References
1. Sekhar, J., et al., Waldenström macroglobulinemia: a
Surveillance, Epidemiology, and End Results database review from 1988 to
2005. Leuk Lymphoma, 2012. 53 (8): p. 1625-6.
2. Campo, E., et al., The 2008 WHO classification of lymphoid
neoplasms and beyond: evolving concepts and practical applications.Blood, 2011. 117 (19): p. 5019-5032.
3. Owen, R.G., et al., Clinicopathological definition of
Waldenstrom’s macroglobulinemia: consensus panel recommendations from
the Second International Workshop on Waldenstrom’s Macroglobulinemia.Semin Oncol, 2003. 30 (2): p. 110-5.
4. Schuster, S.R., et al., IgM multiple myeloma: Disease
definition, prognosis, and differentiation from Waldenstrom’s
macroglobulinemia. American Journal of Hematology, 2010.85 (11): p. 853-855.
5. Feyler, S., et al., IgM myeloma: a rare entity characterized by
a CD20-CD56-CD117- immunophenotype and the t(11;14). Br J Haematol,
2008. 140 (5): p. 547-51.
6. Avet-Loiseau, H., et al., 14q32 Translocations discriminate IgM
multiple myeloma from Waldenstrom’s macroglobulinemia. Semin Oncol,
2003. 30 (2): p. 153-5.
7. Bonilla-Valentín, F.J., et al., Case Report of IgM Multiple
Myeloma: Diagnosing a Rare Hematologic Entity. Cancer Control, 2018.25 (1): p. 1073274817744448.
8. Rothschild, B.M., F. Ruhli, and C. Rothschild, Skeletal clues
apparently distinguishing Waldenstrom’s macroglobulinemia from multiple
myeloma and leukemia. American Journal of Human Biology, 2002.14 (4): p. 532-537.
9. Angtuaco, E.J., et al., Multiple myeloma: clinical review and
diagnostic imaging. Radiology, 2004. 231 (1): p. 11-23.
10. Hanrahan, C.J., C.R. Christensen, and J.R. Crim, Current
concepts in the evaluation of multiple myeloma with MR imaging and FDG
PET/CT. Radiographics, 2010. 30 (1): p. 127-42.
11. Papanikolaou, X., et al., Waldenstrom’s Macroglobulinemia
Associated Bone Disease the UAMS Experience. Blood, 2014.124 (21): p. 2999-2999.
12. Marks, M.A., D.E. Tow, and M. Jay, Bone scanning in
Waldenstrom’s macroglobulinemia. Journal of nuclear medicine : official
publication, Society of Nuclear Medicine, 1985. 26 (12): p.
1412-1414.
13. Banwait, R., et al., Extramedullary Waldenström
macroglobulinemia. American Journal of Hematology, 2015.90 (2): p. 100-104.
14. Treon, S.P., et al., Ibrutinib in Previously Treated
Waldenström’s Macroglobulinemia. New England Journal of Medicine, 2015.372 (15): p. 1430-1440.
15. Mehmood, K., et al., Waldenstroms Macroglobulinemia Patient
Presenting with Rare ’lytic’ Lesions and Hypercalcemia: A Diagnostic
Dilemma. J Clin Diagn Res, 2014. 8 (11): p. Fd10-1.
16. Pujani, M., et al., Waldenstrom’s macroglobulinemia presenting
with lytic bone lesions: A rare presentation. Blood research, 2013.48 : p. 230-233.
17. Castillo, J.J., et al., Consensus treatment recommendations
from the tenth International Workshop for Waldenström
Macroglobulinaemia. Lancet Haematol, 2020. 7 (11): p.
e827-e837.
18. Dimopoulos, M.A., et al., Waldenström’s macroglobulinemia:
clinical features, complications, and management. J Clin Oncol, 2000.18 (1): p. 214-26.
19. Dimopoulos, M.A., et al., Update on treatment recommendations
from the Fourth International Workshop on Waldenstrom’s
Macroglobulinemia. J Clin Oncol, 2009. 27 (1): p. 120-6.
20. Treon, S.P., et al., Novel agents in the treatment of
Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma, 2007. 7
Suppl 5 : p. S199-206.
21. Terpos, E., et al., Treatment of multiple myeloma-related bone
disease: recommendations from the Bone Working Group of the
International Myeloma Working Group. Lancet Oncol, 2021.22 (3): p. e119-e130.
22. Castillo, J.J. and S.P. Treon, What is new in the treatment of
Waldenstrom macroglobulinemia? Leukemia, 2019. 33 (11): p.
2555-2562.
23. Raje, N. and G.D. Roodman, Advances in the Biology and
Treatment of Bone Disease in Multiple Myeloma. Clinical Cancer
Research, 2011. 17 (6): p. 1278-1286.
24. Dimopoulos, M.A., et al., Ibrutinib for patients with
rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an
open-label substudy of an international, multicentre, phase 3 trial.Lancet Oncol, 2017. 18 (2): p. 241-250.
25. Shumilov, E., et al., Osteolytic lesions occur rarely in
patients with B-CLL and may respond well to ibrutinib. Leukemia &
Lymphoma, 2016. 57 (10): p. 2476-2480.
26. O’Brien, S., et al., Ibrutinib as initial therapy for elderly
patients with chronic lymphocytic leukaemia or small lymphocytic
lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol,
2014. 15 (1): p. 48-58.
27. Shinohara, M., et al., The orally available Btk inhibitor
ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss.Bone, 2014. 60 : p. 8-15.
28. Tucker, D.L., et al., Remineralization of lytic bone disease
in a patient with small lymphocytic lymphoma using ibrutinib. British
Journal of Haematology, 2017. 178 (1): p. 153-155.
29. Silbermann, R. and G.D. Roodman, Current Controversies in the
Management of Myeloma Bone Disease. Journal of Cellular Physiology,
2016. 231 (11): p. 2374-2379.
30. Delgado-Calle, J., T. Bellido, and G.D. Roodman, Role of
osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat
Care, 2014. 8 (4): p. 407-13.
31. Terpos, E., et al., The combination of intermediate doses of
thalidomide with dexamethasone is an effective treatment for patients
with refractory/relapsed multiple myeloma and normalizes abnormal bone
remodeling, through the reduction of sRANKL/osteoprotegerin ratio.Leukemia, 2005. 19 (11): p. 1969-1976.
32. Breitkreutz, I., et al., Lenalidomide inhibits
osteoclastogenesis, survival factors and bone-remodeling markers in
multiple myeloma. Leukemia, 2008. 22 (10): p. 1925-1932.
33. Anderson, G.l.m., et al., Thalidomide derivative CC-4047
inhibits osteoclast formation by down-regulation of PU.1. Blood, 2006.107 (8): p. 3098-3105.
34. Costa, F., et al., Expression of CD38 in myeloma bone niche: A
rational basis for the use of anti-CD38 immunotherapy to inhibit
osteoclast formation. Oncotarget, 2017. 8 (34): p. 56598-56611.
35. Moreau, P. and C. Touzeau, Multiple Myeloma: From Front-Line
to Relapsed Therapies. American Society of Clinical Oncology
Educational Book, 2015(35): p. e504-e511.
36. Terpos, E., et al., Autologous stem cell transplantation
normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in
patients with multiple myeloma. Leukemia, 2004. 18 (8): p.
1420-1426.
37. Dimopoulos, M.A., et al., Primary Treatment of Waldenström
Macroglobulinemia With Dexamethasone, Rituximab, and Cyclophosphamide.Journal of Clinical Oncology, 2007. 25 (22): p. 3344-3349.
38. Koehler, M., et al., Mixed Lytic and Blastic Bone Lesions as a
Presenting Feature of Waldenström Macroglobulinemia: Case Report and
Review of the Literature. Clinical Lymphoma Myeloma and Leukemia, 2020.20 (2): p. e87-e91.
39. Kim, S.H., S.K. Lim, and J.S. Hahn, Effect of pamidronate on
new vertebral fractures and bone mineral density in patients with
malignant lymphoma receiving chemotherapy. Am J Med, 2004.116 (8): p. 524-8.
40. Westin, J.R., et al., Zoledronic Acid for Prevention of Bone
Loss in Patients Receiving Primary Therapy for Lymphomas: A Prospective,
Randomized Controlled Phase III Trial. Clinical Lymphoma, Myeloma and
Leukemia, 2013. 13 (2): p. 99-105.