CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., &
Sparks, D. L. (2015). Soil and human security in the 21st century.Science , 348, 1261071–1261071. https://doi.org/10.1126/science.
1261071
Bao, S.D.(2000). In: Bao, S.D. (Ed.), Soil and Agricultural Chemistry
Analysis. China Agriculture Press, Beijing, pp. 11–13.
Berhane,
M., Xu, M., Liang, Z., Shi, J., Wei, G., Tian, X.(2020). Effects of
long-term straw return on soil organic carbon storage and sequestration
rate in North China upland crops: A meta-analysis. Global Change
Biology ,26, 2686–2701. https://doi.org/10.1111/gcb.15018.
Boomsma, C.R., Santini, J.B., West, T.D., Brewer, J.C., McIntyre, L.M.,
Vyn, T.J.(2010). Maize grain yield responses to plant height variability
resulting from crop rotation and tillage system in a long-term
experiment. Soil & Tillage Research ,106, 227–240.
https://doi.org/10.1016/j.still.2009.12.006.
Deng, X.P., Shan, L., Zhang, H.P., Turner, N.C.(2006). Improving
agricultural water use efficiency in arid and semiarid areas of China.Agricultural Water Management , 80, 23–40.
https://doi.org/10.1016/j.agwat.2005.07.021.
Djuma, H., Bruggeman, A., Zissimos, A., Christoforou, I., Eliades, M.,
&Zoumides, C. (2020). The effect of agricultural abandonment and
mountain terrace degradation on soil organic carbon in a Mediterranean
landscape. Catena , 195, 104741.
https://doi.org/10.1016/j.catena.2020.104741.
Feng, Q., An, C., Chen, Z., Wang,
Z.(2020). Can deep tillage enhance carbon sequestration in soils? A
meta-analysis towards GHG mitigation and sustainable agricultural
management. Renewable &Sustainable Energy Reviews , 133, 110293.
https://doi.org/10.1016/j.rser.2020.110293.
Fiorini,
A., Boselli, R., Maris, S.C., Santelli, S., Ardenti, F., Capra, F.,
Tabaglio, V.(2020). May conservation tillage enhance soil C and N
accumulation without decreasing yield in intensive irrigated croplands?
Results from an eight-year maize monoculture. Agriculture,
Ecosystems & Environment , 296, 106926.
https://doi.org/10.1016/j.agee.2020.106926.
Gaffney, J., Bing, J., Byrne, P.F., Cassman, K.G., Ciampitti, I.,
Delmer, D., Habben, J., Lafitte, H.R., Lidstrom, U.E., Porter, D.O.,
Sawyer, J.E., Schussler, J., Setter, T., Sharp, R.E., Vyn, T.J., Warner,
D.(2019). Science-based intensive agriculture: Sustainability, food
security, and the role of technology. Global Food Security ,23,
236–244.
https://doi.org/10.1016/j.gfs.2019.08.003.
García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.
B., Arcenegui, V., Zornoza, R., Sempere, J. G.(2009). Effects of
agricultural management on surface soil properties and soil-water losses
in eastern Spain. Soil & Tillage Research , 106, 117–123.
https://doi.org/10.1016/j.still.2009.06.002.
Ghafoor, A., Poeplau, C.,
Kätterer, T.(2017). Fate of straw- and root-derived carbon in a Swedish
agricultural soil. Biology &Fertility of Soils. 53, 257–267.
https://doi.org/10.1007/s00374-016-1168-7.
Ghosh, S., Wilson, B., Ghoshal, S., Senapati, N., Mandal, B.(2012).
Organic amendments influence soil quality and carbon sequestration in
the Indo Gangetic plains of India. Agriculture, Ecosystems &
Environment ,156, 134–141. https://doi.org/10.1016/j.agee.2012.05.009.
Gonçalves, D.R.P., Sá, João C.M.,
Mishra, U., Fornari, A.J., Furlan, F.J.F., Ferreira, L.A., Inagaki,
T.M., Romaniw, J., de Oliveira F.A., Briedis, C.(2019). Conservation
agriculture based on diversified and high-performance production system
leads to soil carbon sequestration in subtropical
environments.Journal of Cleaner Production , 219, 136–147.
https://doi.org/10.1016/j.jclepro.2019.01.263.
Guan, X., Wei, L., Turner, N.C.,
Ma, S., Yang, M., Wang, T.(2020). Improved straw management practices
promote in situ straw decomposition and nutrient release, and increase
crop production. Journal of Cleaner Production ,250, 119514.
https://doi.org/10.1016/j.jclepro.2019.119514.
Guillaume, T., Holtkamp, A. M.,
Damris, M., Brümmer, B., &Kuzyakov, Y. (2016). Soil degradation in oil
palm and rubber plantations under land resource scarcity.Agriculture, Ecosystems & Environment, 232, 110-118.
http://dx.doi.org/10.1016/j.agee.2016.07.002.
Hong, J., Ren, L., Hong, J., Xu, C.(2016). Environmental impact
assessment of corn straw utilization in
China. Journal of Cleaner
Production , 112,1700–1708.
http://dx.doi.org/10.1016/j.jclepro.2015.02.081.
Hou, L., Keske, C., Hoag, D., Balezentis, T., Wang, X.(2019). Abatement
costs of emissions from burning maize straw in major maize regions of
China: Balancing food security with the environment. Journal of
Cleaner Production , 208, 178–187.
https://doi.org/10.1016/j.jclepro.2018.10.047.
Huang, M., Zhou, X., Cao, F., Xia, B., Zou, Y.(2015). No-tillage effect
on rice yield in China: A meta-analysis.Field Crops Research ,
183, 126–137. http://dx.doi.org/10.1016/j.fcr.2015.07.022.
Jat, M.L., Chakraborty, D., Ladha, J.K., Rana, D.S., Gathala, M.K.,
McDonald, A., Gerard, B.(2020). Conservation agriculture for sustainable
intensification in South Asia. Nature Sustainability , 3(4),
336–343. https://doi.org/10.1038/s41893-020-0500-2.
Johnson, J.M.F., Allmaras, R.R., Reicosky, D.C.(2006). Estimating source
carbon from crop residues, roots and rhizodeposits using the national
grain-yield database. Agronomy Journal , 98, 622–636.
https://doi.org/10.2134/agronj2005.0179.
Kan, Z., Ma, S., Liu, Q., Liu, B., Virk, A.L., Qi, J., Zhao, X., Lal,
R., Zhang, H.(2020). Carbon sequestration and mineralization in soil
aggregates under long-term conservation tillage in the North China
Plain. Catena ,188, 104428.
https://doi.org/10.1016/j.catena.2019.104428.
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., Basirat, S.(2012).
Organic resource management: impacts on soil aggregate stability and
other soil physicochemical properties. Agriculture, Ecosystems &
Environment , 148, 22–28. https://doi.org/10.1016/j.agee.2011.10.021.
Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F., van Kessel,
C.(2005). The relationship between carbon input, aggregation, and soil
organic carbon stabilization in sustainable cropping systems. Soil
Science Society of America Journal , 69, 1078–1085.
https://doi.org/10.2136/sssaj2004.0215.
Krull, E.S., Skjemstad, J.O., Baldock, J.A.(2004). Functions of Soil
Organic Matter and the Effect on Soil Properties. Grains Research and
Development Corporation (GRDC).
Li, S., Li, X., Zhu, W., Chen, J., Tian, X., Shi, J.(2019). Does straw
return strategy influence soil carbon sequestration and labile
fractions? Agronomy Journal ,111(2), 897–906.
https://doi.org/10.2134/agronj2018.08.0484.
Liu, C., Lu, M., Cui, J., Li, B., Fang, C.(2014). Effects of straw
carbon input on carbon dynamics in agricultural soils: a meta-analysis.Global Change Biology , 20 (62),
1366–1381.
https://doi.org/10.1111/gcb.12517.
Liu, N., Liu, N., Li, Y., Cong, P., Wang, J., Guo, W., Pang, H., Zhang,
L.(2021). Depth of straw incorporation significantly alters crop yield,
soil organic carbon and total nitrogen in the North China Plain.Soil & Tillage Research ,205, 104772.
https://doi.org/10.1016/j.still.2020.104772.
Liu, S., Zhang, X., Liang, A., Zhang, J., Müller, C., Cai, Z.(2018).
Ridge tillage is likely better than no tillage for 14-year field
experiment in black soils: Insights from a 15N-tracing
study. Soil & Tillage Research , 179, 38–46.
https://doi.org/10.1016/j.still.2018.01.011.
Liu, Z., Chen, Z., Ma, P., Meng, Y., Zhou, J.(2017). Effects of tillage,
mulching and N management on yield, water productivity, N uptake and
residual soil nitrate in a long-term wheat-summer maize cropping system.Field Crops Research ,213, 154–164.
http://dx.doi.org/10.1016/j.fcr.2017.08.006.
Liu, Z., Gao, T., Tian, S., Hu, H., Li, G., Ning, T.(2020). Soil organic
carbon increment sources and crop yields under long-term conservation
tillage practices in wheat-maize systems. Land Degradation &
Development ,31(9), 1138–1150. https://doi.org/10.1002/ldr.3531.
Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as
an indicator for monitoring land and soil degradation in relation to
United Nations’ Sustainable Development
Goals.Land Degradation &
Development, 30, 824–838. https://doi.org/10.1002/ldr.3270.
Loveland, P., Webb, J.(2003). Is there a critical level of organic
matter in the agricultural soils of temperate regions: a review.Soil & Tillage Research ,70, 1–18.
https://doi.org/10.1016/S0167-1987(02)00139-3.
Ma, X., Zhang, X., & Tian, D. (2020). Farmland degradation caused by
radial diffusion of CO2 leakage from carbon capture and
storage. Journal of Cleaner
Production, 255, 120059. https://doi.org/10.1016/j.jclepro.2020.120059.
Najafi, E., Pal, I., Khanbilvardi, R.(2019). Climate drives variability
and joint variability of global crop yields. Science of the Total
Environment , 662, 361–372.
https://doi.org/10.1016/j.scitotenv.2019.01.172.
Nouri, A., Lee, J., Yin, X., Saxton, A.M., Tyler, D.D., Sykes, V.R.,
Arelli, P.(2019). Crop species in no-tillage summer crop rotations
affect soil quality and yield in an Alfisol. Geoderma ,
345, 51–62.
https://doi.org/10.1016/j.geoderma.2019.02.026.
Peng, Z., Wang, L., Xie, J., Li, L., Coulter, J. A., Zhang, R., Luo, Z.,
Cai, L., Carberrye, P., Whitbread, A.(2020). Conservation tillage
increases yield and precipitation use efficiency of wheat on the
semi-arid Loess Plateau of China. Agricultural Water Management ,
231, 106024. https://doi.org/10.1016/j.agwat.2020.106024.
Pittelkow, C.M., Liang, X., Linquist, B.A., van Groenigen, K.J., Lee,
J., Lundy, M.E., van Gestel, N., Six, J., Venterea, R.T., van Kessel,
C.(2015). Productivity limits and potentials of the principles of
conservation agriculture. Nature , 517, 365–368.
https://doi.org/10.1038/nature13809.
Raimondo, M., Nazzaro, C., Marotta, G., & Caracciolo, F. (2020). Land
degradation and climate change: Global impact on wheat yields.Land Degradation & Development , 32:387–398
http://dx.doi.org/10.1002/ldr.3699.
Reeves, S.H., Somasundaram, J., Wang, W.J., Heenan, M.A., Finn, D.,
Dalal, R.C.(2019). Effect of soil aggregate size and long-term
contrasting tillage, stubble and nitrogen management regimes on
CO2 fluxes from a Vertisol. Geoderma , 337,
1086–1096. https://doi.org/10.1016/j.geoderma.2018.11.022.
Ryan, J.(2020). Soil fertility, crop nutrition, and cropping systems:
Research for Mediterranean dryland agriculture. Agronomy
Journal ,112(5), 3350–3360. https://doi.org/10.1002/agj2.20374.
Rüegg, J., Quezada, J. C., Santonja, M., Ghazoul, J., Kuzyakov, Y.,
Buttler, A., & Guillaume, T. (2019). Drivers of soil carbon
stabilization in oil palm plantations. Land Degradation &
Development , 30(16), 1904-1915. https://doi.org/10.1002/ldr.3380.
Sampietro V. M., Peña M. J. L., Roldán, J., Maldonado, M., Lefebvre, M.,
& Vattuone, M. (2018). Human-driven geomorphological processes and soil
degradation in Northwest Argentina: A geoarchaeological view. Land
Degradation & Development , 29(11), 3852-3865.
https://doi.org/10.1002/ldr.3128.
Sayer, E.J., Heard, M.S., Grant, H.K., Marthews, T.R., Tanner,
E.V.J.(2011). Soil carbon release enhanced by increased tropical forest
litterfall. Nature. Climate Change ,1, 304–307.
https://xs.scihub.ltd/https://doi.org/10.1038/nclimate1190.
Somasundaram, J., Reeves, S., Wang, W., Heenan, M., Dalal, R.(2017).
Impact of 47 years of no-tillage and stubble retention on soil
aggregation and carbon distribution in a vertisol. Land
Degradation & Development , 25, 1589–1602.
https://doi.org/10.1002/ldr.2689.
StSukhdev, S.M., Marvin, N.,
Elston, D.S., Brian, M., Miles, D., Dick, P.(2011). Long-term straw
management and N fertilizer rate effects on quantity and quality of
organic C and N and some chemical properties in two contrasting soils in
Western Canada. Biology & Fertility of Soils ,47, 785–800.
https://doi.org/10.1007/s00374-011-0587-8.
Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., Zhu, Z.(2012).
Agricultural non-point source pollution in China: causes and mitigation
measures. AMBIO , 41(4), 370–379.
http://dx.doi.org/10.1007/s13280-012-0249-6.
Sun, W., Canadell, J.G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer,
T., Huang, Y.(2020). Climate drives global soil carbon sequestration and
crop yield changes under conservation agriculture. Glob. Change
Biol ., 26, 3325–3335. https://doi.org/10.1111/gcb.15001.
Tian, S., Ning, T., Wang, Y., Liu, Z., Li., G., Li, Z., Lal, R.(2016).
Crop yield and soil carbon responses to tillage method changes in North
China. Soil & Tillage Research ,163, 207–213.
https://doi.org/10.1016/j.still.2016.06.005.
Wang, H., Wang, S., Yu, Q., Zhang, Y., Wang, R., Li, J., Wang, X.(2020).
No tillage increases soil organic carbon storage and decreases carbon
dioxide emission in the crop residue-returned farming system.Journal of Environmental Manage ment, 261, 110261.
https://doi.org/10.1016/j.jenvman.2020.110261.
Wang, J., Chen, Z., Chen, L., Zhu, A.(2011). Surface soil phosphorus and
phosphatase activities affected by tillage and crop residue input
amounts. Plant Soil &Environ ment, 57, 251–257.
https://doi.org/10.17221/437/2010-PSE.
Wang, S., Zhang, Y., Ju, W., Chen, J., Ciais, P., Cescatti, A., Sardans,
J., Janssens, I.A., Wu, M., Berry, J.A., Campbell, E.,
Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P.,
Smith, W.K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D.,
Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I., Wang,
R., Zeng, N., Tian, H., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd,
V., Goll, D.S., Peñuelas, J.(2020). Recent global decline of
CO2 fertilization effects on vegetation photosynthesis.Science , 370(6522), 1295–1300.
https://doi.org/10.1126/science.abb7772.
Wang, X., Jia, Z., Liang, L., Zhao, Y., Yang, B., Ding, R., Wang, J.,
Nie, J.(2018). Changes in soil characteristics and maize yield under
straw returning system in dryland farming. Field Crops Research ,
218, 11-17. https://doi.org/10.1016/j.fcr.2017.12.003.
Xia, L., Lam, S.K., Wolf, B., Kiese, R., Chen, D., Butterbach-Bahl,
K.(2018). Trade-offs between soil carbon sequestration and reactive
nitrogen losses under straw return in global agroecosystems.Global Change Biol ogy, 24, 5919–5932.
https://doi.org/10.1111/gcb.14466.
Xu, J., Han, H., Ning, T., Li, Z., Lal, R.(2019). Long-term effects of
tillage and straw management on soil organic carbon, crop yield, and
yield stability in a wheat-maize system. Field Crops Research ,
233, 33–40.
https://doi.org/10.1016/j.fcr.2018.12.016.
Xue, B., Huang, L., Huang, Y.N., Kubar, K.A., Li, X.K., Lu, J.W.(2020).
Straw management influences the stabilization of organic carbon by Fe
(oxyhydr)oxides in soil aggregates. Geoderma .
https://doi.org/10.1016/j.geoderma.2019.113987.
Yang, X., Lu, Y., Ding, Y., Yin, X., Raza, S., Tong, Y.(2017).
Optimising nitrogen fertilisation: A key to improving nitrogen-use
efficiency and minimising nitrate leaching losses in an intensive
wheat/maize rotation (2008–2014). Field Crops Research , 206,
1–10. http://dx.doi.org/10.1016/j.fcr.2017.02.016.
Ye, L., & Van Ranst, E. (2009). Production scenarios and the effect of
soil degradation on long-term food security in China. Global
Environmental Change , 19(4), 464-481.
https://doi.org/10.1016/j.gloenvcha.2009.06.002.
Yin, H., Zhao, W., Li, T., Cheng, X., Liu, Q.(2018). Balancing straw
returning and chemical fertilizers in China: Role of straw nutrient
resources. Renewable Sustainable Energy Rev iews, 81, 2695–2702.
https://doi.org/10.1016/j.rser.2017.06.076.
Yu, K., Dong, Q., Chen, H.., Feng, H., Zhao, Y., Si, B., Li, Y.,
Hopkins, D. W.(2017). Incorporation of pre-treated straw improves soil
aggregate stability and increases crop productivity.AgronomyJournal , 109(5),
2253–2265.https://doi.org/10.2134/agronj2016.11.0645.
Zhang, X., Sun, N., Wu, L., Xu, M., Bingham, I.J., Li, Z.(2016). Effects
of enhancing soil organic carbon sequestration in the topsoil by
fertilization on crop productivity and stability: Evidence from
long-term experiments with wheat-maize cropping systems in China.Science of the Total Environment , 562, 247–259.
http://dx.doi.org/10.1016/j.scitotenv.2016.03.193.
Zhang,
X., Zhu, A., Xin, X., Yang, W., Zhang, J., Ding, S.(2018).
Tillage
and residue management for long-term wheat-maize cropping in the North
China Plain: I. Crop yield and integrated soil fertility index.Field Crops Research , 221, 157–165.
https://doi.org/10.1016/j.fcr.2018.02.025.
Zhao, S., Qiu, S., Xu, X., Ciampitti, I.A., Zhang, S., He, P.(2019a).
Change in straw decomposition rate and soil microbial community
composition after straw addition in different long-term fertilization
soils. Applied Soil Ecol ogy, 138, 123–133.
https://doi.org/10.1016/j.apsoil.2019.02.018.
Zhao, X., Liu, B., Liu, S., Qi, J., Wang, X., Pu, C., Li, S., Zhang, X.,
Yang, X., Lal, R., Chen, F., Zhang, H.( 2019b). Sustaining crop
production in China’s cropland by crop residue retention: A
meta‐analysis. Land Degradation & Development , 31(6), 694–709.
https://doi.org/10.1002/ldr.3492.
Zhao, Y., Wang, M., Hu, S., Zhang,
X., Ouyang, Z., Zhang, G., Huang, B., Zhao, S., Wu, J., Xie, D., Zhu,
B., Yu, D., Pan, X., Xu, S., Shi, X.(2018a).
Economics- and policy-driven
organic carbon input enhancement dominates soil organic carbon
accumulation in Chinese croplands. Proceeding of the National
Academy of Sciences of the United States of America , 115(16),
4045–4050. https://doi.org/10.1073/pnas.1700292114.
Zhao, H., Shar, A.G., Li, S., Chen, Y., Shi, J., Zhang, X., Tian, X.(
2018b). Effect of straw return mode on soil aggregation and aggregate
carbon content in an annual maize-wheat double cropping system.Soil & Tillage Research , 175,
178–186.http://dx.doi.org/10.1016/j.still.2017.09.012.