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ABSTRACT
The main objective of the study is to evaluate the roles of climate change and human factors on runoff, baseflow, and hydrological drought characteristics at a watershed scale. The novelty of the study is to assess separately the cascading, indirect, accumulative effects of climate change and human factors on hydrological drought, i.e., runoff and baseflow. This involved analyzing change points to divide the available hydrometeorological data into a baseline and a perturbed period. We applied two hydrological models, SWAT and HBV-light, and two nonparametric climate elasticity of runoff to identify the contribution of climate change and human factors in influencing runoff and baseflow processes. The hydrological models were used to simulate naturalized runoff and baseflow during the perturbed period. The temporal variation in the characteristics of the baseflow regime is expressed as baseflow index. Drought indices, standardized runoff index and standardized baseflow index were used as hydrological drought indicators. A significant change in runoff reduction in the Kamienna watershed began in 1982, suggesting that human factors play a dominant role in influencing runoff. In addition, we found that an increase in baseflow and a decrease in hydrological drought events in the 2010s are a positive long-term effect of human factors such as construction of dams in the watershed. Finally, analyses of changes in land cover dynamics in the watershed over the past four decades using satellite imagery are used to confirm the presence of human interventions.
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1. INTRODUCTION 
The main drivers that have a significant influence on runoff processes can be divided into two categories, climate change (precipitation and evapotranspiration) and human factors (including land use and water management). These factors are the main causes of disturbances in the hydrological cycle (Harrigan et al., 2014; Cong Jiang et al., 2015). Knowledge of the influence of climate change and human factors on hydrological processes is used to identify the initial determinants of runoff change in response to those factors (Qiu et al., 2016). Human factors have a significant influence on runoff in a watershed, e.g., they affect total evapotranspiration, infiltration rates, and overland flow, which in turn affect water quantity (Rust et al., 2014). The change in runoff can either directly or indirectly alter various characteristics of hydrological drought, including frequency, duration, severity, and intensity (Zhang et al., 2018). Water withdrawals, water transfers and dams are direct impacts; while a variability of hydrological and meteorological processes may have both direct and indirect impact on water availability (Van Loon, 2015).

Droughts are extreme hydrological events that can be influenced by climate and humans (Van Loon, 2015), and become devastating elements in the world (Kliment & Matoušková, 2009). According to Gudmundsson and Seneviratne (2016), recent increase in droughts in Northern Europe is due to human factors. The effects of climate change and human factors on runoff and drought characteristics vary with temporal and spatial scales. While climate change contributes mostly to the variability of runoff at long time-scales, human factors usually have a short term influence on runoff (Zou et al., 2017). Zhang et al. (2018) showed that the influence of these factors varies from watershed to watershed; therefore watershed-specific measures should be recommended for problems in different catchments (Qiu et al., 2016).

Identifying the important parameters affecting runoff in a watershed is critical for a sustainable use of water resources (Bao et al., 2012). However, it is difficult to identify the specific contributions of both climate change and human-induced effects on runoff and hydrological drought, due to the interaction and interdependence between the these factors (Jiang et al., 2016; Liu et al., 2016). Many researchers have quantified the contribution of both factors by assuming their independence. Several studies have summarized methods of separating these factors (Dey & Mishra, 2017; Zeng et al., 2020). The main approaches include an application of hydrological modelling (Hu et al., 2012; Kazemi et al., 2020), the Budyko framework-based climate elasticity method (Sun et al., 2014), the paired catchment method (Rangecroft et al., 2018) and statistical methods based on the double mass curve (Gao et al., 2017).

[bookmark: _Hlk76145437]The novelty of the study is to assess separately the cascading, indirect, accumulative effects of climate change and human factors on hydrological drought, i.e., runoff and baseflow. The change point analysis (Dey, 2021) is applied to divide the historical data into baseline and disturbed periods. Two hydrological models, SWAT (the Soil and Water Assessment Tool, Arnold et al., 1998) and HBV-light (Hydrologiska Byråns Vattenbalansavdelning model, Bergström, 1972), and two nonparametric climate elasticity methods of runoff (Sankarasubramanian et al., 2001; Zheng et al., 2009) are applied to identify the contribution of climate change and human factors in influencing runoff and baseflow. The hydrological models are applied to simulate naturalized runoff and baseflow during the perturbed period. The temporal variation in the characteristics of the baseflow processes is expressed as a baseflow index. Hydrological drought indices are used as drought indicators based on observed and reconstructed natural runoff. Finally, analyses of changes in land cover dynamics in the basin over the last four decades using satellite imagery are used as a confirmation of human intervention.


2. DATA AND METHODS 
2.1 The Kamienna Watershed Description 
[bookmark: _Hlk76047431]The study area is the Kamienna watershed in central Poland (Figure 1). It has a catchment area of 1873.68 km2 at the Czekarzewice hydrological motoring station, but the entire watershed at its confluence with the main River Vistula covers an area of just over 2000 km2. The upper course rises in the mountainous area above the town of Skarżysko-Kamienna and flows from west to east through the towns of Starachowice, Kunów and Ćmielów until it joins the main River Vistula. There have been several industrial enterprises in the watershed for centuries, and in recent decades the construction of water retention facilities has begun, so that the river is considered an industrial river serving energy supply and navigation (Lenar-Matyas et al., 2006). The watershed is known for natural and human hazards, including hydrological extremes (i.e., flooding and drought), poor water quality, and ecological conditions (FramWat, 2019). "High flow dynamics" characterize the watershed with steep and mountainous areas near the headwaters, while lowlands near the outlet are characterized by flooding (FramWat, 2019). Many micro- and large-scale man-made water retention structures (FramWat, 2019) exist in the watershed including Wąchockie artificial lakes, Wióry and Brody reservoirs. 

[Insert Figure 1]

Elevation in the watershed varies from about 130 to 600 m above mean sea level. Based on available meteorological data (1968-2018), annual areal precipitation over the watershed varies from 410 to 920 mm with a long-term annual mean of 600 mm, while the long-term monthly mean varies from about 30 to 90 mm, with the minimum and maximum occurring in winter and summer, respectively. The mean monthly temperature in the watershed varies from -3.1 to 18.3 degrees Celsius with the minimum and maximum in January and July, respectively. Similarly, the mean annual runoff is 8.5 m3/s (1970-2018). The land use of the watershed is dominated by agriculture (46.3 %), followed by forest and semi-natural land (43.3 %), artificial land (10 %) and water bodies (0.4 %) based on European Union (EU) Coordination of Information on the Environment (CORINE) Land Cover (CLC) in 2018 (https://land.copernicus.eu/pan-european/corine-land-cover) (Figure 9). In the 1980’s the Skarzysko Kamienna reach of the river has undergone channel regulations. The main channel was straightened which must have had an effect on the river runoff regime downstream.

[bookmark: _Hlk75866080]2.2 Data Sources and Processing 
The data used in this research are of two types: (a) spatial data: digital elevation model (DEM), soil maps and land cover maps; (b) temporal data: hydrological and meteorological variables. The spatial data, including DEM (40 m resolution) and a soil map (scale 1:500,000) prepared by Piniewski et al. (2017) for hydrological modelling of the Vistula River basin were used in this study. Sources of these data were respectively the Central Agency for Geodesy and Cartographic Documentation (CODGIK) and the Institute for Soil Science and Plant Cultivation - National Research Institute (IUNG-PIB) (Piniewski et al., 2017). The land use and land cover maps of 1990, 2006, and 2018 were obtained from the CORINE Land Cover (CLC) and the year 1982 was obtained from the United States Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov) Landsat-4 Multispectral Scanner (MSS) imageries analysis. 

[Insert Table 1]

The hydrometeorological variables used include daily observed river flow and meteorological variables: precipitation, minimum and maximum temperature, wind speed and relative humidity provided by the Institute of Meteorology and Water Management-National Research Institute (IMGW-PIB) as shown in Table 1 and Figure 1. Hydrometeorological stations were selected considering the length of the period of record, number of missing data and quality. Stations that had missing data for a period longer than a month were excluded from the analysis. The missing climate variables were filled with the nearest stations using the inverse distance method, while the runoff data were filled with the area ratio method using the nearest upstream runoff data.

[bookmark: _Hlk75882104]2.3 Outline of Research Methodology 
There are several approaches that can be used to determine the role of climate change and human factors in influencing the runoff processes and hydrological characteristics. Therefore, the first step is to select the methods and separate the contribution of the effects of climate change and human factors. In this study, natural runoff reconstruction methods (Van Loon & Van Lanen, 2013; Zhang et al., 2012) were used to separate the effects of climate and human factors. After the identification of a runoff regime shift, hydrological models were chosen to model the natural runoff (i.e., the runoff without major human intervention) during the perturbed period, as shown in Figure 2. This approach was compared with the climate elasticity of runoff method (Sankarasubramanian et al., 2001, Zheng et al., 2009). 

[Insert Figure 2]

2.4 Flow Regime Shift Detection Methods 
Various test methods have been used in the literature to detect trends and change points in hydrological and meteorological variables. The most common ones are classified into two categories: parametric and nonparametric tests. According to Hamed and Rao (1998), parametric tests are effective tests for trend detection, but the tests assume that the data are normally distributed and that there are no dependencies. On the other hand, non-parametric tests only require the data to be independent and also not sensitive to outliers. The locations of the change points of the same hydrological and meteorological data may differ for using different methods of detecting shifts that use different theories and assumptions (Zeng et al., 2020). The non-parametric Mann-Kendall test (Kendall, 1955; Mann, 1945) has been used to identify a trend in hydrological and meteorological variables. The method requires independent data. Therefore, the intercorrelation between the data in the time series is first identified and the Modified Mann-Kendall (Hamed, 2009) test was employed for pre-whitening autocorrelated hydrological variables.

The Pettitt test (Pettitt, 1979) is a non-parametric statistic commonly used in continuous and rank-based hydrometeorological time series to locate the most significant shift point when the correct shift time is uncertain (Pohlert, 2020). It identifies a significant change in the mean of a temporal sequence. Traditional methods use either runoff and precipitation only and identify a change point in the data. These methods do not consider the combined effect of climates and human factors (Gao et al., 2017). The new approach proposed by Gao et al. (2017) was used to identify the change point applying Pettitt's test based on the slope of the double mass curve (DMC) to overcome this limitation. A “Pettitt” programme (Dey, 2021) in MATLAB script was used in the research. This method was applied to flow data from three discharge monitoring stations located at the outlet of the watershed (Czekarzewice), in the middle of the river (Kunów), and near the headwaters of the river (Bzin) (Figure 1 and Table 1). These stations were selected to identify the reaches of the main River Kamienna that are influenced by major human interventions. The entire period considered is divided into two periods: baseline period (BP) (1970-1980) and perturbed period (PP) (1983-2018). The mathematical expression of the slope of the double mass curve can be written as follows:

where  the slope of double mass curve at time ,  = the cumulative runoff at time   respectively, and  = the cumulative precipitation at time , respectively. 

2.5 Estimating Climate and Human Factors Contribution Using Hydrological Models 
The total runoff changes based on observation () are the contribution of the combined effect of climate change and human factors (Wang et al., 2012). The relative contribution of climate change () and human factors () can be separated using a number of methods described in the literature (Lee and Kim, 2017; Yang et al., 2020). It is assumed that those two factors are autonomous even though they affect one another (Zhang et al., 2012). The total runoff change can be estimated using equation 2. The  and  in Eq. (3) are unknown, and they can be estimated using hydrological models and climate elasticity index as discussed further. The hydrological modelling approach involves separating the entire observation period into the baseline period (BP) and the perturbation period (PP). Therefore, the total runoff changes  are defined as follows:


where  represents total runoff changes between  and  periods,  is measured runoff during PP,  is measured runoff during BP,  is the climate change contribution to runoff changes and  is the human factors contribution to runoff changes. 

The hydrological models are first calibrated and validated using the measured runoff during the baseline period. The validated models are subsequently used to simulate naturalized runoff, i.e., runoff without major human interventions, during PP. The change between observed and simulated runoff can be used as an estimator of human induced runoff changes:

where  is the naturalized runoff during PP,  is the observed runoff during PP,  is a depth of runoff reduction due to human interventions. The other notations are as defined in Eq. (2). 

Thus, having the estimates of total runoff changes  (Eq. 2) and human-factors induced changes  (Eq. 4), changes of runoff related to climatic factors can be derived from Eq. (3).

2.6 Climate Elasticity of Runoff 
The other way to estimate changes in runoff caused by climate change  is to apply an elasticity index. It was proposed by Schaake (1990) to study the sensitivity of runoff to climate change. This index is a dimensionless quantity that measures the rate of change of runoff with respect to the rate of change of climate factors. The elasticity of runoff  to variable X (precipitation or potential evapotranspiration ()) is defined by Schaake (1990) as:

The elasticity index was defined in continuous time (Eq. 5), but it is also used in a discrete form, taking the average of a variable over many years and assuming the stability of hydrological processes taking place in the watershed.

Sankarasubramanian et al. (2001) proposed a nonparametric method of derivation of climate elasticity of runoff directly from the observed data: 

where  denotes runoff elasticity to climate factors (i.e., [-],  annual climate factor value in year i [mm],  is long term average annual climate factor [mm],  annual runoff depth in year i [mm] and  is long term average annual runoff [mm], and .

Zheng et al. (2009) derived an alternative equation (Eq. 7) based on Eq. (6). The authors stated that the elasticity of runoff is a linear regression coefficient of the relative change in climate factors versus the relative change in runoff with their respective long-term average value, which mathematically expressed as: 

where the notation is the same as in Eq. (6).

Under the assumption that human induced changes are independent of climate impact on runoff, the change in runoff due to climate change  in Eq. (3) can be expressed as (Zheng et al. 2009):

The application of an elasticity index to the derivation of changes of runoff due to climate factors given by Eq. (8) takes the following form: 

where  and  are the differences between long term average precipitation and potential evapotranspiration during perturbed and baseline periods, respectively,  are, respectively, P and  elasticity of runoff,  average precipitation during baseline period.  was estimated using the FAO Penman-Monteith equation (Allen et al., 1998). 

[bookmark: _Ref71798266]2.7 Hydrological Modelling 
2.7.1 The SWAT Model
[bookmark: _Hlk76145706]The Soil and Water Assessment Tool (SWAT) is a semi-distributed, physically based hydrological model developed by Arnold et al. (1998) for the United States Department of Agriculture (USDA) Agricultural Research Service (ARS). It is a long-term water yield and process-based watershed model that simulates runoff, sediment and nutrient at daily time steps (Arnold et al., 2012). The model's discretization scheme involves dividing the watershed into sub-watersheds and then into hydrologic response units (HRUs). HRU is the primary hydrological unit in SWAT, which represents a homogeneous area within a sub-watershed with a unique combination of soil, land use, and slope classes (Neitsch et al., 2011).

SWAT uses the curve number Soil Conservation Service method to calculate the depth of runoff, i.e., the runoff volumes at each HRU level. Muskingum routing method is used to route the runoff to the downstream channel.

[bookmark: _Hlk76023479]2.7.2 The HBV-light Model
The HBV model (Bergström, 1972), developed by the Swedish Meteorological and Hydrological Institute (SMHI), is a rainfall-runoff model that simulates daily runoff (Bergström, 1992). The model can be used as a "lumped model" or a "semi-distributed conceptual model". It is "lumped" when a single area-averaged input is used for modeling, while it is "semi-distributed" when a catchment is divided into sub-catchments based on elevation zones and vegetation zones. The HBV model is available in several modified versions that are used in different regions of the world. The model consists of three reservoirs: soil box, upper layer, and lower layer, representing soil surface, fast subsurface response, and slow groundwater response, respectively. The response of the upper and lower layers is related to the water depth in each layer by nonlinear and linear reservoir equations, respectively. 

2.7.3 Hydrological Models Performance Evaluation Criteria
The criteria used during calibration and validation to evaluate model performance include: the Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009). The NSE minimizes the sum of square differences of the model-simulated river flow compared to the observed river flow. The KGE was developed to overcome the limitation of the NSE by decomposing the NSE into three components: Correlation, Bias and Variance, and the determination of the Euclidean distance from the ideal point (Gupta et al., 2009). The ranges for both objective functions vary from negative infinity to 1. The river flow simulated by the model is optimal when the value of the criterion equals 1. 

2.8 Indices for Runoff and Baseflow Change Indicators 
In this study, runoff-related index, a baseflow index (BFI) was used to explain how climate change and human factors affect the components of total runoff and baseflow processes. The BFI is the ratio of baseflow to total runoff, which is used an alternative signal for baseflow components of runoff (Chen et al., 2007) and also coordinates the effects of watershed characteristics such as yield and storage; it is firmly linked to water deficit characteristics such as drought duration (Liu et al., 2016). There is no observed baseflow during the entire period. Therefore, the  total runoff and reconstructed runoff using the SWAT and the HBV-light models have to be separated into baseflow and direct runoff components by using the baseflow filtering algorithm developed by Wittenberg (1999). This baseflow filtering method was proposed based on a nonlinear reservoir algorithm. The separated baseflows are further used for temporal change analysis and the evaluation of groundwater related drought. 

The calculation is a backward filtering method starting from the last baseflow recession value using the following two equations:


where  is an initial discharge [mm/day],  is a baseflow recession at time , and  is a parameter with the dimension [ ];  is a dimensionless exponent [0.5],  is a time step [day]. 

2.9 Meteorological and Hydrological Drought Indices 
A drought is a situation in which the atmospheric, soil moisture, surface water, and groundwater components of the hydrologic cycle are significantly reduced over an extended period of time and over a large spatial area. The overall impact on the components of the cycle may result in a long-term economic drought that represents an imbalance between water demand and available water at local, regional, or global scales. Drought indices and the quantile threshold method are recommended in the literature to characterize hydrological drought (Van Loon & Van Lanen, 2013). Drought indices (DI): the standardized precipitation index (SPI), standardized runoff index (SRI), and standardized baseflow index (SBFI) were used to evaluate precipitation, runoff, and baseflow drought, respectively. A DI value less than -1 indicates the beginning of a drought event, while a value above -1 indicates the end of a drought event (Table 2). The number of months that the drought index is below the threshold is referred to as the drought period (DP) for a particular drought event; the sum of the DI values for a single event indicates the severity (S); and the ratio of S to DP indicates the intensity of the drought (Mckee et al., 1993). 

[Insert Table 2]


3. RESULTS 
[bookmark: _Ref72664830]3.1 Hydrological and Meteorological Variable Change Point Analysis 
[bookmark: _Hlk76048009]Pettitt's shift detection method was used at three different sites along the main watercourse of the Kamienna River: Bzin, Kunów, and Czekarzewice, located near the headwaters, in the middle, and at the outlet of the watershed, respectively (Figure 1), for identifying the spatial variation in runoff changes. Figure 3 shows the beginning of the shift point of hydrometeorological variables: runoff, precipitation and  based on their respective annual mean values using the traditional method (i.e. single variable analysis) and the slope of the DMC. The vertical axis of the Pettitt test is the Mann-Whitney U-test statistic (Figure 3c), which indicates how often the first sample is larger than subsequent samples in the time series. The maximum of the absolute value of the U-test statistic is the likely location of the change point in the hydrometeorological variables (Pettitt, 1979). The result of the Pettitt test based on the slopes of the DMC shows that the significant shift (i.e., the significant probability of the Pettitt test (P) less than 5% significance level) in the watershed began in 1982 at all three runoff monitoring stations (Figure 3c). The finding depicts that the runoff has been influenced by climate change and/or human factors significantly since 1982. This shift in runoff behavior is also visible in the DMC analysis at the outlet of the watershed (Figure 3a), which qualitatively confirms the results, although it is difficult to locate an exact point of the shift as in the Pettitt test. The analysis using traditional methods based only on time series analysis of observed runoff also gave the same result (Figure 3d). However, the study found that the change points for precipitation and  were 1995 and 1998, respectively, although they were not significant at the 5 percent significance level (Figure 3d).

[Insert Figure 3]

The available runoff and meteorological observed data (Table 1) were split into two periods based on the Pettitt’s test result shown above: before shift and after shift in runoff. The data before shift are called baseline period (1968 - 1982). The data after shift are called perturbed period (1983 - 2018). The “warm up” period (1968 - 1970) in the SWAT and HBV models were applied for a stabilization of initial and boundary conditions. The remaining baseline period data are used as calibration (1971 - 1976) and validation (1977 - 1982) of the hydrological models while the whole baseline period is used to estimate a climate elasticity of runoff. 

3.2 The SWAT and HBV Models Performance and Uncertainty Evaluation 
The SWAT model for the Kamienna watershed was constructed using spatial data (i.e. DEM, land use map and soil map) and observed meteorological variables. The Kamienna watershed (1873.68 km2) was divided into 32 sub-watersheds and then into 997 HRUs. A threshold of 5 percent was used to define the 997 HRUs for land use, soil, and slope classes. The subdivision of the watershed into hydrological units reflects the spatial heterogeneity of watershed characteristics due to different attributes such as climate, land use, soil, and topographic conditions that can influence hydrological processes (Neitsch et al., 2011). The Penman-Montieth equation (Montieth, 1965) built into the model was selected from the available alternatives to estimate the  at each HRU level. 

The Sequential Uncertainty Fitting Version 2 (SUFI -2) is used in this study. The SUFI -2 uses a "stochastic calibration approach" that provides simulation results in terms of a 95 percent prediction uncertainty (95PPU) and "desirable parameter ranges" using Latin Hypercube Sampling (LHS) (Abbaspour et al., 2007). The initial parameters were manually selected after conducting a local sensitivity analysis by following the guidelines suggested by Abbaspour et al. (2007). Seventeen model parameters were used for the global sensitivity analysis using the SUFI -2 automatic optimization algorithms. The model was run 500 times during calibration and validation. The eight most sensitive parameters with their rank in the Kamienna watershed were identified (Table 3). The relative sensitivity of the parameters in SWAT - CUP SUFI -2 was evaluated using t-stat and p-stat, which indicate the sensitivity of the parameters and their significance, respectively. 

[Insert Table 3]

In this study, the "lumped" version of the model, the HBV-light (Seibert, 2005), which uses an areal average precipitation, , and air temperature input data, was used for the model set up, calibration, validation, and analysis of scenarios during the disturbed period. Potential evapotranspiration was first calculated using the FAO- Penman Montieth method (Allen et al., 1998) by the  calculator (Raes, 2009) at each meteorological stations. Precipitation and , were weighted over the watershed by employing the Thiessen polygon method. 

The HBV-light model has fewer parameters than the SWAT model. Therefore, all model parameters were calibrated. Eight of the parameters optimal values and their ranges are presented in Table 4.

[Insert Table 4]

The hydrological models were calibrated and validated during the baseline period: 1971-1976 and 1977-1982, respectively, with a "warm-up" period of three years (1968-1970) to stabilize initial and boundary conditions. The ranges of input parameters were first determined considering a realistic value recommended in the literature. Then, the most sensitive parameters for a given watershed were determined manually. Finally, the models were further optimized using automatic algorithms: SUFI -2 and Generic Algorithm Powell (GAP) optimization tools for the SWAT and HBV models, respectively. The results of model performance and prediction uncertainty were evaluated using graphical and statistical methods (Figure 4). The NSE and KGE were used as objective functions to evaluate the model performance. The result shows that the performance of the models is good to very good, with the value of the NSE and KGE ranging from 0.67 to 0.87 (Figure 4). For the SWAT model, the results of prediction uncertainty were evaluated using the P- factor (0.79 and 0.67) and an R- factor (0.78 and 1.28) during calibration and validation, respectively, which are in acceptable ranges, i.e., P≥0.70 and R≤1.5. For the HBV-light model FC and BETA are the most sensitive parameters. Similar result was found in previous study (Osuch, 2015). 

[Insert Figure 4]

3.3 Runoff and Baseflow Change Analysis 
Changes in the catchment baseflow and runoff were analyzed by dividing the entire perturbed period (1983-2018) into three periods based on annual average values of 12 years each: 1983-1994 (PP-I), 1995-2006 (PP-II), and 2007-2018 (PP-III) (Table 5). The main goal of this division was to identify periods during which the watershed is mostly affected by human factors and to allow for a comparison with the available 12-year baseline period. 

[Insert Table 5]

Figure 5 shows annual average patterns of observed runoff and average naturalized runoff, i.e., mean of the SWAT the HBV-light models simulated runoff. The results illustrate that the naturalized runoff is larger than the observed runoff during the disturbed period. Similarly, the observed runoff is separated into direct runoff and baseflow by the Wittenberg method, and the annual averaged baseflow index (BFI) patterns have been analyzed and shown in Figure 6. The BFI in the watershed varies from 0.75 to 0.82 with the highest increase of 8.7% during PP- III. 

The changes in average annual observed precipitation, runoff and estimated baseflow were assessed to determine the magnitude of change during three perturbed periods and presented in Table 5. The results reveal that average annual precipitation decreases by 3.4% during PP-I while it increases during PP-II (6%) and PP-III (6.2%) compared to the baseline period. Runoff in the watershed decreases by 38.9, 16.5, and 15.9 during PP-I, PP-II, and PP-III, while baseflow decreases by 39.1, 17.0, and 9.6, respectively (Table 5). Runoff elasticity to precipitation and () were analyzed by applying the method proposed by Sankarasubramanian et al. (2001) (Eq. 6) and Zheng et al. (2009) (Eq. 7). Runoff elasticity coefficients for precipitation and  respectively equal 1.27 and -0.27 using Eq. (6) and 0.94 and -1.52 using Eq. (7). 

[Insert Figure 5]

Trend analysis of observed runoff and baseflow were carried out using the Mann-Kendall method. The existence of autocorrelation of hydrological variables was first checked by applying the pre-whitening method (Hamed, 2009). The analysis showed the existence of autocorrelation in both naturalized and observed runoff, but no autocorrelation in baseflow. Therefore, modified Mann-Kendall (MMK) and Mann-Kendall without modifications (MK) trend time series tests were used for runoff and baseflow, respectively. The MMK Z-statistic value of -0.09 for observed runoff and 0.28 for average naturalized runoff were obtained from the analysis. The MK Z-statistic has a value of -2.32 for simulated baseflow index and a value of 2.55 for baseflow index estimated from observed runoff. Both trends of naturalized runoff and observed runoff are not significant while trends of estimated baseflow are significant at the 5% level of significance. Therefore, BFI estimated from observed runoff has a positive trend while the BFI from naturalized runoff has a negative trend. 

[Insert Figure 6]

[bookmark: _Ref71035666]3.4 Relative Role of Climate Change and Human Factors in Affecting Runoff 
Separating the relative influence of climate change and human factors on runoff in the watershed has been investigated using several approaches: (1) Hydrological models (HM): the SWAT and the HBV model, and (2) climate elasticities of runoff (Eq. 6 and 7). The average runoff reduction  as a result of the combined effect of climate change and human factors on runoff in the Kamienna watershed during the perturbed period based on the HM and climate elasticity of runoff is presented in Table 6. The unknown in , , is first estimated using the HM (Table 6), while in the climate elasticity method,  is first calculated (Table 6). The result shows that there are 41.5 mm (23.9%) reductions in runoff as the combined effects of climate change and human factors during perturbed period. 

[Insert Table 6]

The relative roles of climate change and human factors on runoff reduction were calculated using four methods a presented in Figure 7. The results show that human factors play the dominant role in influencing runoff by 58.70, 58.2, 58.10, and 63.88 percent for the SWAT model, the HBV-light model, and climate elasticity of runoff using Eq. (6) and (7), respectively (Figure 7). 

[Insert Figure 7]

[bookmark: _Ref70519039]3.5 Meteorological and Hydrological Drought Analysis
In addition to baseflow index also a standardized drought indices were used to analyze hydrological drought characteristics based on annual time steps of 12 months. The drought indices were calculated for both observed and simulated runoff. The simulated runoff using the SWAT and the HBV-light models is also referred to as naturalized runoff, which are hydrological variables during the disturbed period. Hydrological drought characteristics such as the number of events, duration of drought, severity and intensity were derived using the calculated indices with a threshold value of -1. 

The two hydrological drought indices, the SRI (Shukla & Wood, 2008) and SBFI, were determined for runoff and estimated baseflow, respectively (Figure 8). In addition, the SPIs were calculated for the meteorological drought assessment. The naturalized runoff, that is the average of the SWAT and HBV-light models simulated runoff, were used as input for determining the hydrologic drought (HD) indices. The results were determined on the basis of annual rates and showed variations in the magnitude of drought between naturalized and human-influenced conditions (Figure 8). The findings revealed that the 1980s and 2000s were the first and second severely affected decades with successive meteorological and hydrological events of longer duration and intensity in the Kamienna watershed. Unlike the other decades considered in this study, the results for the 2010s decade showed a greater number of HD events for the naturalized condition than for the human-induced activities. Hydrometeorological drought, as determined by the standardized drought index, showed that a longer duration and more intense drought occurred in the early 1980s to early 1990s, coinciding with the onset of the major shift detected in observed runoff (Section 3.1).

[Insert Figure 8]

During the perturbed period, for a standard drought index value below -1 (Table 2), drought characteristics such as the number of drought months, mean drought duration, and severity increase by 83.1, 18.5, and 5.6 percent for runoff and 25.3, 39.3, and 41.6 percent for baseflow as compared to baseline period. The results show that 17 HD events in different drought categories (i.e., moderate, severe, or extreme) occurred during the human-influenced period, which is more than the 12 HD events for naturalized conditions. The HD events of 1973-1974, 1984-1985, 1989, 1990, 1992, 2006, 2007, and 2008 were the prolonged events with drought duration of more than 5 consecutive months under human factors influence. Similarly, for naturalized conditions HD events of 1973-1974, 1984-1985, 1989-1990 and 2012-2013 were drought with duration more than 5 months. The result shows that the frequency of HD increases from 12.2% to 19.1% due to the influence of human factors (Table 7). 

[Insert Table 7]

3.6 Land Use and Land Cover Change (LULC) Analysis
Temporal and spatial LULC change analysis was performed using imagery from the Earth Explorer (1982) and the CORINE Land Cover (CLC) (1990-2018) and is presented in Table 8. These analyses were used to confirm the significant human factors influencing changes in the runoff processes (Section 3.4) and hydrological drought (Section 3.5). Agriculture is the dominant land use in the watershed, followed by forest and semi-natural land. 

[Insert Table 8]

[bookmark: _Ref70517456]Spatially, the northwestern part of the watershed near the headwaters is mainly covered by forest and semi-natural land, while agriculture is the major land use in the other parts of the watershed. The artificial land, forest and semi-natural land, and water bodies showed an increase of 7.39, 3.92, and 0.33 percent, respectively, but agriculture decreased by 11.63 percent over the period from1982 to 2018 (Table 9). From 1990 to 2006, major changes have occurred in the watershed. The two largest reservoirs, Brody and Wióry reservoirs have been shown in the LULC maps since 1990 and 2006, respectively (Figure 9). The results show an increasing number of water storage structures, which confirms the presence of human intervention in the Kamienna watershed. 

[Insert Figure 9]


4. DISCUSSION 
4.1 The Role and Direct Influence of Climate Change and Human Factors on Runoff 
[bookmark: _Hlk75698997]This section summarizes the results and contributions related to the reduction of runoff due to the effects of climate change and human interventions. Human factors include land cover changes, water use facilities, irrigation, etc. The studied watershed is subject to human activities, including many micro- and large dams such as Bliźyński and Wąchockie artificial lakes, Wióry and Brody reservoirs (FramWat, 2019) and thus called Industrial River (Lenar-Matyas et al., 2006). The presence of human intervention was also confirmed by LULC analysis (Figure 9). We applied four different methods to increase the understanding of the role of climate change and human factors on the hydrological processes of a watershed. These methods fall into two categories: hydrological models (HM) and climate elasticity of runoff. The HM methods include the complex physical model, the SWAT, and the lumped conceptual model, the HBV-light model. In addition, two formulae describing elasticity coefficients of runoff to precipitation and  were applied and the results were compared with the hydrological models. 

[bookmark: _Hlk76049162]The analysis of changes in runoff in the watershed due to climate change and human factors using observed runoff and other climate variables such as precipitation and  (Figure 3), shows that a significant shift in runoff began in 1982. This is consistent with the results of previous studies conducted within the Vistula River sub-watershed (Karamuz et al., 2021; Krajewski et al., 2021). The change points of precipitation and  using Pettitt's test showed that the largest change occurred in the 1990s, but it is not significant at the 95 percent confidence level. This suggests that the largest decrease in runoff during the period from 1983 to 1994 was mainly due to human intervention. It remains unclear to what extent human factors are responsible for the runoff reduction. Therefore, the result of this analysis is then compared with the four methods used to separate the contribution of climate change and human factors (Figure 7). The results show that human factors contribute more than climate change to runoff reduction. A similar conclusion in a different study area has been reached in previous literature (Aboelnour et al., 2020; Yang et al., 2020). The findings lead to an acceptance of the previous hypothesis based on the detection of change points of hydrometeorological variables (Figure 3), and further confirmed by the quantitative analysis of LULC (Figure 9). About 90 percent of the watershed is covered by agriculture, forest, and semi-natural land. A similar result was obtained by Osuch (2015). Furthermore, the finding revealed that built-up areas, water bodies, and forest and semi-natural land increased during the period from 1982 to 2018, while agricultural land decreased (Table 9). In summary, the present results confirm the existence of major human interventions in the Kamienna watershed. 

Comparisons performed among the four methods showed that all methods produced consistent results of about 58 percent contribution due to human factors, except the climate elasticity method based on Eq. (7) (63.88%) (Figure 7). The entire observation periods were used for analysis of climate elasticity of runoff because the baseline period (i.e., 12 years) was too short for conducting a statistical analysis. The results indicate that a simple method based on climate elasticity of runoff, which requires less data and time, can provide good results comparable with the hydrological models for determining the contribution of climate change and human factors to runoff changes. The findings are directly in line with previous findings (e.g. Sun et al., 2014, Chang et al., 2016). However, unlike the hydrological modelling approaches, a limitation of the runoff elasticity method is that it does not provide naturalized runoff on daily, monthly, or annual time scales. These data are important because they are needed for further impact assessment on watershed water yield, hydrological drought analyzes, seasonal and interannual trend analyzes. Thus, the average annual naturalized runoff based on the SWAT and HBV-light models were used for the inter-annual analysis of baseflow (Figure 6) and runoff (Figure 5). From these results, it is clear that the observed runoff is lower than the naturalized runoff during most of the perturbed period, indicating that human intervention leads to a reduction in runoff (Figure 5). Water storage structures can cause a major downstream runoff reduction and modifications of natural runoff processes (Vicente-Serrano et al., 2017). In contrast to the above result, the naturalized runoff is lower than the observed runoff after 2015 (Figure 5). The construction of reservoirs increases the baseflow (Raczyński, 2020) and causes the “homogenization of hydrograph” (Marcinkowski & Grygoruk, 2017) in the long-term, affecting downstream runoff positively. In addition, LULC changes, such as an increase in the forested land cover, may play their influence by affecting runoff processes.

During the human-influenced period PP -I (1983-1994), average annual precipitation, runoff, and baseflow showed a reduction of 3.4%, 38.9%, and 39.1%, respectively, indicating the most affected decade. This result underscores that a small reduction in watershed input results in a larger decrease in hydrological response of the watershed with respect to both surface and groundwaters (Table 5). This is linked to watershed properties change because of human factors. The BFI in the watershed varies between 0.75 and 0.85, indicating that baseflow is the most important contributor to the total discharge in the river. The naturalized runoff and estimated baseflow index based on the observed runoff showed an increasing trend, while the observed runoff and naturalized baseflow index show a decreasing pattern during the period of human intervention. 

4.2 Indirect Impacts of Human Factors on Hydrological Drought Characteristics
Another question is how climate change and human factors that directly cause runoff reduction indirectly affect the hydrological drought characteristics of the watershed. The term hydrological drought means below average water availability due to surface water depletion in rivers and groundwater depletion in aquifers (Van Loon & Van Lanen, 2013). The hydrological models naturalized runoff and observed runoff were first separated into direct runoff and baseflow components. The SRI and SBFI for runoff and baseflow, respectively, were used for hydrological drought analysis. Finally, hydrological drought characteristics expressed by the number of drought months (NDM), mean drought duration (DD), drought frequency (DF), and severity (S) were used to evaluate the indirect accumulated effects of human factors. An important finding was that hydrological drought characteristics such as frequency, severity and duration increased as a result of human intervention. This study supports evidence from a previous study by Zhang et al. (2018). The result emphasizes that the hydrological drought characteristics NDM, DD and S increased by 83.1%, 18.5% and 5.6% for runoff and 25.3%, 39.3% and 41.6% for baseflow, respectively, compared to the baseline period due to the impact of human factors. Another result showed that human influenced runoff reduced the maximum duration of drought; the number of drought events decreases in the 2010s. One possible explanation is the increase in baseflow due to water retention structures, which is a positive effect of water storage (Marcinkowski & Grygoruk, 2017; Raczyński, 2020), and an increase in forest may also lead to an increase in low flow The most severe hydrological drought of the long period occurred in the basin in the mid-1980s and early 1990s (Karamuz et al., 2021). 


5. CONCLUSIONS
[bookmark: _Hlk75719154]The objective of this study was to determine the direct influence of climate change and human factors on runoff and baseflow of a watershed, and to identify the factors that play a dominant role in influencing runoff and baseflow by using various methods. Furthermore, the research aims were to analyze the indirect cascading effects of climate and human factors on hydrological drought characteristics. Drought indices were used as indicators for river runoff and baseflow water deficit analysis (hydrological drought). The analysis leads to the following conclusions:
1. The significant change in runoff reduction in the Kamienna watershed began in 1982. The finding showed that human factors played a dominant role in affecting runoff with a 60% contribution based on the average of four methods. Comparisons among the four methods revealed that all methods except one produced consistent result. The LULC analysis confirmed the influence of human factors in the watershed.
2. The period (1983-1994) is the most affected, with the highest average annual reductions in precipitation, runoff, and baseflow. The temporal pattern of human impacted baseflow index showed an increasing trend over naturalized baseflow conditions. This indicates that the increase in a number of dams in the watershed increased the downstream annual average runoff, especially in the 2010s decade. The increase in baseflow and a decrease in hydrological drought events are positive effect of human factors. 
3. The impact of human factors indirectly increases hydrological drought characteristics such as drought frequency, mean drought duration, and mean severity. In contrast to other drought characteristics, the maximum drought duration and number of drought events under human influence is lower than under naturalized runoff conditions. 

This study contributes to our understanding of how climate change and human factors influence hydrological responses of watersheds and subsequent influence on the hydrological characteristics of droughts, which is important for water resource planning and management and drought mitigation. The question this study raises is how individual human factor such as water abstraction, reservoir construction, land use change, irrigation practices and conservation activities, etc. may play a role in directly influencing the runoff component and indirectly influencing hydrological extremes. 
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