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Abstract

This paper studies the commutativity and stability for the Heun’s linear time-varying sys-
tem (LTVS) with both zero and non-zero initial conditions(ICs). Given a LTVS A of order
2, we find it’s commutative pair, that is a new LTVS B of order m ≤ n. Explicit commuta-
tive theories and conditions for second-order LTVSs are derived and solved to simplify and
guarantee the equivalency between the connected input-output of systems AB and BA. The
explicit results obtained are juxtaposed by simulation in order to investigate the commutativ-
ity of Heun’s differential system, sensitivity of Heun’s system, effects due to disturbance on
Heun’s system, robustness on Heun’s system and problems regarding the stability of Heun’s
system. This findings will help to fill the gap on stability problem, system behaviors, commu-
tativity theory, and general theory for solutions of differential equations, which has significant
contribution to science and unlimited application in engineering, our results are verify using
Heun’s differential system as well as authenticated by Wolfrom Mathematica 11 and Matlab.

Keywords: Commutativity, Heun’s Differential Equation, Linear Time-Varying Systems,
Asymptotic Stability, and Analogue Control.

1 Introduction

The most intuitive concepts and theory of differential equations are used in a wide variety of
disciplines, which involve studying and predicting the changes that occur all around us, at all
time, that is continuous time-varying systems (CTVSs). Some is rapid, some change is gradual,
some is predictable, some change is random. The theory of differential equations have unlimited
application in engineering field, such as heat transfer, theory of electric circuits, mechanical
vibration, system identification in structural dynamics [1, 2].

For example, the application of differential equations has great significant in the area of
control system, modern design, digital technology, modeling of physical systems, such as resistor-
capacitor-inductor, circuit, voltage, current, temperature, pressure, displacement, and population
models. The electric equipment we use today is an outcome of converting physical systems into
mathematical model and mathematical equations that involves the use of differential equations
[3, 4].

Cascade connection of subsystems is one of the most basic series connections, where the
output of one component is fed into the input of another. The cascade connection methods
have been developed to assist engineers for connection of components or subsystems to form a
network. Cascade connection is used in control systems, electric and electronic to measure the
open-circuit voltage and short-circuit current [5, 6].

Commutativity is a process that involves a cascade (or series) connection between two dy-
namical systems A and B, the relation between the input-output of the combined systems is base
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on the parameters of each system. Whenever the two connections AB and BA produce similar
input-output pairs irrespective of the applied input, then we called it commutative systems; that
is AB and BA are equivalent, i.e., AB=BA.

The explicit commutativity conditions provide significant important toward development of
commutativity theory, it ease the use of commutativity conditions. Marshall introduced the
concept of explicit commutativity conditions for first-order systems in [7]. The author in [8, 9]
studied the explicit commutativity conditions for second-order systems. And that for third-order
systems was presented in [10]. Commutativity conditions for fourth-order systems and that of
fifth-order CTVLs was derived and summarised in [11] and [12] respectively. Recently, commu-
tativity for sixth-order CTVLs was studied in [13]. Regarding the application of commutativity,
decomposition of LTVSs play a vital role, the authors in [14, 15, 16] studied and presented the
decomposition of fourth-order LTVSs. The relationship between feedback conjugates with time-
varying forward and feedback path gains have been validated in [17]. Explicit commutative pairs
of some well-known second-order LTVSs and explicit commutativity conditions for commutativ-
ity of second-order CTVLs was investigated in [18] and [19] respectively. Moreover, transitivity
property of commutativity for second-order linear time-varying analogue systems has been stud-
ied in [20]. Commutativity theories has been extended to discrete LTVSs and the authors in
[21, 22] studied the commutativity of discrete LTVSs and first order discrete LTVSs respectively.

Explicit methods for the stability of linear time-varying differential state apace systems was
explored in [23]. Stability and robustness for input and output feedback systems was verified in
[24].

A reason why we developed more interested in the commutativity and stability of Heun’s
differential systems might be due to the fact that the spheroidal wave functions, Lame function,
Mathieu function and hypergeometric function are all special case of Heun’s functions. Because
of this, their applications to science and engineering is significant. Mathematician, engineer and
scientist have tackle more difficult problems such as Heun’s differential system, which lead to
solution, no solution or singularities, more especially at the complex plane see [25].

This paper derived and proof the simplex explicit commutativity theory and condition for
second-order LTVSs with non-zero ICs. We consider Heun’s differential system as a case study in
order to verify our explicit results, which was supported by simulation. Furthermore, stability for
Heun’s differential system was investigated. However, the explicit commutativity and stability
for Heun’s differential system have not been present in the literature yet; and this paper fills
in the gab. This paper is outlined as follows: Some preliminary results for second-order LTVSs
are given in Section 2. Section 3 present the explicit commutativity conditions for non-relaxed
second-order LTVSs systems. Application of second-order LTVSs on Heun’s differential system
are given in order to demonstrate the effectiveness of our results in section 4. Section 5 consider
the stability of Heun’s differential system. Finally, we conclude in Section 6.

2 Preliminary Results on Second-Order LTVSs

Given two analog second-order LTVSs as;

A : a2(t)y
′′
A(t) + a1(t)y

′
A(t) + a0(t)yA(t) = xA(t), (1a)

B : b2(t)y
′′
B(t) + b1(t)y

′
B(t) + b0(t)yB(t) = xB(t); (1b)

where xA(t), yA(t) and xB(t), yB(t) are the input and output of system A and B respectively;
yA(t), y′A(t), yB(t), y′B(t) are the ICs at initial time (IT) t0.
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Definition 1 Two LTVSs A described by Eq. (1a) is said to be commutative with another
LTVSs B of the same type as expressed in Eq. (1b) if they have the same input-output relation
irrespective of the applied input.

Suppose the connection between two LTVSs A and B take place in cascade as shown in Fig.
1, the input-output relation of the system depends on the parameters of each system and on the
fact that which system appears first. If both the connections in Fig. 1(a) and Fig. 1(b) have
the same input-output relation irrespective of the applied input, then the systems are said to
be commutative. The inputs and output are expressed as x and y, AB and BA represent the
cascade connection in Fig. 1(a) and Fig. 1(b) below.

Figure 1: Cascade connection of differential systems.

The explicit commutative relation between the input and output of LTVS A described by
Eq. (1a) with that of LTVS B of the same type as expressed in Eq. (1b) is that Eq. (2) and Eq.
(3) must be equivalent.

AB =
(
a2b2y

(4)
)

+
(
a2b1 + a1b2 + 2a2b

′
2

)
y(3)+(

a2b0 + a1b1 + a0b2 + 2a2b
′
1 + a1b

′
2 + a2b

′′
2

)
y′′+(

a1b0 + a0b1 + 2a2b
′
0 + a1b

′
1 + a2b

′′
1

)
y′ +

(
a0b0 + a1b

′
0 + a2b

′′
0

)
y.

(2)

BA =
(
a2b2y

(4)
)

+
(
a1b2 + a2b1 + 2b2a

′
2

)
y(3)+(

b2a0 + a1b1 + b0a2 + 2b2a
′
1 + b1a

′
2 + b2a

′′
2

)
y′′+(

b1a0 + b0a1 + 2b2a
′
0 + b1a

′
1 + b2a

′′
1

)
y′ +

(
a0b0 + b1a

′
0 + b2a

′′
0

)
y.

(3)

Theorem 1 (See [8]) The necessary and sufficient conditions for a second-order LTVS A to be
commutative with another LTVS B under zero initial is that the coefficients of B are expressed
in terms of the coefficients of A as

 b2
b1
b0

 =

 a2 0 0
a1 a0.52 0
a0 f32 1

 c2
c1
c0

 , f32 =
1

4
[a−0.52 (2a1 − a′2)]; (4a)

−a0.52

d

dt
[a0 − f232 − a0.52 f ′32]c1 = 0, (4b)
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where c2, c1, c0 are constants and it must satisfy (4b). Eq. (4a) and Eq. (4b) are commutativity
formulas of relaxed second-order LTVSs in matrix and differential form respectively.

3 Commutativity for Non-Relaxed Second-Order Systems

Regarding the case of commutative of second-order LTVSs under non-zero ICs, Eq. (4a) and
Eq. (4b) are not sufficient, and this necessitate the realization of another set of commutativity
conditions:
Theorem 2 The commutativity for second-order LTVS A with non-zero initial conditions with
another second or lower-order LTVS B are that:

i) Explicit formulas for 2nd order LTVSs in Eq.(4a) and Eq. (4b) must be satisfied.

ii) The ICs at the initial time (IT) t0 ≤ t must hold:

{(
2

m

)[
1 0

−A−12 A1 A−12

]
−
(
m

2

)[
0 1

B−12 −B−12 B1

]}[
YA
YB

]
=
[

0
]

; (5)

where
YA = [yA(t), y′A(t)]T ,
YB = [yB(t), y′B(t)]T and the matrix A1 (A2, B1, B2) are described by there entries a′ij (a′′ij , b

′
ij ,

b′′ij) respectively:

a′ij =
i−1∑

s=max(0,i−j)

(i− 1)!

s!(i− 1− s)!
asj−i+s; i = 1,m, j = 1, 2,

a′′ij =

i−j∑
s=0

(i− 1)!

s!(i− 1− s)!
asj−i+n+s; i = 1,m, j = 1,m;

= 0 for i = 1, . . . ,m− 1, j = i+ 1, . . . ,m,

b′ij =

i−1∑
s=max(0,i−j)

(i− 1)!

s!(i− 1− s)!
bsj−i+s; i = 1, 2, j = 1,m,

b′′ij =

i−j∑
s=max(0,i−j−m)

(i− 1)!

s!(i− 1− s)!
bsj−i+m+s; i = 1, 2, j = 1, . . . , i;

= 0 for i = 1, j = i+ 1, . . . , 2,

(6)

. Proof:
Part i) The author in [8] proof the explicit formula for the commutativity of second-order LTVSs
with zero ICs, we analogously make used of it.

Part ii) While the second part of theorem 2 is the special case of [Theorem: Koksal] in [12]
at n = 2 and m ≤ 2, hence the proof follows from the general case by considering n = 2 and
m ≤ 2.
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3.1 Explicit commutativity conditions for non-relaxed second-order systems

Commutativity conditions obtained from the previous section are presented in explicit form.
Simplifying Eqs. (5) and (6) for n = m = 2 gives:

YB =

[
yB(t)
y′B(t)

]
=

[
yA(t)
y′A(t)

]
= YA, (7a)

A1YA +A2

[
y′′A
y
(3)
A

]
= YB (7b)

B1YB +B2

[
y′′B
y
(3)
B

]
= YA (7c)

[
A−12 (I −A1)−B−12 (I −B1)

] [ yA(t)
y′A(t)

]
=

[
0
0

]
. (7d)

Eq. (7a) indicate that the ICs for second-order LTVSs A and B must be the same, while Eq.
(7b)) and Eq. (7c) are the ICs for systems AB and BA respectively, and Eq. (7d) indicates that,
the vector YA = YB is in the null space of

[
A−12 (I −A1)−B−12 (I −B1)

]
at IT t0. Computing

A1, A2, B1, B2 by using Eq. (6) generates:

A1 =

[
a0 a1
a′0 a′1 + a0

]
, A2 =

[
a2 0

a′2 + a1 a2

]
; (8a)

B1 =

[
b0 b1
b′0 b′1 + b0

]
, B2 =

[
b2 0

b′2 + b1 b2

]
. (8b)

Theorem 3 The simplex form of the explicit necessary and sufficient conditions for the commu-
tativity of a second-order LTVS A with non-zero ICs with another second or lower-order LTVS
B are that:

i) The conditions of Theorem 2 are satisfied.

ii) In addition, c′is should satisfy.

c2 + c0 − 1 = ∓ c1

√
1− a0 +

a21
4a2

+
a′1
2
− a1a′2

2a2
+

3(a′2)
2

16a2
− a′′2

4
. (9)

iii) Further more, the initial conditions must satisfy

c1y
′
A = − 1

√
a2

(
c2 + c0 − 1 +

a1c1

2a
1/2
2

− c1a
′
2

4a
1/2
2

)
yA.

(10)

Proof:
Part i) It is obvious that Theorem 2 has been addressed.
Part ii) In order to proof the relation between the c′is in Eq.(9), the following steps will lead to
the result.
Inserting Eq. (8a) into Eq.(7b), organizing and simplifying the terms, and also multiplying the
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inverse of A2 with the simplified terms, we obtain the following matrix after a rigorous work: (1−a0)
a2

−a1
a2

−a′0
a2

+
−a1−a′2

a22
− a0(−a1−a′2)

a22

1
a2
− a0+a′1

a2
− a1(−a1−a′2)

a22

[ yA(t)
y′A(t)

]
=

[
y′′A
y
(3)
A

]
. (11)

Repeating the same procedure of Eq. (11) by inserting Eq. (8b) into Eq.(7c), organizing and
simplifying the terms, and also multiplying the inverse of B2 with the simplified terms, we obtain: (1−b0)

b2
− b1

b2

− b′0
b2

+
−b1−b′2

b22
− b0(−b1−b′2)

b22

1
b2
− b0+b′1

b2
− b1(−b1−b′2)

b22

[ yA(t)
y′A(t)

]
=

[
y′′B
y
(3)
B

]
. (12)

Substituting Eq. (8a) and Eq. (8b) into Eq. (7d) gives:[
1
a2
− a0

a2
− 1

b2
+ b0

b2
−a1

a2
+ b1

b2
k1 k2

] [
yA(t)
y′A(t)

]
=

[
0
0

]
, (13)

where

k1 = −a
′
0

a2
+
−a1 − a′2

a22
− a0 (−a1 − a′2)

a22
+
b′0
b2
− −b1 − b

′
2

b22
+
b0 (−b1 − b′2)

b22

k2 =
1

a2
− 1

b2
− a0 + a′1

a2
+
a21 + a1a

′
2

a22
+
b0 + b′1
b2

− b21 + b1b
′
2

b22
.

Substituting b2, b1 and b0 of Eq. (4a) in Eq. (13), after some mathematical computations, we
obtain the following matrix[

1
a2
− 1

a2c2
+ c0

a2c2
+ a1c1

2a
3/2
2 c2

− c1a′2
4a

3/2
2 c2

c1√
a2c2

k3 k4

][
yA(t)
y′A(t)

]
=

[
0
0

]
, (14)

where

k3 = −a1
a22

+
c1

a
3/2
2 c22

+
a1
a22c2

− c0c1

a
3/2
2 c22

− a1c
2
1

2a22c
2
2

− a1c0
a22c2

− a21c1

2a
5/2
2 c2

− a0c1

a
3/2
2 c2

+

c1a
′
1

2a
3/2
2 c2

− a′2
a22

+
a′2
a22c2

− a1c1a
′
2

2a
5/2
2 c2

+
c21a
′
2

4a22c
2
2

− c0a
′
2

a22c2
+

3c1 (a′2)
2

8a
5/2
2 c2

− c1a
′′
2

4a
3/2
2 c2

,

k4 =
1

a2
− c21
a2c22

− 1

a2c2
− 3a1c1

2a
3/2
2 c2

+
c0
a2c2

− 3c1a
′
2

4a
3/2
2 c2

.

For the existence of commutative with non-zero ICs, the coefficient matrix in Eq. (14) must
be singular, so that its determinant must be zero at time t = t0. All the result obtained from
the evaluation conducted at time t = t0 lead to Eq. (9), hence the result of the second part of
Theorem 3.
Part iii) It can be easily be verify that Eq. (10) is obtained as a result of the matrix in Eq. (14),
this proof the third part of Theorem 3

Corollary 1 Supposed c1 = 0, then the conditions in Theorem 3

i) Regarding the constants in ii) must be
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c2 + c0 − 1 = 0. (15)

ii) Pertaining the initial condition in iii) should be

y′A = yA.
(16)

Proof:
Part i) It is obvious that Corollary 1 is a special case of Theorem 3 at c1 = 0.
Part ii) By considering c1 = 0 and Part i) of Corollary 1, the initial conditions can be arbitrary
selected. Hence the proof of Corollary 1.

4 Application of Commutativity on Heun’s Differential system

In this section, we want to validate our work by applying the method and explicit results ob-
tained from the previous section on Heun’s differential system.

Considering the Heun’s differential system given by

y′′A(t) +

(
γ

t
+

δ

t− 1
+

ε

t− a

)
y′A(t) +

[
αβt− q

t(t− 1)(t− a)

]
yA(t) = xA(t), (17)

where

α+ β − γ − δ − ε+ 1 = 0.
To find the unknown constant in Eq.(17), we substitute the coefficients of Eq. (17) into Eq. (4b)

k =
−q + tαβ

(−1 + t)t(−a+ t)
− 1

4

[
2

(
− γ
t2
− δ

(−1 + t)2
− ε

(−a+ t)2

)
+(

γ

t
+

δ

−1 + t
+

ε

−a+ t

)2
]
c1.

(18)

Simplifying Eq. (18) and collecting terms together lead to

4a2kt2 − 8a(1 + a)kt3 + 4
(
1 + 4a+ a2

)
kt4 − 8(1 + a)kt5 + 4kt6 =

−a2(−2 + γ)γc1 + 2at{−2q + γ[−2 + γ + a(−2 + γ + δ) + ε]c1}+
2t3 [−2(q + αβ + aαβ) + (−2 + γ + δ + ε)(γ + aγ + aδ + ε)c1] +

t4{4αβ −
[
γ2 + δ2 + 2δ(−1 + ε) + (−2 + ε)ε+ 2γ(−1 + δ + ε)

]
c1}+

t2{4(q + aq + aαβ)−
[(

1 + 4a+ a2
)
γ2 + a2(−2 + δ)δ + 2aδε

]
c1}+

t2{(−2 + ε)ε+ 2γ
[
−1 + a2(−1 + δ) + ε+ 2a(−2 + δ + ε)

]
c1}.

(19)

By equating the coefficients of Eq. (19) and solving the equations for the unknown constants
with the help of Wolfrom Mathematica 11, we categorically classified the results into three cases
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as follows

Case 1: With constant feedback conjugate (CFC) ( c1 = 0 ), with

q = 0, a = −1, γ = 0, δ = 1, ε = 1, α = 1, β = 0, k = 0, c1 = 0. (20)

Case 2: Without CFC ( c1 6= 0), with

q = 0, a = −1, γ = 0, δ = 2, ε = 2, α = 2, β = 1, k = 0, c1 6= 0. (21)

Case 3: With CFC ( c1 6= 0 ), with

q = 0, a = 1, γ = 0, δ = 1, ε = 0, α =
1

2
, β = −1

2
, k = −1

4
, c1 6= 0. (22)

Regarding the first case, substituting the constants from Eq. (20) into Eq. (17), we obtain a
new Heun’s differential system as

A : y′′A(t) +

(
1

−1 + t
+

1

1 + t

)
y′A(t) = xA(t). (23)

Substituting the coefficients of Eq. (23) into Eq. (4a) gives b2
b1
b0

 =

 1 0 0
1
−1+t + 1

1+t 1 0

0 1
2

(
1
−1+t + 1

1+t

)
1


 c2
c1
c0

 . (24)

From Eq. (24), the commutative pairs of A is given as

B : c2y
′′
B(t) +

[
c2

(
1

−1 + t
+

1

1 + t

)
+ c1

]
y′B(t) +

1

2

[
c1

(
1

−1 + t
+

1

1 + t

)
+ c0

]
yB(t) = xB(t).

(25)

We consider the commutativity of relaxed second-order LTVSs with zero ICs in differential form
in Eq. (4b), inserting coefficients of Eq. (17) into Eq. (4b), one can obtain

1

2

[
1

(−1 + t)3
+

1

(1 + t)3
− 1

(−1 + t) (1 + t)2
− 1

(−1 + t)2 (1 + t)

]
c1 = 0. (26)

Solving for the unknowns c1 in Eq. (26) lead to c1 = 0, which indicates that the only commutative
pairs of A are its CFC. Base on this fact, the commutative pairs of A becomes
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B : c2y
′′
B(t) + c2

(
1

−1 + t
+

1

1 + t

)
y′B(t) + c0yB(t) = xB(t). (27)

applying the coefficients of Eq. (23) into Eq. (11) at t0 = 0, we acquired

[
1 0
0 1

] [
yA(0)
y′A(0)

]
=

[
y′′A
y
(3)
A

]
. (28)

Further substitution of the coefficients of Eq. (27) into Eq. (12) at t0 = 0 result to[
(1−c0)

c2
0

0 (1−c0+2c2)
c2

][
yA(0)
y′A(0)

]
=

[
y′′B
y
(3)
B

]
. (29)

We again substitute the coefficients of Eq. (23) and Eq. (27) into Eq. (13) at t0, we obtain

[
1− 1

c2
+ c0

c2
0

− 1
−1+t −

1
1+t +

2t
t2−1

c2
+

(− 1
−1+t

− 1
1+t)c0

c2
k5

] [
yA(t)
y′A(t)

]
=

[
0
0

]
, (30)

where

k5 = 1 +
1

(−1 + t)2
+

1

(1 + t)2
− 1

c2
+
c0 +

(
− 1

(−1+t)2
− 1

(1+t)2

)
c2

c2
.

For the commutativity with non-zero ICs to take place, the coefficient matrix in Eq. (30) must
be singular, that is, determinant must be zero and this can only be guarantee if and only if

c0 → 1− c2. (31)

The result obtained in Eq. (31) is the same with first part of Corollary 3.1 in Eq. (15), that
is ”c0 + c2− 1 = 0. iff c1 = 0”, moreover, base on the fact that c1 = 0, second part of Corollary
1 in Eq. (16) that says ”y′A = yA, which means the initial conditions can be selected arbitrarily”.

The results obtained from case 1 are supported using Simulink and illustrated in Figs. 2-4.

Considering a sinusoid of amplitude 5, bias −3 and frequency 7, under automatic vari-
able step length with ODE 23 [Bogacki - Shampine] as the solver, the results are illustrated
in Fig. 2. For c2 = c0 = 1 and c1 = 0, AB and BA (solid blue curve) gives the same
output response for zero ICs, by arbitrary choosing IT t0 to be 0 and the initial states as
yA (0) = yB (0) = y′A (0) = y′B (0) = 1, this lead to AB1 (doted-dash red curve) and BA1
(dashed-green curve) deviating from each other, this is because of the parameters c6 and c0 vio-
lated Eq. (31), commutativity of A and B is invalid.

Considering a sinusoid of amplitude 5, bias −3 and frequency 7, under automatic vari-
able step length with ODE 23 [Bogacki - Shampine] as the solver, the results are illustrated
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in Fig. 3. For c2 = c0 = 0.5 and c1 = 0, with IT t0 to be 0 and the initial states as
yA (0) = yB (0) = y′A (0) = y′B (0) = −1, AB and BA (solid blue curve) gives the same out-
put response for nonzero ICs, and commutativity hold; for the sensitivity of AB and BA to ICs,
(switching yA(0) = −1 to 3), AB1 (doted dash-Red curve) and BA1 (dashed-green curve) are
no longer commutative, these give different response as a result of violating the ICs in Eq. (16).

For c1 = 0, c2 = 0.75 and c0 = 0.25 with unit step length as the input, a white noise with
a noise power of 15 was inserted between A and B with the same ICs in Fig. 4, using the
same ICs, a saw-tooth with amplitude 5 and frequency 5 rad/sec is use as the 2nd disturbance,
see Fig. 4 for both ABI, BAI (dot-red) and ABII (dashed-green), BAII (long dashed-black)
respectively; hence commutativity is not satisfied because of the effect of external noise on the
connections.

0 1 2 3 4 5 6 7 8 9 10

time

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

o
u
tp

u
t

AB=BA

BA1

AB1

Output Response

Figure 2: Simulation results of case 1 for c6 = 1 and c0 = 1
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Figure 3: Simulation results of case 1 for c6 = 0.5 and c0 = 0.5

Considering the second case, we analogously substitute the constants in Eq. (21) into Eq.
(17) in order to obtain a new Heun’s differential system as

A : y′′A(t) +

(
2

−1 + t
+

2

1 + t

)
y′A(t) +

[
2

(−1 + t)(1 + t)

]
yA(t) = xA(t). (32)

Replacing the coefficients of Eq. (32) with that of Eq. (4a) gives the following matrix equation
for second-order commutative system

 b2
b1
b0

 =

 1 0 0
2
−1+t + 2

1+t 1 0(
2t

t2−1

)
1
2

(
2
−1+t + 2

1+t

)
1


 c2
c1
c0

 . (33)

From Eq. (33), the commutative pairs of A is given as

B : c2y
′′
B(t) +

(
c1 +

(
2

−1 + t
+

2

1 + t

)
c2

)
y′B(t)+(

c0 +
1

2

(
2

−1 + t
+

2

1 + t

)
c1 +

2tc2
(t2 − 1)

)
yB(t) = xB(t).

(34)

We consider the commutativity of relaxed second-order LTVSs with zero initial condition in
differential form in Eq. (4b), inserting coefficients of Eq. (32) into Eq. (4b), one can obtain

[0]c1 = 0. (35)

Solving Eq. (35) lead to c1 6= 0, this indicates that the commutative pairs of A are not constant
feedback conjugates.
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Figure 4: Simulation results of case 1 for c6 = 0.75 and c0 = 0.25

Substituting the coefficients of Eq. (32) with that of Eq. (11) at t0 = 0 gives

[
3 0
0 7

] [
yA(0)
y′A(0)

]
=

[
y′′A
y
(3)
A

]
. (36)

Further substitution with the coefficients of Eq. (34) and that of Eq. (12) at t0 = 0 lead to

[
1−(c0−2c2)

c2
− c1

c2
2c1
c2
− c1

c22
+ (c0−2c2)c1

c22

c21
c22

+ 6c2−c0
c2

+ 1
c2

] [
yA(0)
y′A(0)

]
=

[
y′′B
y
(3)
B

]
. (37)

We again substitute the coefficients of Eq. (32) and Eq. (34) into Eq. (13) at t = t0 result to

[ c1
c2(t−1) + c1

c2(t+1) + c0
c2
− 1

c2
+ 1 c1

c2

k6 − 3c1
c2(t−1) −

3c1
c2(t+1) −

c21
c22

+ c0
c2
− 1

c2
+ 1

][
yA(t)
y′A(t)

]
=

[
0
0

]
,

(38)

where

k6 = − c21
c22(t− 1)

− c21
c22(t+ 1)

− 3c1
c2(t− 1)2

− 6c1
c2(t− 1)(t+ 1)

− 3c1
c2(t+ 1)2

−

2c0
c2(t− 1)

+
2

c2(t− 1)
− 2c0
c2(t+ 1)

+
2

c2(t+ 1)
− c0c1

c22
+
c1
c22
− 2

t− 1
− 2

t+ 1
.

Solving the coefficient matrix in Eq. (38) to be singular t0 = 0 give

c1 = ∓ c2 + c0 − 1. (39)



13

Moreover, Eq. (39) at t0 requires

(c2 + c0 − 1)yA + c1y
′
A = 0. (40)

Inserting Eq. (39) into Eq. (40), the commutativity of A and B exist only if

y′A = ± yA. (41)

In order to verify the results obtained in Eq. (39) and Eq. (40), we consider Eq. (9) and Eq.
(10) of Theorem 3. Applying the coefficients of Eq.(32) into Eq.(9) and Eq.(10), one can easily
obtain the relations in Eq.(39) and Eq.(40) respectively.
The obtained results from case 2 are supported using Simulink and illustrated in Figs. 5-7. With
a sinusoid of amplitude 150, bias −30 and frequency 100, under automatic variable step length
with ODE 23 [Bogacki - Shampine] as the solver, Simulink results are illustrated in Fig. 5. For
c2 = c1 = c0 = 1, with initial time t0 to be 0 and the initial states as yA (0) = yB (0) = −2 and
y′A (0) = y′B (0) = 2, AB and BA (solid blue curve) gives the same output response, commu-
tativity hold; for the sensitivity of AB and BA toward parameters, (changing c0 = 1 to 100),
AB1 (doted dash-Red curve) and BA1 (dashed-green curve) gives different response as a result
of tempering with Eq. (39).

With a sinusoid of amplitude 15, bias −3 and frequency 1, under automatic variable step
length with ODE 23 [Bogacki - Shampine] as the solver, Simulink results are depicted in Fig.
6. For c2 = c1 = c0 = 1, with IT t0 to be 0 and the initial states as yA (0) = yB (0) = 1 and
y′A (0) = y′B (0) = −1, AB and BA (solid blue curve) gives the same output response, commuta-
tivity hold; for the sensitivity of AB and BA to ICs, with little change from (yA(0) = 1 to 0.9),
the commutativity for AB1 (doted dash-Red curve) and BA1 (dashed-green curve) is unequal,
these give different response as a result of disrupting the initial conditions in Eq. (41).

For c1 = 1, c2 = 1 and c0 = 1 with amplitude 150, bias −30 and frequency 100 applied on the
connection as input, with zero initial time and initial states. The response for AB and BA (solid
blue curve) is the same, hence commutativity hold; using the same conditions, a saw-tooth with
amplitude 7 and frequency 15 rad/sec is use as the disturbance, see ABI (dashed-green) and
BAI (doted-red) in Fig. 7;hence commutativity is not satisfied because of the effect of external
noise on the connections. BAI is more affected than BAI.
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Figure 5: Simulation results of case 2 for c6 = c1 = 1 and c0 = 100.

Pertaining the third case, substituting the constants in Eq. (22) into Eq. (17), we obtain a
new Heun’s differential system as

A = y′′A(t) +

(
1

(−1 + t)

)
y′A(t)− 1

4

(
1

(−1 + t)2
− 1

)
yA(t) = xA(t). (42)

Applying the coefficient of Eq. (42) into Eq. (4a) gives the following matrix equation for second-
order commutative system b2

b1
b0

 =

 1 0 0
1

(−1+t) 1 0
1
4 −

1
4(−1+t)2

1
2(−1+t) 1


 c2
c1
c0

 . (43)

From Eq. (43), the commutative pairs of A is given as

B : c2y
′′
B(t) +

(
c2
t− 1

+ c1

)
y′B(t)+(

c1
2(t− 1)

− c2
4(t− 1)2

+ c0 +
c2
4

)
yB(t) = xB(t).

(44)

We consider the commutativity of relaxed second-order LTVSs with zero initial condition in
differential form in Eq. (4b), inserting coefficients of Eq. (44) into Eq. (4b), one can obtain

[0]c1 = 0. (45)

Solving c1 in Eq. (45) lead to c1 6= 0, which indicates the commutative pairs of A are not CFC.
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Figure 6: Simulation results of case 2 for c6 = c1 = c0 = 1.
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Figure 7: Simulation results of case 2 for yA (0) = yB (0) = y′A (0) = y′B (0) = 0.

Applying the coefficients of Eq. (42) into Eq. (11) at t0 = 0, we acquired[
1 1
3
2 3

] [
yA(0)
y′A(0)

]
=

[
y′′A
y
(3)
A

]
. (46)

Further substitution with the coefficient of Eq. (44) and that of Eq. (12) at t0 = 0 lead to

[
− c0

c2
+ 1

c2
+ c1

2c2
1− c1

c2

k7
c21
c22
− 3c1

2c2
− c0

c2
+ 1

c2
+ 2

] [
yA(0)
y′A(0)

]
=

[
y′′B
y
(3)
B

]
. (47)
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where

k7 = − c21
2c22

+
c1
c2

+
c0c1
c22
− c1
c22
− c0
c2

+
1

c2
+

1

2
.

We again substitute the coefficients of Eq. (42) and Eq. (44) into Eq. (13) at t = t0, we obtain

[ c1
2c2(t−1) + c0

c2
− 1

c2
+ 1 c1

c2

k8 − c21
c22

+ 3c1
2c2

+ c0
c2
− 1

c2
+ 1

] [
yA(t)
y′A(t)

]
=

[
0
0

]
. (48)

where

k8 = − c21
2c22(t− 1)

− 3c1
4c2(t− 1)2

− c0
c2(t− 1)

+
1

c2(t− 1)
− c1

4c2
− c0c1

c22
+
c1
c22

+
1

t− 1
.

Solving the coefficient matrix in Eq. (48) to be singular at t0 = 0 give

c1 = ∓ 2 (c0 + c2 − 1)√
3

. (49)

Moreover, Eq. (49) at t0 requires

(c0 + c2 − 1 +
c1

2(t− 1)
)yA + c1y

′
A = 0. (50)

Inserting Eq. (49) into Eq. (50), the commutativity of A and B exist only if

y′A = ± (

√
3− 1

2
)yA. (51)

In order to verify the results obtained in Eq. (49) and Eq. (50), we consider Eq. (9) and Eq.
(10) of Theorem 3. Applying the coefficients of Eq.(42) into Eq.(9) and Eq.(10), one can easily
obtain the relation in Eq. (49) and Eq. (50) respectively.

The obtained results from case 3 are supported using Simulink and illustrated in Figs. 8-10.
With a sinusoid of amplitude 2, bias −10 and frequency 5, under automatic variable step

length with ODE 23 [Bogacki - Shampine] as the solver, Simulink results are illustrated in Fig.
8. For c2 = c0 = 1 and c1 = 2√

3
, with IT t0 to be 0 and the initial states as yA (0) = yB (0) = 1

10

and y′A (0) = y′B (0) = −
√
3−1
20 , AB and BA (solid blue curve) gives the same response. With

the same ICs, but zero input, ABI and BAI (doted dash-Red curve) gives the same zero-input
response, and with zero ICs and non-zero input, ABII and BAII (dashed-green curve) gives
the same zero state response. Commutativity is satisfied for both relaxed case and unrelaxed case.

With a sinusoid of amplitude 2, bias −3 and frequency 5, under automatic variable step
length with ODE 23 [Bogacki - Shampine] as the solver, Simulink results are illustrated in
Fig. 9. For c2 = c0 = 1 and c1 = 2√

3
, with initial time t0 to be 0 and the initial states as

yA (0) = yB (0) = 21
100 , y′A (0) = y′B (0) =

21(1−
√
3)

200 , AB and BA (solid blue curve) gives the
same response, hence commutativity hold; (reducing yA = 21

100 to 20
100), the commutativity for
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Figure 8: Simulation results of case 3

AB1 (doted dash-Red curve) and BA1 (dashed-green curve) is not the same, these give different
response as a result of altering with the conditions in Eq.(51).
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Figure 9: Simulation results of case 3 for c6 = c0 = 1 and c1 = 2√
3
.

With a sinusoid of amplitude 7, bias −7 and frequency 7, under automatic variable step
length with ODE 23 [Bogacki - Shampine] as the solver, Simulink results are illustrated in Fig.
10. For c2 = c1 = c0 = 1, with initial time t0 to be 0 and the initial states as yA (0) =

yB (0) = 1, y′A (0) = y′B (0) = 1−
√
3

2 , AB and BA (solid blue curve) give the same response,
hence commutativity hold; for sensitivity of AB and BA toward parameter, (changing c1 = 2√

3

to 1), the commutativity for AB1 (dashed-green curve) and BA1 (doted dash-Red curve) is not
the same, these give different response as a result of tempering with the conditions in Eq.(50).
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Figure 10: Simulation results of case 3 for c6 = c0 = 1 and c1 = 1.

5 Stability of Heun’s Differential system

Stability is a quantitative property of science and engineering systems, it plays a vital role in
systems theory of science and engineering. Almost every workable system is designed to be sta-
ble, physically, an unstable system whose natural response grows without bound can damage the
system. Based on this fact, the stability of Heun’s LTVSs systems will be verified in this section.
Definition 2 The LTV system is said to be asymptotically stable if and only if x (t) starting
from any finite initial state x0 is bounded and x(t)→ 0 as t→∞. The asymptotically stable
is frequently used in stability analysis.

The author in [23] proved that

i) The spectral decomposition of state transition matrix (STM) for LTV systems is explicitly
written as

Φ(t, 0) =
n∑

i=1

exp

[∫ t

t0

λi(τ)dτ

]
αi(t)τ

T
i (t0), ∀t, ∀t0, (52)

where {λi(t), αi(t)} are the extended eigenpair of a LTV system, and τTi (t) is the reciprocal
bases of αi(t).

ii) The LTV systems is asymptotically stable if and only if

‖exp
[∫ t

t0

λi(τ)dτ

]
αi(t)‖ → 0, as t→∞. (53)

Let the extended eigenvectors be represented by
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T (t) = [α1(t), α2(t), ..., αn(t)]. (54)

Let T−1(t) be the inverse matrix corresponding to the rows τTi (t)

T−1(t) =


τT1 (t)
.
.
.

τTn (t)

 . (55)

Also, the LTV systems can also be written inform of Riccati equation as

λ′(t) + λ2(t) + a1(t)λ(t) + a0(t) = 0. (56)

where a1(t), a0(t) are the coefficient of LTV systems.

We analogously make use of Eqs.(52-56) in order to verify the stability of Heun’s differential
system. Let

A = y′′(t) +

(
1

−1 + t
+

1

1 + t

)
y′(t) = xA(t). (57)

Inserting the a1(t), a0(t) of Eq. (57) into Eq. (56), we now obtain the Riccati equation as

λ′(t) + λ2(t) +

(
1

−1 + t
+

1

1 + t

)
λ(t) = 0. (58)

Solving the non linear Riccati equation in Eq. (58) result to the following eigenvalues

λ1(t) =
2

(−1 + t2) (2− Log[−1− t] + Log[−1 + t])
,

λ2(t) = − 2

(−1 + t2) (2 + Log[−1− t]− Log[−1 + t])
,

(59)

while the corresponding eigenvectors are

α1(t) =

[
1

λ1(t)

]
=

[
1
2

(−1+t2)(2−Log[−1−t]+Log[−1+t])

]
, (60)

and
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α2(t) =

[
1

λ2(t)

]
=

[
1

− 2
(−1+t2)(2+Log[−1−t]−Log[−1+t])

]
. (61)

from Eq. (55), the reciprocal basis vectors are given as

τ1(t) =

[
1/2
−1/2

]
, τ2(t) =

[
1/2
1/2

]
. (62)

Finally, we apply the explicit results obtained from Eqs. (59-62) into Eq. (54). After solving,
we obtain

Φ(t, 0) =

[
1 1

2(Log[−1− t]− Log[−1 + t])
0 1

1−t2

]
. (63)

Base on the result obtained from Eq. (63), the Heun’s differential system in Eq. (57) proof
to be unstable. Furthermore, the simulation from Fig. 2, Fig. 3 and Fig. 4 shows that,
commutativity of system A and system B are unstable. Moreover, one can verify that, at t0 = 1,
there is an overlap signal response that lead to unstable.

6 Conclusion

This paper thoroughly investigates the commutativity and stability of Heun’s LTVSs. Explicit
commutativity conditions for second-order LTVSs with non-zero ICs are derived after vigorous
mathematical computation and manipulation. The explicit formulas for second-order LTVSs with
non-zero ICs in Eq.(9), Eq.(10), Eq.(15) and Eq.(16) are expressed in terms of c2, c1, c0, a2, a1 and
a0, this findings provide us with a simple and easier way to find and verify the Commutativity
of any second-order LTVSs with non-zero ICs. Base on our findings, we discovered that Heun’s
LTVSs systems posses both constant feedback conjugates and non CFC as its commutative pairs.
The system is sensible toward changes in parameters and ICs. moreover, the system shows great
level of commutativity imbalance toward noise disturbance. Explicit commutativity method was
used in order to reduced the singularity of Heun’s LTVSs, the stability issue of Heun’s linear
time-varying differential systems was also address, which proof to be unstable both explicitly
and numerically. Commutativity play a vital role in solving problems regarding the stability of
systems, singularity of systems, effects due to disturbance on systems, robustness on systems,
sensitivity of systems and show up possible applications in science and engineering. All the
explicitly and numerical results are well verified by examples treated with Wolfram Mathematica
11 and Matlab. Finally, our findings can only be applicable to second-order LTVSs, so it will be
an open problem and a great idea to examine higher-order linear time-varying systems, complex
systems, non-linear systems, discrete time systems, partial order systems and fractional order
systems.
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