first study to focus on the coagulation equation with a
source term, but no efflux term, was [4]. In this study, the authors proved the existence
of stationary solution and determined properties of the stationary solution, such as
boundedness of the moments of the equilibrium solution. In the case when the source
term is of the form 𝑞(𝑥) = exp(−𝑎𝑥) ∀𝑥 ∈ R>0, with 𝑎 ∈ R>0, the existence of an
equilibrium solution is shown. Importantly, an explicit expression of an equilibrium
solution is provided. However, the authors only consider constant coagulation kernels.

1.2 Definitions, Notation and Assumptions

In line with [5, Page 4] and [4, Chapter 2] we define the following function spaces:
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Definition 1.3 (Function spaces). For 𝜆 ∈ R>0 we define:

Ω𝜆(𝑇 ) :=
{︀
𝑐 ∈ 𝐿∞([0, 𝑇 ];𝐶(R>0)) : ‖𝑐‖𝜆 < ∞

}︀
with the norm:

‖𝑐‖𝜆 := sup
𝑡∈(0,𝑇 )

∫︁
R>0

exp(𝜆𝑥)|𝑐(𝑥, 𝑡)| d𝑥.

In addition we define Ω(𝑇 ) :=
⋃︀

𝜆>0 Ω𝜆(𝑇 ) and the cone of non-negative functions in
Ω(𝑇 ), i.e. Ω+(𝑇 ) := {𝑐 ∈ Ω(𝑇 ) : 𝑐 = 0}.

In this paper, we assume the coagulation kernel to be affine linear, i.e.

Assumption 1.4 (Affine linearity of the coagulation kernel). The coagulation kernel
𝐾 in the present manuscript is restricted to symmetric affine linear functions, i.e.

𝐾(𝑥, 𝑦) = 𝒦0 + 𝒦1(𝑥+ 𝑦),

with 𝒦0,𝒦1 ∈ R≥0.

The kernels under consideration include well known kernels, such as Kapur’s kernel
(granulation kernel, see e.g. [14]), Smoluchowski’s kernel (linear velocity profile, see
e.g. [25]), non-linear velocity profile (see e.g. [23]) and Friedlander kernels (aerosol
dynamics kernel, see e.g. [10]).

Throughout the rest of the paper we use the following notation: The solution 𝑐 to
Equation (1) will be called the time dependent solution or instationary solution, the
solution 𝑐 to equation Equation (2) will be termed the equilibrium solution or station-
ary solution, 𝑞 will be called the source term and 𝑎 the efflux rate. For convenience,
for 𝑘 ∈ N we define the 𝑘−th moments of the instationary and the stationary solution,
as well as the source term, as follows:

𝒩𝑘 :=
∫︁

R>0

𝑥𝑘𝑐(𝑥) d𝑥, ℳ𝑘(𝑡) :=
∫︁

R>0

𝑥𝑘𝑐(𝑥, 𝑡) d𝑥 and 𝒬𝑘 :=
∫︁

R>0

𝑥𝑘𝑞(𝑥) d𝑥. (5)

For two functions 𝑓, 𝑔 : R>0 ↦→ R, their convolution 𝑓 * 𝑔 : R>0 ↦→ R is defined as

(𝑓 * 𝑔)(𝑥) :=
𝑥∫︁

0

𝑓(𝑦)𝑔(𝑥− 𝑦) d𝑦.

2 Existence and uniqueness of an equilibrium solution
In this section we will demonstrate the existence and uniqueness of an equilibrium
solution as defined in Definition 1.1 of the IVP defined in Equation (1).
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Lemma 2.1 (Condition for the stationary solution). The stationary solution 𝑐 to Equa-
tion (1) satisfies

𝑐(𝑥) = 𝒜(𝑐)(𝑥), with 𝒜(𝑐)(𝑥) := 1
2

(︀
𝒦0 + 𝒦1𝑥

)︀
(𝑐 * 𝑐)(𝑥) + 2𝑞(𝑥)(︀

𝒦0 + 𝒦1𝑥
)︀
𝒩0 + 𝒦1𝒩1 + 𝑎(𝑥)

. (6)

Proof. By Equation (2) and the linearity of the coagulation kernel (see Assumption 1.4)
for the stationary solution 𝑐 we obtain:

0 = 1
2

∫︀ 𝑥

0 (𝒦0 + 𝒦1𝑥)𝑐(𝑥− 𝑦)𝑐(𝑦) d𝑦 − 𝑐(𝑥)
∫︀ ∞

0
(︀
𝒦0 + 𝒦1(𝑥+ 𝑦)

)︀
𝑐(𝑦) d𝑦

+ 𝑞(𝑥) − 𝑎(𝑥)𝑐(𝑥)
= 1

2
∫︀ 𝑥

0
(︀
𝒦0 + 𝒦1𝑥

)︀
𝑐(𝑥− 𝑦)𝑐(𝑦) d𝑦 − 𝑐(𝑥)

(︀(︀
𝒦0 + 𝒦1𝑥

)︀
𝒩0 + 𝒦1𝒩1

)︀
+ 𝑞(𝑥) − 𝑎(𝑥)𝑐(𝑥)

= 1
2
(︀
𝒦0 + 𝒦1𝑥

)︀
(𝑐 * 𝑐)(𝑥) + 𝑞(𝑥) − 𝑐(𝑥)

(︀(︀
𝒦0 + 𝒦1𝑥

)︀
𝒩0 + 𝒦1𝒩1 + 𝑎(𝑥)

)︀
,

which directly results in the claimed equality.

To show the existence of a stationary solution, for 𝛼 ∈ R>0 we apply the Banach
fixed-point theorem [27, Theorem 1.A] to the space of continuous functions on [0, 𝛼],
i.e. 𝐶([0, 𝛼]). To do this, we require the following contraction property:

Lemma 2.2 (Contraction property of 𝒜). Under the maximum norm, the operator 𝒜 :
𝐶([0, 𝛼] ↦→ 𝐶([0, 𝛼]) - as defined in Lemma 2.1 - is contractive on

B(𝑅𝛼) := {𝑢 ∈ 𝐶([0, 𝛼]) : ‖𝑢‖𝐿∞((0,𝛼)) < 𝑅𝛼} with 𝑅𝛼 := (𝒦0𝒩0 + 𝒦1𝒩1)
𝛼(𝒦0 + 𝛼𝒦1)

.

Proof. Observe that

‖𝒜(𝑐1) − 𝒜(𝑐2)‖𝐿∞((0,𝛼)) = 1
2

|(𝒦0+𝒦1𝑥)((𝑐1+𝑐2)*(𝑐1−𝑐2))(𝑥)|
2(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)

≤ 1
2

(𝒦0+𝒦1𝛼)‖𝑐1+𝑐2‖𝐿∞((0,𝛼))‖𝑐1−𝑐2‖𝐿∞((0,𝛼))𝛼

2𝒦0𝒩0+𝒦1𝒩1

= 𝛼(𝒦0+𝛼𝒦1)
2(𝒦0𝒩0+𝒦1𝒩1) ‖𝑐1 − 𝑐2‖𝐿∞((0,𝛼))‖𝑐1 + 𝑐2‖𝐿∞((0,𝛼)). (7)

It is clear that 𝒜 is a mapping from the Banach space 𝐿∞((0, 𝛼)) onto itself. Therefore,
from (7) we obtain that 𝒜 is contractive on 𝑀 ⊂ 𝐿∞((0, 𝛼)) if there exists 𝜀 > 0 s.t.

𝛼(𝒦0+𝛼𝒦1)
(𝒦0𝒩0+𝒦1𝒩1) ‖𝑐‖ ≤ 1 − 𝜀

is satisfied for all 𝑐 ∈ 𝑀 . This holds by construction for 𝑀 = B(𝑅𝛼) for sufficiently
small 𝛼 > 0.
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Now, we show the invariance property of the ball B(𝑅𝛼) with respect to the operator
𝒜.

Lemma 2.3 (Self mapping property of 𝒜 on B(𝑅𝛼)). There exists 𝛼 ∈ R>0 s.t. 𝒜 is
a self mapping on B(𝑅𝛼), i.e. ‖𝒜(𝑐)‖𝐿∞((0,𝛼)) < 𝑅𝛼 for all 𝑐 ∈ B(𝑅𝛼).

Proof. We see that

‖𝒜(𝑐)‖𝐿∞((0,𝛼)) = sup𝑥∈(0,𝛼)

⃒⃒⃒
1
2

(𝒦0+𝒦1𝑥)(𝑐*𝑐)(𝑥)+2𝑞(𝑥)
(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)

⃒⃒⃒
≤ 1

2
(𝒦0+𝒦1𝛼)𝛼‖𝑐‖2

𝐿∞((0,𝛼))+2‖𝑞‖𝐿∞((0,𝛼))
𝒦0𝒩0+𝒦1𝒩1

.

As by construction 𝒜(𝑐) is continuous, 𝒜 is a self mapping on B(𝑅𝛼) for 𝛼 ∈ R>0 if

1
2

𝛼(𝒦0+𝒦1𝛼)‖𝑐‖2
𝐿∞((0,𝛼))+2‖𝑞‖𝐿∞((0,𝛼))

𝒦0𝒩0+𝒦1𝒩1
≤ (𝒦0𝒩0+𝒦1𝒩1)

𝛼(𝒦0+𝛼𝒦1) ,

which, as 𝑐 ∈ B(𝑅𝛼), is equivalent to

𝛼
(︀
𝒦0 + 𝒦1𝛼

)︀
‖𝑞‖𝐿∞((0,𝛼)) ≤ 1

2
(︀
𝒦0𝒩0 + 𝒦1𝒩1

)︀2
. (8)

Therefore, the ball B(𝑅𝛼) remains invariant with respect to 𝒜, i.e., ‖𝒜(𝑐)‖𝐿∞((0,𝛼)) <

𝑅𝛼 for all 𝑐 ∈ B(𝑅𝛼), whenever Equation (8) is satisfied for 𝛼 positive but sufficiently
small. Through estimates, we obtain that Equation (8) is satisfied for

𝛼 ∈
(︀
0 , min

{︀
1 , 𝒦0𝒩0+𝒦1𝒩1

(𝒦0+𝒦1)‖𝑞‖𝐿∞((0,1))

}︀]︀
.

Using the Banach fixed-point theorem [27, Theorem 1.A], we can now show existence
of a unique solution for Equation (2).

Lemma 2.4 (Existence of a unique solution on a small time horizon). Let 𝛼 ∈ R>0 be
chosen s.t. 𝒜 is a self mapping on B(𝑅𝛼) (see Lemma 2.3). Then, there exists a unique
solution 𝑐 ∈ B(𝑅𝛼) for Equation (2).

Proof. By Lemma 2.2 and Lemma 2.3, the existence and uniqueness of the solution
𝑐 ∈ 𝐶([0, 𝛼]) to Equation (6) is a direct consequence of the Banach fixed-point theorem
[27, Theorem 1.A].

The latter result can be extended as follows:

Lemma 2.5 (Existence of a unique solution on a semi-infinite time horizon). There
exists a unique solution to Equation (2) on R>0.
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Proof. For the value of 𝛼 that satisfies the restrictions in Lemma 2.4, Equation (6)
has been shown to have a unique solution 𝑐(𝑥) on [0, 𝛼] in Lemma 2.4. To show that
Equation (6) admits a unique solution on R>0, we now iteratively extend the domain
of existence by a constant steplength 𝛼.
Note that for any 𝑥 in [𝛼, 2𝛼], Equation (6) can be written as:

𝒜(𝑐)(𝑥) = 1
2

(𝒦0+𝒦1𝑥)
∫︀ 𝑥

0
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦+𝑞(𝑥)

(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥) ,

with 𝑐(𝑥) = 𝑐(𝑥) for all 𝑥 ∈ (0, 𝛼] and where 𝑐 is denoted by 𝐿𝑒𝑚𝑚𝑎 2.4

= 1
2

(𝒦0+𝒦1𝑥)
(︀∫︀ 𝑥−𝛼

0
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦+

∫︀ 𝛼

𝑥−𝛼
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦+

∫︀ 𝑥

𝛼
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦

)︀
+𝑞(𝑥)

(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)

=
(𝒦0+𝒦1𝑥)

(︀∫︀ 𝑥

𝛼
𝑐(𝑦)𝑐(𝑥−𝑦) d𝑦+ 1

2

∫︀ 𝛼

𝑥−𝛼
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦

)︀
+𝑞(𝑥)

(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)

=
∫︀ 𝑥

𝛼
𝑐(𝑦) (𝒦0+𝒦1𝑥)𝑐(𝑥−𝑦)

(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)⏟  ⏞  
:=ℎ(𝑥,𝑦)

d𝑦 +
(𝒦0+𝒦1𝑥) 1

2

∫︀ 𝛼

𝑥−𝛼
𝑐(𝑥−𝑦)𝑐(𝑦) d𝑦+𝑞(𝑥)

(𝒦0+𝒦1𝑥)𝒩0+𝒦1𝒩1+𝑎(𝑥)⏟  ⏞  
:=𝑔(𝑥)

.

Thus, the solution of the fixed-point problem 𝒜1(𝑐)(𝑥) = 𝑐(𝑥) for 𝑥 ∈ [𝛼, 2𝛼] can be
written in the following form:

𝑐(𝑥) =
∫︀ 𝑥

𝛼
𝑐(𝑦)ℎ(𝑥, 𝑦) d𝑦 + 𝑔(𝑥). (9)

As ℎ, 𝑔 are continuous functions, by standard methods (see e.g. [8]) this linear Volterra
equation of the second kind has a unique solution 𝑐(𝑥) ∈ 𝐶([𝛼, 2𝛼]). The function

𝑐(𝑥) =

{︃
𝑐(𝑥) if 𝑥 ∈ (0, 𝛼]
𝑐(𝑥) if 𝑥 ∈ (𝛼, 2𝛼]

satisfies Equation (6) for 𝑥 ∈ [0, 2𝛼] and is continuous as 𝑐(𝛼) = 𝑔(𝛼) = 𝒜(𝑐)(𝛼) =
𝑐(𝛼). We can now analogously extend the solution to the interval (0, 3𝛼), and so on.
Hence the result follows.

3 Exponential stability
In this section, we demonstrate convergence of time dependent solutions to the sta-
tionary solution for the coagulation equation (1) with if the effluc function is constant,
i.e. 𝑎(𝑥) ≡ a ∀𝑥 ∈ R with a ∈ R>0, assumption 1.4 is satisfied and the following
assumption holds:

Assumption 3.1 (Condition on source term). The source term in (1) is a non-negative
continuous function on R≥0, i.e. 𝑞 ∈ 𝐶(R≥0;R≥0).

With the help of this assumption we can derive the following estimates for the zeroth
and first moment of the instationary solution:
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Corollary 3.2 (Estimates of ℳ0 and exponential stability of ℳ1). The function ℳ0
as defined in (5) satisfies

𝑑
𝑑𝑡 ℳ0(𝑡) = − 1

2 𝒦0ℳ2
0(𝑡) − 𝒦1ℳ0(𝑡)ℳ1(𝑡) + 𝒬0 − aℳ0(𝑡) (10)

and can be estimated as follows

ℳ0(𝑡) ≤ exp(−a𝑡)ℳ0(0) + (1 − exp(−a𝑡)) 𝒬0
a (11)

∀𝑡 ∈ R≥0. Moreover ∀𝑡 ∈ R≥0, ℳ1 as defined in (5) is denoted by:

ℳ1(𝑡) = exp(−a𝑡)ℳ1(0) +
(︀
1 − exp(−a𝑡)

)︀ 𝒬1
a . (12)

Proof. By integrating (1) over [0,∞) with respect to 𝑥, we obtain

𝑑
𝑑𝑡 ℳ0(𝑡) = 1

2
∫︀ ∞

0
∫︀ 𝑥

0
(︀
𝒦0 + 𝑥𝒦1

)︀
𝑐(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) d𝑦 d𝑥− a

∫︀ ∞
0 𝑐(𝑥, 𝑡)

−
∫︀ ∞

0
∫︀ ∞

0
(︀
𝒦0 + 𝒦1(𝑥+ 𝑦)

)︀
𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡) d𝑦 d𝑥+

∫︀ ∞
0 𝑞(𝑥) d𝑥 d𝑥

= 1
2

∫︀ ∞
0

∫︀ ∞
0

(︀
𝒦0 + 𝒦1(𝑥+ 𝑦)

)︀
𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡) d𝑥d𝑦

−
∫︀ ∞

0
∫︀ ∞

0
(︀
𝒦0 + 𝒦1(𝑥+ 𝑦)

)︀
𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡) d𝑦 d𝑥+ 𝒬 − aℳ0(𝑡)

= − 1
2
(︀
𝒦0ℳ2

0(𝑡) + 2𝒦1ℳ0(𝑡)ℳ1(𝑡)
)︀

+ 𝒬0 − aℳ0(𝑡)
≤ 𝒬0 − aℳ0(𝑡).

The first postulated inequality in the corollary is a trivial consequence of the latter
formula. The second equality is a direct consequence of the fact that 𝑑

𝑑𝑡 ℳ1(𝑡) = 𝒬1 −
aℳ1(𝑡).

For the difference between the first moment of the stationary solution and the instation-
ary solution, we have the following:

Corollary 3.3 (Equality for difference between 𝒩1 and ℳ1). For the first moments,
i.e. ℳ1,𝒩1 as defined in (5), we obtain the following estimate:

|ℳ1(𝑡) − 𝒩1| = exp(−a𝑡)|ℳ1(0) − 𝒩1|. (13)

Proof. As ℳ1(𝑡) = exp(−a𝑡)ℳ1(0) +
(︀
1 − exp(−a𝑡)

)︀ 𝒬1
a and 𝒩1 = 𝒬1

a , we obtain
ℳ1(𝑡) = exp(−a𝑡)ℳ1(0) +

(︀
1 − exp(−a𝑡)

)︀
𝒩1. Thus, the claim holds.

The zeroth moment of the stationary solution can be estimated as follows:

Corollary 3.4 (Equalities for 𝒩0). The zeroth moment as defined in Equation (5) sat-
isfies

𝒩0 =
√︀

2a2𝒦0𝒬0 + (a2 + 𝒦1𝒬1)2 − a2 − 𝒦1𝒬1
a𝒦0

, (14)
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for 𝒦0 > 0, and for 𝒦0 = 0

𝒩0 = a𝒬0
a2 + 𝒦1𝒬1

. (15)

To demonstrate exponential stability, the following assumption is crucial:

Assumption 3.5 (Implicit condition on moments). There exists 𝑇 ∈ R≥0 s.t. for all
𝑡 > 𝑇 the zeroth and first moment as defined in (5) satisfy ℳ0(𝑡) ̸= 𝒩0 and

ℳ1(𝑡) − 𝒩1
ℳ0(𝑡) − 𝒩0

≥ 0.

Without loss of generality, in the following we assume that the latter assumption is
satisfied for 𝑇 = 0.

In the following remark, we exemplary state an setting that satisfies this assump-
tion.

Remark 3.1 (Data satisfying Assumption 3.1). Let a = 1, 𝑞(𝑥) = exp(−𝑥), 𝑐(𝑥, 0) =
exp(−𝑥),𝒦0 = 1, and 𝒦1 = 1. By construction 𝒬0 = 1, 𝒬1 = 1, 𝒩0 =

√
6 − 2 and

𝒩1 = 1, and thus ℳ1(𝑡) = exp(−𝑡)ℳ1(0) + (1 − exp(−𝑡)) = 1, ℳ1(0) = 1
and 𝑑

𝑑𝑡 ℳ0(𝑡) = − 1
2 (ℳ2

0(𝑡) + 2ℳ0(𝑡)) + 1 − ℳ0(𝑡), ℳ0(0) = 1. Conse-

quently ℳ1(𝑡) − 𝒩1 = 0 and ℳ0(𝑡) = (5
√

6−12) exp(−𝑡
√

2)+
√

6
1−(5−2

√
6) exp(−𝑡

√
2) − 2. This leads

to ℳ0(𝑡) − 𝒩0 = 2
√

6
(5+2

√
6) exp(𝑡

√
2)−1 . Hence, ℳ0(𝑡) − 𝒩0 > 0 and Assumption 3.5

is satisfied.

Now, we can show exponential convergence of the zeroth moment of the instationary
solution.

Lemma 3.6 (Exponential convergence of ℳ0 to 𝒩0). Let Assumption 3.5 be satisfied,
then we obtain

|ℳ0(𝑡) − 𝒩0| ≤ |ℳ0(0) − 𝒩0| exp(−𝜓0(𝑡)), (16)

where 𝜓0(𝑡) := −𝑡
(︀
a + 1

2 𝒦0𝒩0
)︀

−
𝑡∫︁

0

𝒦1ℳ1(𝑠) + 1
2 𝒦0ℳ0(𝑠) d𝑠.

Proof. Integrating (2) on [0,∞) with respect to 𝑥, for an equilibrium solution we obtain

1
2 𝒦0𝒩 2

0 + 𝒦1𝒩0𝒩1 + a𝒩0 = 𝒬.
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Together with (10), this yields

𝑑
𝑑𝑡

(︀
ℳ0(𝑡) − 𝒩0

)︀
= − 1

2 𝒦0ℳ2
0(𝑡) − 𝒦1ℳ0(𝑡)ℳ1(𝑡) + 𝒬 − aℳ0(𝑡)

+ 1
2 𝒦0𝒩 2

0 + 𝒦1𝒩0𝒩1 − 𝒬 + a𝒩0

= − 1
2 𝒦0

(︀
ℳ2

0(𝑡) − 𝒩 2
0

)︀
− 𝒦1

(︀
ℳ0(𝑡)ℳ1(𝑡) − 𝒩0𝒩1

)︀
− a(ℳ0(𝑡) − 𝒩0)

by the assumption 3.5 ℳ0(𝑡) ̸= 𝒩0 and we obtain

=
(︁

1
2 𝒦0

(︀
ℳ0(𝑡) + 𝒩0

)︀
+ 𝒦1ℳ1(𝑡) + 𝒦1𝒩0

ℳ1(𝑡)−𝒩1
ℳ0(𝑡)−𝒩0

+ a
)︁(︀

𝒩0 − ℳ0(𝑡)
)︀
.

The non negativity assumption on the fraction in the latter formula in Assumption 3.5
concludes the proof.

To prove convergence we first define an auxiliary initial value problem for the differ-
ence between the stationary and the instationary solutions.

Lemma 3.7 (Initial value problem for 𝑐− 𝑐). We define 𝑓(𝑥, 𝑡) := 𝑐(𝑥, 𝑡) − 𝑐(𝑥) for
all (𝑥, 𝑡) ∈ R≥0 × R>0. Then 𝑓 satisfies the following initial value problem:

𝜕𝑡𝑓(𝑥, 𝑡) + a𝑓(𝑥, 𝑡) = (𝒦0 + 𝒦1𝑥)
(︁

1
2
(︀
𝑓(·, 𝑡) * 𝑓(·, 𝑡)

)︀
(𝑥) +

(︀
𝑓(·, 𝑡) * 𝑐

)︀
(𝑥)

)︁
−

(︀
𝒦0 + 𝒦1𝑥

)︀(︁
𝑐(𝑥)

(︀
ℳ0(𝑡) − 𝒩0

)︀
+ 𝑓(𝑥, 𝑡)ℳ0(𝑡)

)︁
− 𝒦1

(︁
𝑐(𝑥)

(︀
ℳ1(𝑡) − 𝒩1

)︀
+ 𝑓(𝑥, 𝑡)ℳ1(𝑡)

)︁
(17)

𝑓(𝑥, 0) = 𝑐0(𝑥) − 𝑐(𝑥).

Proof. Equations (1) and (2) result in

𝜕𝑡𝑓(𝑥, 𝑡) + a𝑓(𝑥, 𝑡) = 1
2

∫︀ 𝑥

0 𝐾(𝑥−𝑦, 𝑦)
(︀
𝑐(𝑥−𝑦, 𝑡)𝑐(𝑦, 𝑡) − 𝑐(𝑥−𝑦)𝑐(𝑦)

)︀
d𝑦 (18)

+
∫︀ ∞

0 𝐾(𝑥, 𝑦)
(︀
𝑐(𝑥)𝑐(𝑦) − 𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡)

)︀
d𝑦. (19)

For the right hand side of (18), we obtain

1
2

∫︀ 𝑥

0 𝐾(𝑥− 𝑦, 𝑦)
(︀
𝑐(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) − 𝑐(𝑥− 𝑦)𝑐(𝑦)

)︀
d𝑦

= 1
2 (𝒦0 + 𝒦1𝑥)

∫︀ 𝑥

0
(︀
𝑐(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) − 𝑐(𝑥− 𝑦)𝑐(𝑦, 𝑡)

+ 𝑐(𝑥− 𝑦)𝑐(𝑦, 𝑡) − 𝑐(𝑥− 𝑦)𝑐(𝑦)
)︀

d𝑦.

By definition of 𝑓 this results in

= 1
2 (𝒦0 + 𝒦1𝑥)

∫︀ 𝑥

0
(︀
𝑓(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) + 𝑐(𝑥− 𝑦)𝑓(𝑦, 𝑡)

)︀
d𝑦

= 1
2 (𝒦0 + 𝒦1𝑥)

∫︀ 𝑥

0
(︀
𝑓(𝑥− 𝑦, 𝑡)𝑐(𝑦, 𝑡) − 𝑓(𝑥− 𝑦, 𝑡)𝑐(𝑦)

+ 𝑓(𝑥− 𝑦, 𝑡)𝑐(𝑦) + 𝑐(𝑥− 𝑦)𝑓(𝑦, 𝑡)
)︀

d𝑦.
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Again, by definition of 𝑓 this results in

= 1
2 (𝒦0 + 𝒦1𝑥)

∫︀ 𝑥

0
(︀
𝑓(𝑥− 𝑦, 𝑡)𝑓(𝑦, 𝑡) + 𝑓(𝑥− 𝑦, 𝑡)𝑐(𝑦) + 𝑐(𝑥− 𝑦)𝑓(𝑦, 𝑡)

)︀
d𝑦

= 1
2 (𝒦0 + 𝒦1𝑥)

(︀(︀
𝑓(·, 𝑡) * 𝑓(·, 𝑡)

)︀
(𝑦) + 2

(︀
𝑓(·, 𝑡) * 𝑐

)︀
(𝑥)

)︀
.

Similarly from (19) we have∫︀ ∞
0 𝐾(𝑥, 𝑦)

(︀
𝑐(𝑥)𝑐(𝑦) − 𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡)

)︀
d𝑦

= −
∫︀ ∞

0 (𝒦0 + 𝒦1(𝑥+ 𝑦))
·
(︀
𝑐(𝑥, 𝑡)𝑐(𝑦, 𝑡) − 𝑐(𝑥)𝑐(𝑦, 𝑡) + 𝑐(𝑥)𝑐(𝑦, 𝑡) − 𝑐(𝑥)𝑐(𝑦)

)︀
d𝑦

= −
∫︀ ∞

0 (𝒦0 + 𝒦1(𝑥+ 𝑦))
(︀
𝑓(𝑥, 𝑡)𝑐(𝑦, 𝑡) + 𝑐(𝑥)𝑓(𝑦, 𝑡)

)︀
d𝑦

= −
(︀
𝒦0 + 𝒦1𝑥

)︀
𝑓(𝑥, 𝑡)

∫︀ ∞
0 𝑐(𝑦, 𝑡) d𝑦 − 𝒦1𝑓(𝑥, 𝑦)

∫︀ ∞
0 𝑦𝑐(𝑦, 𝑡) d𝑦

−
(︀
𝒦0 + 𝒦1𝑥

)︀
𝑐(𝑥)

∫︀ ∞
0 𝑐(𝑦, 𝑡) − 𝑐(𝑦) d𝑦 − 𝒦1𝑐(𝑥)

∫︀ ∞
0 𝑦

(︀
𝑐(𝑦, 𝑡) − 𝑐(𝑦)

)︀
d𝑦.

By definition of ℳ0.ℳ1,𝒩0,𝒩1 in (5), this results in

= −(𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑡)ℳ0(𝑡) − 𝒦1𝑓(𝑥, 𝑡)ℳ1(𝑡)
− (𝒦0 + 𝒦1𝑥)𝑐(𝑥)(ℳ0(𝑡) − 𝒩0) − 𝒦1𝑐(𝑥)(ℳ1(𝑡) − 𝒩1).

Thus, for 𝑓 we obtain the claimed integro-differential equation, which concludes the
proof.

To prove pointwise convergence of the instationary solution to its stationary counter-
part, we use the following two lemmata:

Lemma 3.8. For the IVP (1) with the assumptions 𝑎 ≡ a, continuous sources function
𝑞 and Assumption (1.4), the solution 𝑢 of a linear part of (17) converge uniformly on
[0,𝑚], for any 0 < 𝑚 < ∞ to zero as 𝑡 → ∞ with exponential rate, i.e. there exists
𝜌 ∈ R>0 s.t. ∀𝑡 ∈ R>0 the following holds:

‖𝑢(·, 𝑡)‖𝐿∞((0,𝑚)) ≤ 𝜌‖𝑢(·, 0)‖𝐿∞((0,𝑚)) exp (−𝑡(𝒦0𝒩0 + 𝒦1𝒩1 + a)) ,

Proof. Equation (17) can be rewritten as

𝜕𝑡𝑓(𝑥, 𝑡) + a𝑓(𝑥, 𝑡) (20)

= (𝒦0 + 𝒦1𝑥)
(︀
𝑓(·, 𝑡) * 𝑐

)︀
(𝑥) − (𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑡)𝒩0 − 𝒦1𝑓(𝑥, 𝑡)𝒩1 (21)

+ (𝒦0 + 𝒦1𝑥) 1
2
(︀
𝑓(·, 𝑡) * 𝑓(·, 𝑡)

)︀
(𝑥) −

(︀
𝒦0 + 𝒦1𝑥

)︀
𝑐(𝑥)

(︀
ℳ0(𝑡) − 𝒩0

)︀
(22)

− 𝒦1𝑐(𝑥)
(︀
ℳ1(𝑡) − 𝒩1

)︀
− (𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑡)

(︀
ℳ0(𝑡) − 𝒩0

)︀
− 𝒦1𝑓(𝑥, 𝑡)

(︀
ℳ1(𝑡) − 𝒩1

)︀
(23)
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We will first neglect (22) and (23) and investigate (20) and (21). The full equation,
i.e. (20) - (23) will be considered in lemma 3.9. Based on the following linear auxiliary
problem, i.e. with 𝑢0 : R ↦→ R

𝜕𝑡𝑢(𝑥, 𝑡) + a𝑢(𝑥, 𝑡) = (𝒦0 + 𝒦1𝑥)
(︀
𝑢(·, 𝑡) * 𝑐

)︀
(𝑥)

− 𝑢(𝑥, 𝑡)
(︀
𝒦0𝒩0 + 𝑥𝒦1𝒩0 + 𝒦1𝒩1

)︀
(24)

𝑢(𝑥, 0) = 𝑢0(𝑥) (25)

Let𝑈(·, 𝑡),𝐶(·, 𝑡), 𝐶, 𝑈0 be the Laplace transform w.r.t to the spatial variable of 𝑢(·, 𝑡),
𝑐(·, 𝑡), 𝑐 and 𝑢0, respectively for all 𝑡 ∈ R≥0. By taking the Laplace transform of (24)
with respect to 𝑥, we obtain the following partial differential equation:

𝑈𝑡(𝑝, 𝑡) + a𝑈(𝑝, 𝑡) = 𝒦0𝑈(𝑝, 𝑡)𝐶(𝑝) − 𝒦1
(︀
𝑈𝑝(𝑝, 𝑡)𝐶(𝑝) + 𝑈(𝑝, 𝑡)𝐶𝑝(𝑝)

)︀
−

(︀
𝒦0𝒩0 + 𝒦1𝒩1

)︀
𝑈(𝑝, 𝑡) + 𝒦1𝒩0𝑈𝑝(𝑝, 𝑡)

𝑈(𝑝, 0) = 𝑈0(𝑝)

for 𝑈 which is equivalent to

𝑈𝑡(𝑝, 𝑡) + 𝒦1
(︀
𝐶(𝑝) − 𝒩0

)︀
𝑈𝑝(𝑝, 𝑡) =

(︀
𝒦0(𝐶(𝑝) − 𝒩0)
− 𝒦1(𝐶𝑝(𝑝) − 𝒦1) − a

)︀
𝑈(𝑝, 𝑡) (26)

𝑈(𝑝, 0) = 𝑈0(𝑝). (27)

As 𝒦0𝒩0 + 𝒦1𝒩1 + a is independent of 𝑝, we can substitute 𝑈 by 𝑊 defined as

𝑊 (·, *) :≡ exp (𝜓(*))𝑈(·, *) ∀𝑡 ∈ R≥0. (28)

where 𝜓(*) :≡
∫︀ *

0 (𝒦0𝒩0 + 𝒦1𝒩1 +a )𝑑𝑠 and obtain from (26) and (27) the following
initial value problem for 𝑊 :

𝑊𝑡(𝑝, 𝑡) + 𝒦1(𝐶(𝑝) − 𝒩0)𝑊𝑝(𝑝, 𝑡) = (𝒦0𝐶(𝑝) − 𝒦1𝐶𝑝(𝑝))𝑊 (𝑝, 𝑡) (29)

𝑊 (𝑝, 0) = 𝑈0(𝑝). (30)

The characteristic equation (see e.g. [2, 13, 9]) of (29) is given by

d𝑡 = d𝑝
𝒦1(𝐶(𝑝) − 𝒩0)

= d(𝑊 (𝑝, 𝑡))
(𝒦0𝐶(𝑝) − 𝒦1𝐶𝑝(𝑝))𝑊 (𝑝, 𝑡)

. (31)

By analysis similar to that in [6] (see (3.10) to (3.12), with 𝑏 = 0) and from (28) we
can conclude that there exists 𝜌 ∈ R>0 s.t. the claim holds.

Theorem 3.9 (Exponential rate of convergence from 𝑐 to 𝑐 ). For the IVP (1) with the
assumptions 𝑎(𝑥) = a, a continuous source function 𝑞 and Assumption (1.4), further



Asymptotic analysis of solutions for coagulation equation with source and efflux 13

suppose that condition (3.5) holds. Then, for any 0 < 𝑚 < ∞ the solution 𝑐 of (17)
uniformly converges to 𝑐 on [0,𝑚] as 𝑡 → ∞ with exponential rate, i.e. for every
𝑚 ∈ R>0 there exists 𝛾 ∈ R>0 s.t.

‖𝑐(·, 𝑡) − 𝑐‖𝐿∞((0,𝑚)) ≤ 𝛾 exp(−𝑡𝜈)

for all 𝑡 ∈ R>0 and 𝜈 < a.

Proof. Here we recall the IVP

𝜕𝑡𝑓(𝑥, 𝑡) + a𝑓(𝑥, 𝑡)
= (𝒦0 + 𝒦1𝑥)

(︀
𝑓(·, 𝑡) * 𝑐

)︀
(𝑥) − (𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑡)𝒩0 − 𝒦1𝑓(𝑥, 𝑡)𝒩1

+ (𝒦0 + 𝒦1𝑥) 1
2
(︀
𝑓(·, 𝑡) * 𝑓(·, 𝑡)

)︀
(𝑥) −

(︀
𝒦0 + 𝒦1𝑥

)︀
𝑐(𝑥)

(︀
ℳ0(𝑡) − 𝒩0

)︀
− 𝒦1𝑐(𝑥)

(︀
ℳ1(𝑡) − 𝒩1

)︀
− (𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑡)

(︀
ℳ0(𝑡) − 𝒩0

)︀
− 𝒦1𝑓(𝑥, 𝑡)

(︀
ℳ1(𝑡) − 𝒩1

)︀
. (32)

Let us denote 𝑢(𝑥, 𝑡) = 𝑇𝑡𝑢0(𝑥), where 𝑢(𝑥, 𝑡) is the solution of equation (24) and
𝑇𝑡 is the resulting semigroup operator. From Lemma 3.8 for the usual semigroup norm
‖𝑇𝑡‖ := sup‖𝑢0‖𝐶≤1 ‖𝑇𝑡𝑢0‖𝐿∞((0,𝑚)) we obtain the following: There exists 𝜌 ∈ R
s.t. for 𝜈 := a

2 the following holds:

‖𝑇𝑡‖ ≤ 𝜌 exp(−𝜈𝑡), (33)

for all 𝑡 ∈ [0, 𝑇 ]. With the help of the semigroup operator, the nonlinear initial value
problem (32) can be written in integral form as (see e.g. [20, p. 110] and [17, Thm 6.5])

𝑓(𝑥, 𝑡) = 𝑇𝑡𝑓0 +
∫︀ 𝑡

0 𝑇𝑡−𝑠

(︀
(𝒦0 + 𝒦1𝑥) 1

2
(︀
𝑓(·, 𝑠) * 𝑓(·, 𝑠)

)︀
(𝑥)

)︀
−

(︀
𝒦0 + 𝒦1𝑥

)︀
𝑐(𝑥)

(︀
ℳ0(𝑠) − 𝒩0

)︀
− 𝒦1𝑐(𝑥)

(︀
ℳ1(𝑠) − 𝒩1

)︀
− (𝒦0 + 𝒦1𝑥)𝑓(𝑥, 𝑠)

(︀
ℳ0(𝑠) − 𝒩0

)︀
− 𝒦1𝑓(𝑥, 𝑠)

(︀
ℳ1(𝑠) − 𝒩1

)︀
d𝑠. (34)

Let the right hand side of (34) be defined as 𝐷(𝑓(·, 𝑡)). Then it can easily be checked
that for any fixed 𝑡 ≥ 0, 𝐷 maps 𝐶([0,𝑚]) onto itself. Expressions (33) and (34) yield

‖𝐷(𝑓(·, 𝑡))‖𝐿∞((0,𝑚))

≤ 𝜌 exp(−𝜈𝑡)
(︁

‖𝑓0‖𝐿∞((0,𝑚)) +
∫︀ 𝑡

0 exp(𝜈𝑠)
(︁

1
2 (𝒦0 + 𝒦1𝑚)‖𝑓(·, 𝑠)‖2

𝐿∞((0,𝑚))

+
(︀
(𝒦0 + 𝒦1𝑚)|ℳ0(𝑠) − 𝒩0| + 𝒦1|ℳ1(𝑠) − 𝒩1|

)︀
‖𝑓(·, 𝑠)‖𝐿∞((0,𝑚))

+
(︀
(𝒦0 + 𝒦1𝑚)|ℳ0(𝑠) − 𝒩0| + 𝒦1|ℳ1(𝑠) − 𝒩1|

)︀
‖𝑐‖𝐿∞((0,𝑚))

)︁
d𝑠

)︁
. (35)
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Multiplying (35) by exp(𝜈𝑡) and taking the supremum over 𝑡 ∈ (0, 𝑇 ), we can – with
the norm as defined in definition 1.3 – establish the following condition

‖𝐷(𝑓)‖𝜈 ≤ 𝜌‖𝑓0‖𝐿∞((0,𝑚)) + 𝜌𝑚
2𝜈 (𝒦0 + 𝒦1𝑚)‖𝑓‖2

𝜈 + 𝜌𝑎1 + 𝑎2‖𝑓‖𝜈 ,

where

𝑎1 :=
⃦⃦

(𝒦0 + 𝒦1Id(·))|𝑐(·)|
⃦⃦

𝐿∞((0,𝑚))
∫︀ ∞

0 exp(𝜈𝑠)|ℳ0(𝑠) − 𝒩0| d𝑠

+ ‖𝑐‖𝐿∞((0,𝑚))
∫︀ ∞

0 exp(𝜈𝑠)|ℳ1(𝑠) − 𝒩1| d𝑠
𝑎2 := (𝒦0 + 𝒦1𝑚)

∫︀ ∞
0 |ℳ0(𝑠) − 𝒩0| d𝑠+ 𝒦1

∫︀ ∞
0 |ℳ1(𝑠) − 𝒩1| d𝑠. (36)

From (35) it is possible to show that if

‖𝑓0‖𝐿∞((0,𝑚)) + 𝑎1 ≤ 𝜈(1−𝑎2)2

2𝜌2𝑚(𝒦0+𝒦1𝑚) and 𝑎2 < 1, (37)

then the mapping 𝐷 has an invariant ball in 𝐶([0,𝑚]) with radius 𝜂 satisfying 𝜂1 ≤
𝜂 ≤ 𝜂2 where 𝜂1 and 𝜂2 are the real positive roots of the quadratic equation

𝜌𝑚
2𝜈 (𝒦0 + 𝒦1𝑚)𝑧2 − (1 − 𝑎2)𝑧 + 𝜌(‖𝑓0‖𝐶 + 𝑎1) = 0. (38)

In fact, if ‖𝑓‖𝜈 ≤ 𝜂 for some 𝜂 ∈ [𝜂1, 𝜂2], then from (36) we obtain

‖𝐷(𝑓)‖𝜈 ≤ 𝜌‖𝑓0‖𝐶 + 𝜌𝑚
2𝜈 (𝛼+ 𝛿𝑚)𝜂2 + 𝜌𝑎1 + 𝑎2𝜂 ≤ 𝜂, (39)

which follows from the fact that 𝜂1 ≤ 𝜂2 and conditions (37) hold. We will now derive
a conditions for 𝐷 to be a contraction on 𝐶([0,𝑚]). For any 𝑓1 and 𝑓2, it follows from
(33) and (34) that

‖𝐷(𝑓1) −𝐷(𝑓2)‖𝐿∞((0,𝑚)) (40)

≤ 1
2𝜌(𝒦0 + 𝒦1𝑚)

∫︀ 𝑡

0 exp(−𝜈(𝑡− 𝑠))‖(𝑓1 − 𝑓2) * (𝑓1 + 𝑓2)‖𝐿∞((0,𝑚)) d𝑠

+ (𝒦0 + 𝒦1𝑚)
∫︀ 𝑡

0 exp(−𝜈(𝑡− 𝑠))|ℳ0(𝑠) − 𝒩0|‖𝑓1 − 𝑓2‖𝐿∞((0,𝑚)) d𝑠

+ 𝒦1
∫︀ 𝑡

0 exp(−𝜈(𝑡− 𝑠))|ℳ1(𝑠) − 𝒩1|‖𝑓1 − 𝑓2‖𝐿∞((0,𝑚)) d𝑠
≤ 𝜌𝑚

2𝜈 (𝒦0 + 𝒦1𝑚) exp(−𝜈𝑡)‖𝑓1 − 𝑓2‖𝜈(‖𝑓1‖𝜈 + ‖𝑓2‖𝜈)
+ exp(−𝜈𝑡)𝑎2‖𝑓1 − 𝑓2‖𝜈 . (41)

If the functions 𝑓1 and 𝑓2 belong to a ball with radius 𝜂, that is ‖𝑓1‖ ≤ 𝜂 and ‖𝑓2‖ ≤ 𝜂,
then from (39) we obtain

‖𝐷(𝑓1) −𝐷(𝑓2)‖𝜈 ≤
(︀

𝜌𝑚
𝜈 (𝒦0 + 𝒦1𝑚) + 𝑎2

)︀
‖𝑓1 − 𝑓2‖𝜈 . (42)

Thus the mapping 𝐷 is a contraction mapping in the ball with radius

𝜂 <
(1 − 𝑎2)

𝑚𝜌(𝒦0 + 𝒦1𝑚) . (43)
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From equation (38), 𝜂1 and 𝜂2 are given by

𝜂1,2 = (1−𝑎2)𝜈
𝜌𝑚(𝒦0+𝒦1𝑚)

(︁
1 ±

√︁
1 − 2𝜌2𝑚(𝛼+𝛿𝑚)(‖𝑓0‖𝐶+𝑎1)

𝜈(1−𝑎2)2

)︁
(44)

and hence the bound of contraction belongs to the closed interval [𝜂1, 𝜂2]. From Ba-
nach’s fixed-point theorem [27, Theorem 1.a], we see that there exists a solution of IVP
(32) that is unique in the ball of radius ‖𝑓‖𝜈 ≤ 𝜂0 and belongs to the ball of radius
‖𝑓‖𝜈 ≤ 𝜂1 < 𝜂0. Moreover, this solution tends to zero no slower than exp(−𝜈𝑡).

The latter result can be extended to exponential convergence in 𝐿1((0,∞)) as follows:

Lemma 3.10 ( Convergence in 𝐿1(0,∞)). Consider the problem (1) with 𝑎(𝑥) = a

and continuous source function 𝑞. Further, suppose that Assumption (3.5) is satisfied.
Then, the solution of the problem (1) converges in 𝐿1((0,∞)) to the equilibrium solu-
tion as 𝑡 → ∞ in 𝐶([𝑎, 𝑏]) for all 0 ≤ 𝑎 < 𝑏 < ∞. And the rate of convergence is
proportional to exp (−𝜈𝑡).

Proof. In order to prove convergence in the space 𝐿1((0,∞)), using Theorem 3.9, we
note that∫︀ ∞

0 |𝑐(𝑥, 𝑡) − 𝑐(𝑥)| d𝑥 =
∫︀ 𝑚

0 |𝑐(𝑥, 𝑡) − 𝑐(𝑥)| d𝑥+
∫︀ ∞

𝑚
|𝑐(𝑥, 𝑡) − 𝑐(𝑥)| d𝑥

≤𝜂0 exp(−𝜈𝑡)𝑚+
∫︀ ∞

𝑚
𝑐(𝑥, 𝑡) + 𝑐(𝑥) d𝑥. (45)

The latter integral can be estimated as follows:∫︀ ∞
𝑚
𝑐(𝑡, 𝑥) + 𝑐(𝑥) d𝑥 ≤ 1

𝑚

∫︀ ∞
𝑚
𝑥
(︀
𝑐(𝑡, 𝑥) + 𝑐(𝑥)

)︀
d𝑥 ≤ ℳ̂1+𝒩1

𝑚 , (46)

with ℳ̂1 ∈ R s.t. ℳ1(𝑡) ≤ ℳ̂1 ∀𝑡 (see (13)). From (45), we thus have the following∫︀ ∞
0 |𝑐(𝑥, 𝑡) − 𝑐(𝑥)| d𝑥 ≤ 𝜂0 exp(−𝜈𝑡)𝑚+ ℳ̂1+𝒩1

𝑚 . (47)

Therefore, for every 𝜀 ∈ R>0 choose 𝑚𝜀 = 2(ℳ̂1+𝒩1)
𝜀 and 𝑡𝜀 ∈ R>0 sufficiently

large s.t. exp(−𝜈𝑡𝜀) ≤ 𝜀
2𝜂0𝑚𝜀

. Then ‖𝑐(·, 𝑡) − 𝑐‖𝐿∞(R>0) ≤ 𝜀 ∀𝑡 > 𝑡𝜀 and as 𝜀 was
arbitrarily chosen we have the claimed convergence.

4 A numerical example
This section provides a numerical example pertaining to the analysis conducted in the
previous section.
We consider the problem (1) with the coagulation kernel 𝐾(𝑥, 𝑦) = 𝑥 + 𝑦, i.e.
𝒦0 = 0,𝒦1 = 1, the efflux term 𝑎 ≡ 1, the source term 𝑞(𝑥) = exp(−𝑥) ∀𝑥 ∈ R>0
and the initial condition 𝑐0(𝑥) = exp(−𝑥) ∀𝑥 ∈ R>0.
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Fig. 1. Zeroth (top left), First (top right) and Second (bottom left) order moment of the
time dependent solution 𝑐(·, 𝑡) of Equation (1) for 𝑡 ∈ [0, 10]. In the plot bottom right, the
difference of the moments to their respective equilibrium counterpart is shown.

The finite volume scheme of [16] is applied to obtain numerical results with a high
degree of accuracy. The computational domain under consideration is [10−6, 800] and
it is discretized into 200 non-uniform subintervals

Λ𝑖 := [𝑥𝑖−1/2, 𝑥𝑖+1/2] 𝑖 = 1, 2, . . . , 200.

The end points of Λ𝑖 satisfy 𝑥𝑖+1/2 = 𝑟𝑥𝑖−1/2, where 𝑟 > 1 is the geometric ratio.
The mid-point of each Λ𝑖 is considered to be the cell representative or the pivot. The
system of ODEs is solved using the adaptive Runge-Kutta 4(5) solver in MATLAB.

The number density function 𝑐, and the moments ℳ0, ℳ1 and ℳ2 are calculated
to observe the equilibrium of the system. An almost constant value of ℳ0 after a certain
time indicates that the total number of particles in the system remains approximately
constant. Further, constant values of ℳ1 and ℳ2 after a certain amount of time support
the conclusion that the system has achieved the equilibrium. The graphs of the functions
ℳ0, ℳ1 and ℳ2 (see Figure 1) are discussed in the following.

In the upper left plot in Figure 1, the zeroth order moment of 𝑐, i.e. ℳ0, is shown
with respect to time. From the figure we observe that after a short time, the zeroth
moment remains almost constant. This can also be seen in the lower right plot of Figure
1, which shows the convergence of ℳ0 towards its stationary counterpart 𝒩 . The blue
curve clearly depicts an exponential convergence. This suggests that the total number
of particles in the system approaches a constant value at exponential rate. In the upper
right plot in Figure 1 the first order moment of 𝑐, i.e. ℳ1, is shown with respect to time.
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Fig. 2. Time dependent solution 𝑐(𝑥, 𝑡) at various time steps (top row) and their respective
volume weighted distribution 𝑥3𝑐(𝑥, 𝑡) (bottom row)

From the figure we observe that the mass of the system appears to be almost constant
after a short time. Again, the lower right plot of the same figure depicts an exponential
convergence of ℳ1 to 𝒩1.

Finally, in the lower left plot of Figure 1 the second order moment of 𝑐, i.e. ℳ2, is
plotted and, again, convergence to 𝒩2 can be observed. This is further validated in the
lower right plot of the same figure.

In the upper row of Figure 2, the density function 𝑐 is shown at various times 𝑡 over
the particle size 𝑥. A clear trend of 𝑐(𝑡, ·) towards its stationary counterpart 𝑐 ≈ 𝑐(10, ·)
can be observed. In the lower row of the figure, the same is shown for the volume
weighted distribution i.e. 𝑥 ↦→ 𝑥3𝑐(𝑡, 𝑥) for various 𝑡.

From fig. 1 and fig. 2, it is evident that all moments are almost constant after 𝑡 = 10.
Moreover, the solution 𝑐 itself seems to have converged and thus the system has almost
reached equilibrium after 𝑡 = 10.

5 Conclusion
This article has examined the existence of stationary solutions and the convergence of
instationary solutions to their respective stationary solution. The entire analysis was
performed with the help of the Banach contraction mapping theorem, Laplace trans-
forms and the method of variation of constants. The convergence proved in the earlier
sections of the article is demonstrated by a numerical example. Explicit formulas for
stationary solutions remain a subject of further research.
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In terms of future research, the discussed coagulation kernel will be generalized
[12] and kinetics both independent of growth size and size dependent growth kinetics
(see e.g. [3] for a modeling perspective and [15] for a theoretical perspective) will be
added to the model equation. Studying the asymptotic behaviour of these cases in addi-
tion to the case presented here will provide further insights into the system’s behaviour.

Acknowledgment: L. Pflug is grateful for funding provided by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 416229255
– SFB 1411.

References
[1] D Chae and PB Dubovskiı̌. Existence and uniqueness for spatially inhomogeneous

coagulation equation with sources and effluxes. Zeitschrift für Angewandte Mathematik
und Physik, 46(4):580–594, 1995.

[2] M Delgado. Classroom note: The lagrange–charpit method. SIAM Review, 39(2):298–
304, 1997.

[3] JA Dirksen and TA Ring. Fundamentals of crystallization: Kinetic effects on particle
size distributions and morphology. Chemical Engineering Science, 46(10):2389 – 2427,
1991.

[4] PB Dubovskiı̌. Mathematical theory of coagulation. Seoul National University, Research
Institute of Mathematics, 1994.

[5] PB Dubovskiı̌ and IW Stewart. Existence, uniqueness and mass conservation for the
coagulation-fragmentation equation. Mathematical Methods in the Applied Sciences,
19(7):571–591, 1996.

[6] PB Dubovskiı̌ and IW Stewart. Trend to equilibrium for the coagulation–fragmentation
equation. Mathematical Methods in Applied Sciences, 19(10):761–772, 1996.

[7] CP Dullemond and C Dominik. Dust coagulation in protoplanetary disks: A rapid deple-
tion of small grains. Astronomy & Astrophysics, 434(3):971–986, 2005.

[8] GC Evans. Volterra’s integral equation of the second kind, with discontinuous kernel,
second paper. Transactions of the American Mathematical Society, 12(4):429–472,
1911.

[9] LC Evans. Partial Differential Equations. American Mathematical Society, 1997.
[10] SK Friedlander. Smoke, dust, and haze, volume 198. Oxford University Press New

York, 2000.
[11] H Gajewski. On a first order partial differential equation with nonlocal nonlinearity.

Mathematische Nachrichten, 111(1):289–300, 1983.
[12] D Ghosh and J Kumar. Existence of mass conserving solution for the coagulation–

fragmentation equation with singular kernel. Japan Journal of Industrial and Applied
Mathematics, 35(3):1283–1302, 2018.

[13] F John. Partial Differential Equations. Springer US, 1978.
[14] PC Kapur. Kinetics of granulation by non-random coalescence mechanism. Chemical

Engineering Science, 27(10):1863–1869, 1972.
[15] A Keimer and L Pflug. Existence, uniqueness and regularity results on nonlocal balance

laws. Journal of Differential Equations, 263(7):4023 – 4069, 2017.



Asymptotic analysis of solutions for coagulation equation with source and efflux 19

[16] J Kumar, G Kaur, and E Tsotsas. An accurate and efficient discrete formulation of
aggregation population balance equation. Kinetic and Related Models, 9(2):373–391,
2016.

[17] DJ McLaughlin, W Lamb, and AC McBride. A semigroup approach to fragmentation
models. SIAM Journal on Mathematical Analysis, 28(5):1158–1172, 1997.

[18] KW Min and WH Ray. On the mathematical modeling of emulsion polymerization reac-
tors. Journal of Macromolecular Science, Part C, 11(2):177–255, 1974.

[19] H Muller. To the general theory of rapid coagulation. Progress Reports on Colloids and
Polymers, 27(6):223–250, 1928.

[20] A Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44. Springer Science & Business Media, 2012.

[21] D Ramkrishna. Population balances: Theory and applications to particulate systems in
engineering. Elsevier, 2000.

[22] JH Seinfeld and SN Pandis. Atmospheric chemistry and physics: from air pollution to
climate change. John Wiley & Sons, 2016.

[23] K Shiloh, S Sideman, and W Resnick. Coalescence and break-up in dilute polydisper-
sions. The Canadian Journal of Chemical Engineering, 51(5):542–549, 1973.

[24] MV Smoluchowski. An experiment on mathematical theorization of coagulation kinetics
of the colloidal solutions. Zeitschrift für Physikalisch Chemie, 92:129–168, 1917.

[25] MV Smoluchowski. Versuch einer mathematischen theorie der koagulationskinetik
kolloider lösungen. Zeitschrift für Physikalische Chemie, 92(1):129–168, 1918.

[26] JL Spouge. An existence theorem for the discrete coagulation-fragmentation equations.
Mathematical Proceedings of the Cambridge Philosophical Society, 96(2):351–357,
1984.

[27] E Zeidler. Nonlinear Functional Analysis, I. Fixed-Point Theorems. Springer-Verlag,
New York, 1986.


	Asymptotic analysis of time dependent solutions for the coagulation equation with source and efflux
	1 Introduction
	1.1 Literature
	1.2 Definitions, Notation and Assumptions

	2 Existence and uniqueness of an equilibrium solution
	3 Exponential stability
	4 A numerical example
	5 Conclusion


