CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century.Science , 348, 1261071–1261071. https://doi.org/10.1126/science. 1261071
Bao, S.D.(2000). In: Bao, S.D. (Ed.), Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing, pp. 11–13.
Berhane, M., Xu, M., Liang, Z., Shi, J., Wei, G., Tian, X.(2020). Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology ,26, 2686–2701. https://doi.org/10.1111/gcb.15018.
Boomsma, C.R., Santini, J.B., West, T.D., Brewer, J.C., McIntyre, L.M., Vyn, T.J.(2010). Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil & Tillage Research ,106, 227–240. https://doi.org/10.1016/j.still.2009.12.006.
Deng, X.P., Shan, L., Zhang, H.P., Turner, N.C.(2006). Improving agricultural water use efficiency in arid and semiarid areas of China.Agricultural Water Management , 80, 23–40. https://doi.org/10.1016/j.agwat.2005.07.021.
Djuma, H., Bruggeman, A., Zissimos, A., Christoforou, I., Eliades, M., &Zoumides, C. (2020). The effect of agricultural abandonment and mountain terrace degradation on soil organic carbon in a Mediterranean landscape. Catena , 195, 104741. https://doi.org/10.1016/j.catena.2020.104741.
Feng, Q., An, C., Chen, Z., Wang, Z.(2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable &Sustainable Energy Reviews , 133, 110293. https://doi.org/10.1016/j.rser.2020.110293.
Fiorini, A., Boselli, R., Maris, S.C., Santelli, S., Ardenti, F., Capra, F., Tabaglio, V.(2020). May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture, Ecosystems & Environment , 296, 106926. https://doi.org/10.1016/j.agee.2020.106926.
Gaffney, J., Bing, J., Byrne, P.F., Cassman, K.G., Ciampitti, I., Delmer, D., Habben, J., Lafitte, H.R., Lidstrom, U.E., Porter, D.O., Sawyer, J.E., Schussler, J., Setter, T., Sharp, R.E., Vyn, T.J., Warner, D.(2019). Science-based intensive agriculture: Sustainability, food security, and the role of technology. Global Food Security ,23, 236–244. https://doi.org/10.1016/j.gfs.2019.08.003.
García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M. B., Arcenegui, V., Zornoza, R., Sempere, J. G.(2009). Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil & Tillage Research , 106, 117–123. https://doi.org/10.1016/j.still.2009.06.002.
Ghafoor, A., Poeplau, C., Kätterer, T.(2017). Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biology &Fertility of Soils. 53, 257–267. https://doi.org/10.1007/s00374-016-1168-7.
Ghosh, S., Wilson, B., Ghoshal, S., Senapati, N., Mandal, B.(2012). Organic amendments influence soil quality and carbon sequestration in the Indo Gangetic plains of India. Agriculture, Ecosystems & Environment ,156, 134–141. https://doi.org/10.1016/j.agee.2012.05.009.
Gonçalves, D.R.P., Sá, João C.M., Mishra, U., Fornari, A.J., Furlan, F.J.F., Ferreira, L.A., Inagaki, T.M., Romaniw, J., de Oliveira F.A., Briedis, C.(2019). Conservation agriculture based on diversified and high-performance production system leads to soil carbon sequestration in subtropical environments.Journal of Cleaner Production , 219, 136–147. https://doi.org/10.1016/j.jclepro.2019.01.263.
Guan, X., Wei, L., Turner, N.C., Ma, S., Yang, M., Wang, T.(2020). Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. Journal of Cleaner Production ,250, 119514. https://doi.org/10.1016/j.jclepro.2019.119514.
Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., &Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity.Agriculture, Ecosystems & Environment, 232, 110-118. http://dx.doi.org/10.1016/j.agee.2016.07.002.
Hong, J., Ren, L., Hong, J., Xu, C.(2016). Environmental impact assessment of corn straw utilization in China. Journal of Cleaner Production , 112,1700–1708. http://dx.doi.org/10.1016/j.jclepro.2015.02.081.
Hou, L., Keske, C., Hoag, D., Balezentis, T., Wang, X.(2019). Abatement costs of emissions from burning maize straw in major maize regions of China: Balancing food security with the environment. Journal of Cleaner Production , 208, 178–187. https://doi.org/10.1016/j.jclepro.2018.10.047.
Huang, M., Zhou, X., Cao, F., Xia, B., Zou, Y.(2015). No-tillage effect on rice yield in China: A meta-analysis.Field Crops Research , 183, 126–137. http://dx.doi.org/10.1016/j.fcr.2015.07.022.
Jat, M.L., Chakraborty, D., Ladha, J.K., Rana, D.S., Gathala, M.K., McDonald, A., Gerard, B.(2020). Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability , 3(4), 336–343. https://doi.org/10.1038/s41893-020-0500-2.
Johnson, J.M.F., Allmaras, R.R., Reicosky, D.C.(2006). Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy Journal , 98, 622–636. https://doi.org/10.2134/agronj2005.0179.
Kan, Z., Ma, S., Liu, Q., Liu, B., Virk, A.L., Qi, J., Zhao, X., Lal, R., Zhang, H.(2020). Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena ,188, 104428. https://doi.org/10.1016/j.catena.2019.104428.
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., Basirat, S.(2012). Organic resource management: impacts on soil aggregate stability and other soil physicochemical properties. Agriculture, Ecosystems & Environment , 148, 22–28. https://doi.org/10.1016/j.agee.2011.10.021.
Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F., van Kessel, C.(2005). The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal , 69, 1078–1085. https://doi.org/10.2136/sssaj2004.0215.
Krull, E.S., Skjemstad, J.O., Baldock, J.A.(2004). Functions of Soil Organic Matter and the Effect on Soil Properties. Grains Research and Development Corporation (GRDC).
Li, S., Li, X., Zhu, W., Chen, J., Tian, X., Shi, J.(2019). Does straw return strategy influence soil carbon sequestration and labile fractions? Agronomy Journal ,111(2), 897–906. https://doi.org/10.2134/agronj2018.08.0484.
Liu, C., Lu, M., Cui, J., Li, B., Fang, C.(2014). Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis.Global Change Biology , 20 (62), 1366–1381. https://doi.org/10.1111/gcb.12517.
Liu, N., Liu, N., Li, Y., Cong, P., Wang, J., Guo, W., Pang, H., Zhang, L.(2021). Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain.Soil & Tillage Research ,205, 104772. https://doi.org/10.1016/j.still.2020.104772.
Liu, S., Zhang, X., Liang, A., Zhang, J., Müller, C., Cai, Z.(2018). Ridge tillage is likely better than no tillage for 14-year field experiment in black soils: Insights from a 15N-tracing study. Soil & Tillage Research , 179, 38–46. https://doi.org/10.1016/j.still.2018.01.011.
Liu, Z., Chen, Z., Ma, P., Meng, Y., Zhou, J.(2017). Effects of tillage, mulching and N management on yield, water productivity, N uptake and residual soil nitrate in a long-term wheat-summer maize cropping system.Field Crops Research ,213, 154–164. http://dx.doi.org/10.1016/j.fcr.2017.08.006.
Liu, Z., Gao, T., Tian, S., Hu, H., Li, G., Ning, T.(2020). Soil organic carbon increment sources and crop yields under long-term conservation tillage practices in wheat-maize systems. Land Degradation & Development ,31(9), 1138–1150. https://doi.org/10.1002/ldr.3531.
Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals.Land Degradation & Development, 30, 824–838. https://doi.org/10.1002/ldr.3270.
Loveland, P., Webb, J.(2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: a review.Soil & Tillage Research ,70, 1–18. https://doi.org/10.1016/S0167-1987(02)00139-3.
Ma, X., Zhang, X., & Tian, D. (2020). Farmland degradation caused by radial diffusion of CO2 leakage from carbon capture and storage. Journal of Cleaner Production, 255, 120059. https://doi.org/10.1016/j.jclepro.2020.120059.
Najafi, E., Pal, I., Khanbilvardi, R.(2019). Climate drives variability and joint variability of global crop yields. Science of the Total Environment , 662, 361–372. https://doi.org/10.1016/j.scitotenv.2019.01.172.
Nouri, A., Lee, J., Yin, X., Saxton, A.M., Tyler, D.D., Sykes, V.R., Arelli, P.(2019). Crop species in no-tillage summer crop rotations affect soil quality and yield in an Alfisol. Geoderma , 345, 51–62. https://doi.org/10.1016/j.geoderma.2019.02.026.
Peng, Z., Wang, L., Xie, J., Li, L., Coulter, J. A., Zhang, R., Luo, Z., Cai, L., Carberrye, P., Whitbread, A.(2020). Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agricultural Water Management , 231, 106024. https://doi.org/10.1016/j.agwat.2020.106024.
Pittelkow, C.M., Liang, X., Linquist, B.A., van Groenigen, K.J., Lee, J., Lundy, M.E., van Gestel, N., Six, J., Venterea, R.T., van Kessel, C.(2015). Productivity limits and potentials of the principles of conservation agriculture. Nature , 517, 365–368. https://doi.org/10.1038/nature13809.
Raimondo, M., Nazzaro, C., Marotta, G., & Caracciolo, F. (2020). Land degradation and climate change: Global impact on wheat yields.Land Degradation & Development , 32:387–398 http://dx.doi.org/10.1002/ldr.3699.
Reeves, S.H., Somasundaram, J., Wang, W.J., Heenan, M.A., Finn, D., Dalal, R.C.(2019). Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol. Geoderma , 337, 1086–1096. https://doi.org/10.1016/j.geoderma.2018.11.022.
Ryan, J.(2020). Soil fertility, crop nutrition, and cropping systems: Research for Mediterranean dryland agriculture. Agronomy Journal ,112(5), 3350–3360. https://doi.org/10.1002/agj2.20374.
Rüegg, J., Quezada, J. C., Santonja, M., Ghazoul, J., Kuzyakov, Y., Buttler, A., & Guillaume, T. (2019). Drivers of soil carbon stabilization in oil palm plantations. Land Degradation & Development , 30(16), 1904-1915. https://doi.org/10.1002/ldr.3380.
Sampietro V. M., Peña M. J. L., Roldán, J., Maldonado, M., Lefebvre, M., & Vattuone, M. (2018). Human-driven geomorphological processes and soil degradation in Northwest Argentina: A geoarchaeological view. Land Degradation & Development , 29(11), 3852-3865. https://doi.org/10.1002/ldr.3128.
Sayer, E.J., Heard, M.S., Grant, H.K., Marthews, T.R., Tanner, E.V.J.(2011). Soil carbon release enhanced by increased tropical forest litterfall. Nature. Climate Change ,1, 304–307. https://xs.scihub.ltd/https://doi.org/10.1038/nclimate1190.
Somasundaram, J., Reeves, S., Wang, W., Heenan, M., Dalal, R.(2017). Impact of 47 years of no-tillage and stubble retention on soil aggregation and carbon distribution in a vertisol. Land Degradation & Development , 25, 1589–1602. https://doi.org/10.1002/ldr.2689.
StSukhdev, S.M., Marvin, N., Elston, D.S., Brian, M., Miles, D., Dick, P.(2011). Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biology & Fertility of Soils ,47, 785–800. https://doi.org/10.1007/s00374-011-0587-8.
Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., Zhu, Z.(2012). Agricultural non-point source pollution in China: causes and mitigation measures. AMBIO , 41(4), 370–379. http://dx.doi.org/10.1007/s13280-012-0249-6.
Sun, W., Canadell, J.G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., Huang, Y.(2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol ., 26, 3325–3335. https://doi.org/10.1111/gcb.15001.
Tian, S., Ning, T., Wang, Y., Liu, Z., Li., G., Li, Z., Lal, R.(2016). Crop yield and soil carbon responses to tillage method changes in North China. Soil & Tillage Research ,163, 207–213. https://doi.org/10.1016/j.still.2016.06.005.
Wang, H., Wang, S., Yu, Q., Zhang, Y., Wang, R., Li, J., Wang, X.(2020). No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system.Journal of Environmental Manage ment, 261, 110261. https://doi.org/10.1016/j.jenvman.2020.110261.
Wang, J., Chen, Z., Chen, L., Zhu, A.(2011). Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil &Environ ment, 57, 251–257. https://doi.org/10.17221/437/2010-PSE.
Wang, S., Zhang, Y., Ju, W., Chen, J., Ciais, P., Cescatti, A., Sardans, J., Janssens, I.A., Wu, M., Berry, J.A., Campbell, E., Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W.K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd, V., Goll, D.S., Peñuelas, J.(2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis.Science , 370(6522), 1295–1300. https://doi.org/10.1126/science.abb7772.
Wang, X., Jia, Z., Liang, L., Zhao, Y., Yang, B., Ding, R., Wang, J., Nie, J.(2018). Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Research , 218, 11-17. https://doi.org/10.1016/j.fcr.2017.12.003.
Xia, L., Lam, S.K., Wolf, B., Kiese, R., Chen, D., Butterbach-Bahl, K.(2018). Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems.Global Change Biol ogy, 24, 5919–5932. https://doi.org/10.1111/gcb.14466.
Xu, J., Han, H., Ning, T., Li, Z., Lal, R.(2019). Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Research , 233, 33–40. https://doi.org/10.1016/j.fcr.2018.12.016.
Xue, B., Huang, L., Huang, Y.N., Kubar, K.A., Li, X.K., Lu, J.W.(2020). Straw management influences the stabilization of organic carbon by Fe (oxyhydr)oxides in soil aggregates. Geoderma . https://doi.org/10.1016/j.geoderma.2019.113987.
Yang, X., Lu, Y., Ding, Y., Yin, X., Raza, S., Tong, Y.(2017). Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Research , 206, 1–10. http://dx.doi.org/10.1016/j.fcr.2017.02.016.
Ye, L., & Van Ranst, E. (2009). Production scenarios and the effect of soil degradation on long-term food security in China. Global Environmental Change , 19(4), 464-481. https://doi.org/10.1016/j.gloenvcha.2009.06.002.
Yin, H., Zhao, W., Li, T., Cheng, X., Liu, Q.(2018). Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renewable Sustainable Energy Rev iews, 81, 2695–2702. https://doi.org/10.1016/j.rser.2017.06.076.
Yu, K., Dong, Q., Chen, H.., Feng, H., Zhao, Y., Si, B., Li, Y., Hopkins, D. W.(2017). Incorporation of pre-treated straw improves soil aggregate stability and increases crop productivity.AgronomyJournal , 109(5), 2253–2265.https://doi.org/10.2134/agronj2016.11.0645.
Zhang, X., Sun, N., Wu, L., Xu, M., Bingham, I.J., Li, Z.(2016). Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China.Science of the Total Environment , 562, 247–259. http://dx.doi.org/10.1016/j.scitotenv.2016.03.193.
Zhang, X., Zhu, A., Xin, X., Yang, W., Zhang, J., Ding, S.(2018). Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index.Field Crops Research , 221, 157–165. https://doi.org/10.1016/j.fcr.2018.02.025.
Zhao, S., Qiu, S., Xu, X., Ciampitti, I.A., Zhang, S., He, P.(2019a). Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Applied Soil Ecol ogy, 138, 123–133. https://doi.org/10.1016/j.apsoil.2019.02.018.
Zhao, X., Liu, B., Liu, S., Qi, J., Wang, X., Pu, C., Li, S., Zhang, X., Yang, X., Lal, R., Chen, F., Zhang, H.( 2019b). Sustaining crop production in China’s cropland by crop residue retention: A meta‐analysis. Land Degradation & Development , 31(6), 694–709. https://doi.org/10.1002/ldr.3492.
Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., Huang, B., Zhao, S., Wu, J., Xie, D., Zhu, B., Yu, D., Pan, X., Xu, S., Shi, X.(2018a). Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceeding of the National Academy of Sciences of the United States of America , 115(16), 4045–4050. https://doi.org/10.1073/pnas.1700292114.
Zhao, H., Shar, A.G., Li, S., Chen, Y., Shi, J., Zhang, X., Tian, X.( 2018b). Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system.Soil & Tillage Research , 175, 178–186.http://dx.doi.org/10.1016/j.still.2017.09.012.