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Abstract. In this paper, we study the asymptotic behavior of the solution to the Lamé equa-
tions with a parameter ε. We prove that the solution will converge to the solution of a Maxwell
type equations as ε → 0; Meanwhile we will show that the solution converges to the solution of
a Stokes type equations as ε → ∞.

1. Introduction

Consider the following Lamé equations{
curl 2uε − ε2∇divuε + uε = f in Ω,

uε = u0 on ∂Ω,
(1.1)

where Ω is a bounded, connected and C2 domain in R3, ε > 0 is a parameter. We are
interested in the limit of the solution uε as ε→ 0 or ε→∞.

Note that

curl 2 = −∆ +∇div .

The first equation of (1.1) can be written as

−µ∆uε − (µ+ λ)∇divuε + uε = f , (1.2)

where µ = 1 and λ = ε2−2 are Lamé constants. Lamé equations are proposed in elasticity.
We refer to [12] for the physical background and applications. Lamé equations are also
closely related to the Maxwell equations, see for instance [5].

Equation (1.2) is a non-degenerately elliptic equation. When ε → 0, the equation
becomes degenerate. We are interested in the connection between Lamé equations and
degenerately elliptic equations. Equations involving operator curl with a small parameter
have been extensively studied by many mathematicians. They dealt with eigenvalue
problems, Landau-de Gennes model, Meissner solution of Ginzburg-Landau model and so
on in this topic, see for instance [4, 10, 13].

When ε → ∞, it can be considered as a penalization parameter for the vanishing
divergence condition in the Lamé equations. For this kind of problem, M. Costabel and
M. Dauge [4] studied the following Lamé eigenproblems

curl 2u− s∇divu = σu,

and obtained an interesting result: the eigenvalues converge to the Stokes eigenvalues as
the parameter s tends to infinity.

Key words and phrases. Elliptic equations, Lamé equations, asymptotic behavior, Maxwell equations, Stokes
equations, convergence.
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In this paper, we make a comparison between the two cases where ε→ 0 and ε→∞,
and we show completely different asymptotic behaviors of the solution uε to the Lamé
equations (1.1).
• Case 1: When ε→ 0, we prove that the term ε2∇divuε is negligible and uε weakly

converges to u in H(Ω, curl ), the solution of the Maxwell type equations{
curl 2u + u = f in Ω,

u× ν = u0 × ν on ∂Ω,
(1.3)

where ν is the unit outer normal on ∂Ω and H(Ω, curl ) is defined as

H(Ω, curl ) = {u ∈ L2(Ω,R3) : curlu ∈ L2(Ω,R3)}.

Note that curl 2 is degenerately elliptic and divu 6= 0 in Ω. So equations (1.3) is
degenerately elliptic equations. Thus as ε tends to 0, the equations (1.1) links the non-
degenerately elliptic equations and degenerately elliptic equations. As we all know, it is
difficult and interesting to study degenerate equations. One can see [9] for the second
order degenerate equations and [6, 7, 8, 11, 14] for the Maxwell equations.

An observation is that the Lamé equations and the Maxwell type equations admit
different kinds of boundary conditions. As ε → 0, the solution sequence uε may change
dramatically in a thin layer near the boundary ∂Ω.
• Case 2: When ε → ∞, we prove that the solution uε strongly converges to u in

H1(Ω,R3), where u solves the following Stokes type equations
−∆u +∇p+ u = f in Ω,

divu = 0 in Ω,

u = u0 on ∂Ω.

In the equations above, divu = 0 in Ω. Thus the equations can be written as{
curl 2u +∇p+ u = f in Ω,

u = u0 on ∂Ω.

As ε → ∞, the Lamé equations are closely related to the Stokes equations. We find
that the term ε2∇divuε converges to a gradient term ∇p where p represents the pressure
term in the Stokes equations. Moreover, the limiting equations admit the same kinds of
boundary condition with the Lamé equations which is different from case 1.

The paper is organized as follows. In section 2, we list several known results that will
be used in this paper. In section 3, we show existence of H1 weak solution to (1.1). Then
we prove that the solution uε converges to the solution of a Maxwell type equations in
H(Ω, curl ) as ε→ 0. In section 4, we prove that the solution uε to (1.1) converges to the
solution of a Stokes type equations in H1(Ω,R3) as ε→∞ and moreover, we obtain the
convergence rate.

2. Notions and Preliminaries

In this section, we will introduce our notations and several known results that will be
used in this paper.



3

Throughout this paper we assume that Ω ⊂ R3 is a bounded and connected domain
with C2 boundary. We use C to denote a generic constant independent of ε, which may
vary from line to line. Let ν is the unit outer normal on ∂Ω. Then we introduce some
spaces:

L2
0(Ω) = L2(Ω)/R,
H(Ω, div ) = {u ∈ L2(Ω,R3) : divu ∈ L2(Ω)},
H1
t0

(Ω, div 0) = {u ∈ H1(Ω,R3) : divu = 0 in Ω, u× ν = 0 on ∂Ω}.

Remark 2.1. The space L2
0(Ω) is isomorphic with the closed subspace of L2(Ω) made up

of functions with a zero mean, see [2, Lemma IV.1.9.].

The following lemmas are needed in this paper.

Lemma 2.2. (see [6, p.212, Corollary 1]) Let Ω be a bounded domain in R3 with a C2

boundary ∂Ω. Then there exists a constant C = C(Ω) such that for any u ∈ H1(Ω,R3),

‖u‖H1(Ω) ≤ C
(
‖u‖L2(Ω) + ‖curlu‖L2(Ω) + ‖divu‖L2(Ω) + ‖u× ν‖H1/2(∂Ω)

)
.

Lemma 2.3. (Nečas inequality [2]) Let Ω be a Lipschitz domain in R3 with compact
boundary. Define the space

χ(Ω) = {p ∈ H−1(Ω),∇p ∈ H−1(Ω,R3)},
endowed with the norm

‖p‖χ(Ω) = ‖p‖H−1(Ω) + ‖∇p‖H−1(Ω).

Then we have χ(Ω) = L2(Ω) and, moreover, there is a C > 0 such that

‖p‖L2(Ω) ≤ C‖p‖χ(Ω), ∀ p ∈ L2(Ω).

A new Poincaré type equality follows from the Nečas inequality, see [2, Proposition
IV.1.7.].

Lemma 2.4. Let Ω be a connected, bounded, Lipschitz domain in R3. There exists a
C > 0 such that for all p ∈ L2(Ω), we have

‖p‖H−1(Ω) ≤ C
( 1

|Ω|
|
∫

Ω

p dx|+ ‖∇p‖H−1(Ω)

)
.

3. Asymptotic behavior of weak solution for small parameter

In this section, we study the asymptotic behavior of the solution uε to (1.1) as ε→ 0.
First, we prove the existence of the weak solution uε to problem (1.1) for given data

(f ,u0).

Lemma 3.1. Let f ∈ H−1(Ω,R3) and u0 ∈ H 1
2 (∂Ω,R3). For any ε > 0, there exists a

unique weak solution uε ∈ H1(Ω,R3) to (1.1).

Proof. The natural quadratic form associated with equations (1.1) is

a(u,v) =

∫
Ω

(
curlu · curlv + ε2divu divv + u · v

)
dx, ∀ u,v ∈ H1

0 (Ω,R3). (3.1)
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Since u0 ∈ H1/2(∂Ω,R3), there exists a vector field ũ0 ∈ H1(Ω,R3) such that

ũ0 = u0 on ∂Ω. (3.2)

Thus we turn to the following problem:
Find uε ∈ H1(Ω,R3) such that{

uε − ũ0 ∈ H1
0 (Ω,R3),

a(uε − ũ0,v) = 〈f ,v〉H−1,H1
0
− a(ũ0,v) ∀ v ∈ H1

0 (Ω,R3),
(3.3)

where a(·, ·) is the quadratic form in (3.1). Fix ε,

∃ c(ε) > 0, ∀ uε ∈ H1
0 (Ω), a(uε,uε) ≥ c(ε)‖uε‖2

H1(Ω).

Thus a(·, ·) is coercive on H1
0 (Ω,R3). By Lax-Milgram theorem, there exists a unique

solution uε to (1.1). �

It is well known that every vector field u ∈ L2(Ω,R3) can be decomposed as

u = v +∇p,
where

divv = 0 in Ω, p ∈ H1
0 (Ω).

This is the classical Hodge decomposition of L2-vector fields in bounded domains Ω in R3

with smooth boundary, see [6], [8].
With the help of the Hodge decomposition, for f ∈ H(Ω, div ), we have the following

decomposition:

f = f0 +∇φf , div f0 = 0, φf ∈ H1
0 (Ω), ∆φf ∈ L2(Ω). (3.4)

For the boundary value u0 ∈ H1/2(∂Ω,R3), we have the following decomposition:

Lemma 3.2. Let Ω be a bounded domain in R3 with a C2 boundary ∂Ω. Let u0 ∈
H1/2(∂Ω,R3), then we have a unique decomposition

u0 = v0 +∇ξ0|∂Ω, v0 · ν = 0, ξ0 = 0 on ∂Ω. (3.5)

Proof. Using H2 trace theorem([7, Theorem 1.6]), there exists a function ξ0 ∈ H2(Ω) such
that

ξ0 = 0,
∂ξ0

∂ν
= u0 · ν on ∂Ω.

Since ∇ξ0 ∈ H1(Ω,R3), the trace of ∇ξ0 is well defined and equals (u0 · ν) · ν. Let

v0 = u0 − (u0 · ν) · ν.
Then v0 is also uniquely determined and satisfies v0 · ν = 0 on ∂Ω. �

For the solution uε ∈ H1(Ω,R3) to (1.1), we decompose it as follows:

uε = v +∇ξε + wε,

where v and ξε satisfy the following equations:
curl 2v + v = f0 in Ω,

divv = 0 in Ω,

vT = v0 on ∂Ω,

(3.6)
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and {
−ε2∆ξε + ξε = φf in Ω,

ξε = ξ0 = 0 on ∂Ω,
(3.7)

where f0, φf and ξ0 are functions in decompositions (3.4) and (3.5), and vT = (ν×v)× ν
denotes the tangential component of v. Then wε solves the following equations

curl 2wε − ε2∇divwε + wε = 0 in Ω,

wε × ν = 0 on ∂Ω,

wε · ν = u0 · ν − v · ν − ∂ξε
∂ν

on ∂Ω.

(3.8)

3.1. Analysis of (3.6) and (3.7).

Lemma 3.3. Let f0 and v0 be the vector fields in decompositions (3.4) and (3.5). Then
there exists a unique weak solution v ∈ H1(Ω,R3) to (3.6).

Proof. Since

∃ c > 0, ∀ v ∈ H1
t0

(Ω, div 0),

∫
Ω

(
curlv · curlv + v · v

)
dx ≥ c‖v‖2

H1
t0

(Ω,div 0),

thus the quadratic form is coercive on H1
t0

(Ω, div 0). Also since div f0 = 0 in Ω, by Lax-
Milgram theorem, we can have the unique solution v ∈ H1(Ω,R3) to (3.6). �

For equations (3.7), we have the following lemma:

Lemma 3.4. Let φf be the function in decomposition (3.4) and ξε be the solution to (3.7).
Then we have

(a)
ξε → φf in H1(Ω), as ε→ 0.

(b) There exists a constant C independent of ε such that∥∥∂ξε
∂ν

∥∥
H1/2(∂Ω)

≤ C{‖div f‖L2(Ω) + ‖f‖L2(Ω)}.

Proof. (a) Let ζε = ξε − φf . Then{
−ε2∆ζε + ζε = ε2∆φf in Ω,

ζε = 0 on ∂Ω.
(3.9)

We have

ε2

∫
Ω

|∇ζε|2dx+

∫
Ω

|ζε|2dx = ε2

∫
Ω

∆φfζε dx.

So ∫
Ω

|ζε|2dx ≤ ε2

∫
Ω

∆φfζε dx

≤ ε2
( ∫

Ω

|∆φf |2dx
) 1

2
( ∫

Ω

ζ2
εdx
) 1

2 .

Thus
‖ζε‖L2(Ω) ≤ ε2‖∆φf‖L2(Ω).
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We have

ε2

∫
Ω

|∇ζε|2dx ≤ ε2

∫
Ω

∆φfζεdx

≤ ε2
( ∫

Ω

|∆φf |2dx
) 1

2
( ∫

Ω

ζ2
εdx
) 1

2

≤ ε4

∫
Ω

|∆φf |2dx.

Thus

‖∇ζε‖L2(Ω) ≤ ε‖∆φf‖L2(Ω).

So

ζε → 0 in H1(Ω), as ε→ 0.

ξε → φf in H1(Ω), as ε→ 0.

(b) Since ξε = 0 on ∂Ω, using the div-curl-gradient inequality (Lemma 2.2), we have

‖∇ξε‖H1(Ω) ≤ C(Ω){‖∆ξε‖L2(Ω) + ‖∇ξε‖L2(Ω)},

where C(Ω) is a constant depending on Ω. Hence∥∥∂ξε
∂ν

∥∥
H1/2(∂Ω)

≤ C(Ω)‖∇ξε‖H1(Ω) ≤ C{‖∆ξε‖L2(Ω) + ‖∇ξε‖L2(Ω)}

= C{ 1

ε2
‖ξε − φf‖L2(Ω) + ‖∇ξε‖L2(Ω)}

= C{ 1

ε2
‖ζε‖L2(Ω) + ‖∇ξε‖L2(Ω)}

≤ C{‖∆φf‖L2(Ω) + ‖∇φf‖L2(Ω)}
= C{‖div f‖L2(Ω) + ‖f‖L2(Ω)}.

�

3.2. The limit of solution uε to (1.1) as ε→ 0.

Theorem 3.5. Assume f ∈ H(Ω, div ) and u0 ∈ H1/2(∂Ω,R3). Let uε ∈ H1(Ω,R3) be
the solution to (1.1). Then we have

uε ⇀ v +∇φf weakly in H(Ω, curl ), as ε→ 0,

where v is the unique solution to (3.6), φf is the function in the decomposition (3.4) and
v +∇φf satisfies the Maxwell type equations (1.3).

Proof. Step 1: Reduce the problem (3.8) to a new problem with homogeneous boundary
data.

Since Ω is C2, by [7, Proposition 1.3], there exists a function ψε ∈ H2(Ω) such that
∆2ψε = 0 in Ω,

ψε = 0 on ∂Ω,

∂ψε
∂ν

=
∂ξ0

∂ν
− v · ν − ∂ξε

∂ν
on ∂Ω,
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and

‖ψε‖H2(Ω) ≤ C{‖∂ξ
0

∂ν
‖H1/2(∂Ω) + ‖v · ν‖H1/2(∂Ω) + ‖∂ξε

∂ν
‖H1/2(∂Ω)}.

Lemma 3.4 leads to the estimate

‖ψε‖H2(Ω) ≤ C{‖∂ξ
0

∂ν
‖H1/2(∂Ω) + ‖v · ν‖H1/2(∂Ω) + ‖div f‖L2(Ω) + ‖f‖L2(Ω)}.

Therefore we have
ψε ⇀ ψ weakly in H2(Ω), as ε→ 0.

Recall the decomposition:
uε = v +∇ξε + wε,

we set
zε = wε −∇ψε.

Note that
zεT = w0

εT − (∇ψε)T = 0 on ∂Ω,

zε · ν = w0
ε · ν −

∂ψε
∂ν

= 0 on ∂Ω.

Then we have {
curl 2zε − ε2∇div zε + zε = ε2∇∆ψε −∇ψε in Ω,

zε = 0 on ∂Ω.
(3.10)

Step 2: Analyze the vector field zε.
Taking zε as a test vector field in the equations above, we have∫

Ω

(|curl zε|2 + ε2(div zε)
2 + |zε|2)dx = −

∫
Ω

(∇ψε · zε + ε24ψε div zε )dx

≤ 1

2

∫
Ω

|∇ψε|2dx+
1

2

∫
Ω

|zε|2dx+
ε2

2

∫
Ω

|4ψε|2dx+
ε2

2

∫
Ω

|div zε|2dx.

That means

‖curl zε‖L2(Ω) + ‖εdiv zε‖L2(Ω) + ‖zε‖L2(Ω) ≤ C
(
‖∇ψε‖L2(Ω) + ‖4ψε‖L2(Ω)

)
≤ C{‖v · ν‖H1/2(∂Ω) + ‖u0 · ν‖H1/2(∂Ω) + ‖∆φf‖L2(Ω) + ‖∇φf‖L2(Ω)}.

Thus there exists a z ∈ H(Ω, curl ) and a q ∈ L2(Ω) such that, up to a subsequence,

zε ⇀ z weakly in L2(Ω,R3),

curl zε ⇀ curl z weakly in L2(Ω,R3),

εdiv zε ⇀ q weakly in L2(Ω), as ε→ 0.

(3.11)

Since zε is the solution of (3.10), we have∫
Ω

(curl zε·curlφ+ε2div zε div φ+zε·φ) dx = −
∫

Ω

(∇ψε·φ+ε24ψε divφ) dx, ∀ φ ∈ C∞0 (Ω,R3).

Let ε→ 0, we have∫
Ω

(curl z · curlφ+ z · φ) dx = −
∫

Ω

∇ψ · φ dx, ∀ φ ∈ C∞0 (Ω,R3).
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So z satisfies {
curl 2z + z = −∇ψ in Ω,

z× ν = 0 on ∂Ω.
(3.12)

Step 3: Analyze the vector field wε.
Since wε = zε+∇ψε, using the results in step 1 and step 2, there exists a w ∈ H(Ω, curl )

such that, up to a subsequence,

wε ⇀ w weakly in H(Ω, curl ), as ε→ 0,

where
w = z +∇ψ, (3.13)

and {
curl 2w + w = 0 in Ω,

w × ν = 0 on ∂Ω.
(3.14)

From the equations above, we have divw = 0 in Ω. We claim that w = 0 in Ω. Since
w ∈ L2(Ω,R3), curlw ∈ L2(Ω,R3), divw = 0 and w × ν = 0, we have w ∈ H1(Ω,R3).
Set θ ∈ H2(Ω), such that

θ = 0,
∂θ

∂ν
= w · ν on ∂Ω.

Taking w−∇θ ∈ H1
0 (Ω,R3) as a test function in the weak formulation of (3.14), we have∫

Ω

(
|curlw|2 + |w|2 −w · ∇θ

)
dx = 0.

Since divw = 0, we obtain ∫
Ω

(
|curlw|2 + |w|2

)
dx = 0.

Thus w = 0 in Ω.
Step 4: Obtain the limit of uε. Back to the decomposition:

uε = v +∇ξε + wε.

Using the result in step 3, we get

uε ⇀ v +∇φf weakly in H(Ω, curl ), as ε→ 0.

Combining with the definitions of v and φf , we prove that v +∇φf solves the equations
(1.3). �

Remark 3.6. If we take divergence on both sides of (3.10), then div zε will satisfy the
following equation in a very weak sense

− ε2∆div zε + div zε = −∆ψε in Ω,

div zε = div ∂Ω(πzε) + 2(ν · zε)H +
∂

∂ν
(ν · zε) on ∂Ω,

(3.15)

where πzε(x), for x ∈ ∂Ω, denotes the projection of zε onto the tangent plane to x at ∂Ω;
div ∂Ω is the surface divergence of a tangent field to ∂Ω; H(x) is the mean curvature at x,
see [6] for the expression of the divergence. The first and second terms of the divergence
div zε are well handled, but the estimate of the third term ∂

∂ν
(ν ·zε) will be a big challenge.
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As ε → 0, the solution sequence zε may change dramatically in a thin layer near the
boundary ∂Ω.

4. Asymptotic behavior of weak solution for large parameter

Compared to the case where ε→ 0, we examine the asymptotic behavior of the solution
uε to (1.1) as ε → ∞. In this case, the parameter ε can be considered as a penalization
parameter for the vanishing divergence condition in the Lamé equations. In this section,
we rewrite the equations (1.1) as a penalty approximation of a Stokes type equations and
then we use the Nečas inequality to obtain the limit of uε as ε→∞, see [2].

Given f ∈ H−1(Ω,R3) and u0 ∈ H1/2(∂Ω,R3), it follows from the Lax-Milgram theorem
that Lamé equations (1.1) has a unique weak solution in H1(Ω,R3).

If u0 satisfies the compatibility condition, we will have the following main result:

Theorem 4.1. Assume f ∈ H−1(Ω,R3) and u0 ∈ H 1
2 (∂Ω,R3) satisfying the compatibility

condition ∫
∂Ω

u0 · νdσ = 0.

Let uε be the unique solution of equations (1.1), then we have

uε ⇀ u weakly in H1(Ω,R3), as ε→∞.
Moreover, u satisfies the following Stokes type equations

−∆u +∇p+ u = f in Ω,

divu = 0 in Ω,

u = u0 on ∂Ω,

(4.1)

where p ∈ L2
0(Ω) is the pressure term.

Proof. Step 1: Reduce the problem (1.1) to a new problem with homogeneous boundary
data.

Since u0 ∈ H1/2(∂Ω,R3), using trace lifting operator theorem([2, Theorem III.2.22]),
there exists a function ũ0 ∈ H1(Ω,R3) such that ũ0|∂Ω = u0. Since∫

Ω

div ũ0dx =

∫
∂Ω

u0 · νdσ = 0,

then from [2, Theorem IV.3.1], there exists a function ū0 ∈ H1
0 (Ω,R3) such that

div ū0 = −div ũ0.

Hence û0 = ũ0 + ū0 satisfies the conditions

div û0 = 0 in Ω, û0 = u0 on ∂Ω.

Let ûε = uε − û0, then it satisfies the following equations{
curl 2ûε − ε2∇div ûε + ûε = f − curl 2û0 − û0 in Ω,

ûε = 0 on ∂Ω.
(4.2)

Step 2: Estimate the vector field ûε.
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Taking ûε as a test function in the weak formulation of the equations above, we get

‖curl ûε‖2
L2(Ω) + ε2‖div ûε‖2

L2(Ω) + ‖ûε‖2
L2(Ω) ≤ ‖f − curl 2û0 − û0‖H−1(Ω)‖ûε‖H1

0 (Ω).

By using the Poincaré inequality, and the formular

‖∇ûε‖2
L2(Ω) = ‖curl ûε‖2

L2(Ω) + ‖div ûε‖2
L2(Ω), ∀ ûε ∈ H1

0 (Ω,R3),

we deduce

‖curl ûε‖2
L2(Ω) + (2ε2 − 1)‖div ûε‖2

L2(Ω) + 2‖ûε‖2
L2(Ω) ≤ C‖f − curl 2û0 − û0‖2

H−1(Ω).

According to the Nečas inequality(Lemma 2.3) and the trace lifting operator theorem([2,
Theorem III.2.22]), we have

‖f − curl 2û0 − û0‖H−1(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖u0‖H1/2(∂Ω)

)
.

By div-curl-gradient inequality(Lemma 2.2), we obtain

‖ûε‖H1(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖u0‖H1/2(∂Ω)

)
.

Step 3: Examine the limits of ûε and uε.
We rewrite the equations (4.2) as follows

−∆ûε +∇pε + ûε = f − curl 2û0 − û0 in Ω,

div ûε +
1

ε2 − 1
pε = 0 in Ω,

ûε = 0 on ∂Ω.

(4.3)

First, we use the Nečas inequality(Lemma 2.3) and the Poincaré inequality(Lemma 2.4)
to estimate the pressure term pε,

‖pε‖L2(Ω) ≤ C‖∇pε‖H−1(Ω) = ‖f − curl 2û0 − û0 + ∆ûε − ûε‖H−1(Ω)

≤ C
(
‖f‖H−1(Ω) + ‖u0‖H1/2(∂Ω)

)
+ C‖∇ûε‖L2(Ω).

Combining this with the estimate above, we obtain

‖ûε‖H1(Ω) + ‖pε‖L2(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖u0‖H1/2(∂Ω)

)
.

It follows from this result that there exists a vector field û ∈ H1
0 (Ω,R3) and a function

p ∈ L2
0(Ω) such that, up to a subsequence,

ûε ⇀ û weakly in H1
0 (Ω,R3),

pε ⇀ p weakly in L2
0(Ω), as ε→∞.

These weak convergences let us pass to the limit in the equations (4.3) and prove that
the limits (û, p) actually solve the following Stokes type equations

−∆û +∇p+ û = f − curl 2û0 − û0 in Ω,

div û = 0 in Ω,

û = 0 on ∂Ω.

Recall the definitions of ûε and û0, we obtain

uε ⇀ u = û + û0 weakly in H1(Ω,R3), as ε→∞.
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Note that
div û0 = 0 in Ω,

Thus
−∆û0 = curl û0.

In conclusion, u satisfies equations (4.1). �

Finally, we claim that uε strongly converges to u in H1(Ω,R3) as ε → ∞ and we also
obtain the convergence rate.

Theorem 4.2. With the same assumption as in Theorem 4.1, there exists a constant
C > 0 such that

‖uε − u‖H1(Ω) ≤
C

ε2
.

Proof. We set vε = uε − u, qε = pε − p, then we have
−∆vε +∇qε + vε = 0 in Ω,

divvε +
pε

ε2 − 1
= 0 in Ω,

vε = 0 on ∂Ω.

(4.4)

Taking vε as a test function in the first equation of (4.4), we get∫
Ω

(|∇vε|2 + |vε|2)dx =

∫
Ω

(divvε)qεdx ≤
C

ε2
‖pε‖L2(Ω)‖qε‖L2(Ω) ≤

C

ε2
‖∇qε‖H−1(Ω)

≤ C

ε2
‖∆vε − vε‖H−1(Ω) ≤

C

ε2
‖∇vε‖L2(Ω).

Therefore we obtain

‖vε‖H1(Ω) ≤
C

ε2
,

and the theorem is proved. �
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