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Abstract 43 

While the impact of biodiversity, notably functional diversity, on ecosystem 44 

productivity has been extensively studied, little is known about the effect of individual 45 

species. Here, we identified species of high importance for productivity (key species) in over 46 

28,000 diverse grassland communities in the European Alps, and compared their effects with 47 

those of community-level measures of functional composition (weighted means, variances, 48 

skewness, and kurtosis). After accounting for the environment, the five most important key 49 

species jointly explained more deviance than all statistics of functional composition. Key 50 

species were generally tall with high specific leaf areas. By dividing the observations 51 

according to distinct habitats, the explanatory power of all non-environmental predictors 52 

increased considerably, and the relationships between functional composition and 53 

productivity varied systematically, presumably because of changing interactions and trade-54 

offs between traits. Our results advocate for a better consideration of species’ individual 55 

effects on ecosystem functioning in complement to community-level measures. 56 

  57 
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Introduction 58 

Biotic control of the productivity of ecosystems is still elusive (Chapin et al. 2000) because 59 

species can act through their numbers (Wardle 2002) or their functions (Cadotte et al. 2011). 60 

Yet, quantifying this control is pivotal for impact assessments of biodiversity loss (Cardinale 61 

et al. 2012) and for global vegetation modelling (Prentice & Cowling 2013). It has long been 62 

proposed that the emergent properties of ecological communities, particularly the number of 63 

species and functional diversity, are the primary drivers of ecosystem processes (Hooper et al. 64 

2005). As a corollary, individual species are most often considered to affect ecosystem 65 

processes in idiosyncratic and unpredictable ways (Diaz et al. 2007), except for a few 66 

ecosystem engineers and keystone species (Jones et al. 1994). However, beyond the effects of 67 

ecosystem-engineers, ecophysiological studies have emphasized the key role of species 68 

identity in driving ecosystem processes, and this role cannot be grasped by the properties of 69 

communities (e.g., Mahaut et al. 2020). This is particularly true for natural systems like 70 

grasslands that encompass a wide variety of more or less common species with individual but 71 

predictable responses to environmental conditions. Here, we compare the impact of individual 72 

species on grassland productivity with that of community-level properties across diverse 73 

environments. 74 

While there are many concepts of potential biotic control in terms of individual species and 75 

functional community properties, we focus here on two that have sound theoretical links to 76 

productivity and are quantifiable at scale: the key and keystone species concept for individual 77 

species and the Trait Driver Theory (Enquist et al. 2015, TDT) for community-level properties 78 

(Box 1). For completeness, however, we also provide results for rare species (Violle et al. 79 

2017) and for classical, multivariate measures of functional diversity such as Rao’s quadratic 80 
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entropy (Botta-Dukát 2005; Villéger et al. 2008). To identify key(stone) species, Maire et al. 81 

(2018) provided a comprehensive analytical framework that can be extended to encompass 82 

other measures of biotic control, representing a unique opportunity to tease apart the different 83 

biotic drivers of ecosystem functioning, as well as the role of environmental context.  84 

Biotic control of grassland productivity cannot be understood without considering 85 

environmental context. Environmental conditions define which ecological strategies are 86 

successful at a given location and thus which species may thrive (Weiher et al. 2011; Enquist 87 

et al. 2015; Garnier et al. 2016). Similarly, they set the limit of achievable productivity (Brun 88 

et al. 2019). Environmental conditions should therefore be controlled for, when identifying 89 

the relationships of individual species and community-level properties with productivity 90 

(Maire et al. 2018). Furthermore, in order to understand the dependency of biotic productivity 91 

control on environmental context, it can be assessed for different, more or less narrowly 92 

defined, types of environments (hereafter referred to as habitats). To this end, however, 93 

extensive empirical data are necessary. 94 

We investigated how species cover abundance and the moments of trait distributions 95 

contributed to explain productivity and how these contributions varied across habitats, using a 96 

model-comparison approach and >28’000 grassland community plots covering the diverse 97 

environments of the French Alps and Switzerland (Fig. S1). We focused on the productivity-98 

related functional traits specific leaf area (SLA), leaf nitrogen content (LNC), and reproductive 99 

height (HGT) (Lavorel & Garnier 2002; Wright & Westoby 2002; Wright et al. 2004) and 100 

investigated effects of key(stone) species cover abundance and moments of trait distributions 101 

on productivity (approximated by the remotely-sensed Soil Adjusted Vegetation Index, SAVI) 102 

in diverse habitats. Our analysis demonstrates that the cover abundance of few key species can 103 

contribute more to explain productivity than important functional community properties and 104 
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that the relationships of productivity with biotic predictors vary systematically across habitats, 105 

revealing a multitude of cues about the driving, underlying processes.  106 
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Material and Methods 107 

Data 108 

Community data 109 

Plant community observations originated from two sources covering the French Alps 110 

and Switzerland, respectively (Fig. S1). Data for the French Alps was provided by the French 111 

National Alpine Botanical Conservatory (Thuiller et al. 2014) and included about 43’000 112 

observations of vascular plant communities from diverse ecosystem types. Data for 113 

Switzerland was collected by the dry meadows and pastures initiative run by the Swiss 114 

Federal Office for Environment and consisted of almost 24’000 observations of grassland 115 

communities. Both datasets contained semi-quantitative dominance information resolved in 116 

six cover-abundance classes (as defined by Braun-Blanquet (1946)). We subjected these data 117 

to a series of preprocessing and filtering steps (Supplementary Methods) after which 28’171 118 

community observations of 2702 species remained. 119 

Environmental data  120 

Environmental data included the remotely-sensed Soil Adjusted Vegetation Index 121 

(SAVI) as a proxy for productivity, as well as key environmental predictors representing 122 

climate, soil, terrain, and land cover, mostly with spatial resolutions of 100 m or higher (see 123 

Supplementary Methods). We preprocessed these data by deriving relevant statistics and 124 

calculating annual averages, where necessary. The final set of environmental predictors 125 

included mean temperature, humidity, soil moisture, soil fertility, terrain wetness, exposition, 126 

and whether or not a site was sparsely vegetated (vegetation sparsity). 127 

Trait data 128 
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Trait data included specific leaf area (SLA), leaf nitrogen content (LNC), and 129 

reproductive height (HGT). LNC and SLA are two key traits of the leaf economics spectrum 130 

(Wright et al. 2004) and HGT is a central trait related to competitive ability and avoidance of 131 

environmental stress (Körner 2003). Furthermore, these traits are related to photosynthetic 132 

capacity (Wright & Westoby 2002) and primary productivity (Lavorel & Garnier 2002). We 133 

also used information on plant life form to exclude communities with trees, large shrubs or 134 

aquatic plants, which were not the focus of this study (Supplementary Methods). Trait data 135 

mostly originated from in-house measurements which are now available in the TRY database 136 

(KATTGE et al. 2011) (see Table S1 for a detailed list of references). When multiple 137 

measurements were available per species, we averaged them. Full trait information was 138 

available for 412 of the 504 species with an occurrence frequency >1%. 139 

Analyses 140 

We first split the community data into one, five, 25, and 50 clusters of similar 141 

environmental conditions (throughout the manuscript we refer to these clusters as “habitats”). 142 

Then, we repeated the following analysis steps within each habitat (Fig. S2): first, we fitted 143 

the relationship between productivity (soil adjusted vegetation index) and important 144 

environmental factors, using generalized additive models (Hastie & Tibshirani 1990). The 145 

resulting fits provided reference models (M0) for the next steps. Second, we estimated the 146 

community-weighted moments of the distributions of SLA, LNC, and HGT, and investigated 147 

to which extent they increased explained deviance when added as predictors in M0, one at a 148 

time. Furthermore, we investigated the partial responses of productivity to each of these 149 

community-level predictors. Third, we identified key and keystone species by adding the 150 

cover values of each species as linear predictors to M0, one at a time, and assessing the 151 

magnitude of their coefficients and how much they improved explained deviance. We set the 152 
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added explained deviance of species with negative coefficients to zero and defined those 153 

species with added deviance above the 92.5th percentile as key species (high absolute 154 

importance) and those species with added deviance and linear coefficients above the 92.5th 155 

percentile as keystone species (high absolute and relative importance). Finally, we compared 156 

the traits of the key(stone) species derived this way to the traits of the remaining, ordinary 157 

species. 158 

Creating environmental clusters 159 

We split observed communities into one, five, 25, and 50 clusters of similar 160 

environmental conditions to define distinct habitats. We assumed mean annual temperature, 161 

humidity, and soil fertility to be the most important factors constraining productivity. In a 162 

first step, we conducted a principal component analysis (PCA) of these factors, after scaling 163 

and centering them, and used the first two principal components as the basic environmental 164 

dimensions. On these dimensions, we then ran partitioning around medoids (PAM) clustering 165 

to identify five, 25, and 50 clusters of similar size (Fig. S3, Table S2). Finally, we classified 166 

environmental clusters by their average SAVI into classes of ‘low’ for annual mean SAVI 167 

<0.23; ‘medium’ for annual mean SAVI ≥0.23 and <0.3; and ‘high’ for annual mean SAVI 168 

≥0.3. Analyses were run in the R environment (R Development Core Team 2008), with 169 

package ade4 (Dray & Dufour 2007) for PCA and package cluster (Maechler et al. 2018) for 170 

PAM clustering. Resulting environmental clusters are described in the Supplementary 171 

Results. 172 

Fitting reference models 173 

Reference models (M0) were used to identify the association between SAVI and 174 

important environmental variables. We used generalized additive models (Hastie & 175 
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Tibshirani 1990) to fit these relationships for each set of communities associated with an 176 

environmental cluster. M0 included smooth terms for humidity, temperature, soil fertility, soil 177 

moisture, the north/south component of exposition, and terrain wetness index, as well as a 178 

binary factor for vegetation sparsity. Furthermore, we added a binary factor to correct for 179 

potential, systematic differences between the two community datasets (the one for the French 180 

Alps and the one for Switzerland). In a few habitats, binary factors were only represented 181 

with one level, and thus their terms were removed from the model equation. We fixed all 182 

smooth terms at three degrees of freedom and assumed SAVI to follow a Gaussian error 183 

distribution. Even though SAVI values are theoretically bounded between -1 and 1, estimated 184 

annual means never approached these boundaries and showed a frequency distribution that 185 

was in agreement with the Gaussian error assumption. While the formulation of M0 was 186 

identical to analyze the impact of community-level predictors and individual-species cover, 187 

38% fewer observations were available for the analysis of community-level predictors (Table 188 

S2). This was because in order to have representative estimates of community-level 189 

predictors, we discarded observations with trait data available for less than 80% of the total 190 

vegetation cover. For the key(stone)-species analysis, on the other hand, we only considered 191 

species that were present in at least 1% of the observations of the habitat, leading to 0-28% 192 

fewer species considered (Table S2). We used the R package gam (Hastie 2018) to fit 193 

generalized additive models. 194 

Investigating community-level predictors 195 

Community-level predictors included the moments of the distributions of SLA, LNC, 196 

and HGT (Enquist et al. 2015), i.e., community-weighted mean (CWM), community-197 

weighted variance (CWV), community-weighted skewness (CWS), and community-weighted 198 

kurtosis (CWK). CWM was estimated it as  199 



11 

 

𝐶𝑊𝑀 =
∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖

∑ 𝑥𝑖
𝑛
𝑖

 ,         (1) 200 

where 𝑤𝑖  is the dominance of species i and 𝑥𝑖 is its trait value; CWV was calculated as 201 

𝐶𝑊𝑉 =
∑ 𝑤𝑖(𝑥𝑖−𝐶𝑊𝑀)

2𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

;        (2) 202 

CWS was calculated as  203 
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Since we were not interested in the direction of skewness, we only considered 205 

absolute values of CWS. Finally, we estimated CWK as 206 

𝐶𝑊𝐾 =
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,         (4) 207 

In order to obtain predictors with approximately Gaussian frequency distributions, we 208 

log-transformed all CWV, CWK and absolute CWS values, as well as CWM of HGT.  209 

We assessed the relevance of community-level predictors by adding them to reference 210 

models, one at a time. We fitted the partial response of productivity to community-level 211 

predictors as smooth terms of three degrees of freedom. For each of the twelve resulting 212 

models, we assessed how much their explained deviance increased compared to the deviance 213 

of M0 and derived partial response plots of SAVI between the 2.5th and the 97.5th percentiles 214 

of the observed values of each community-level predictor. Along these response plots, we 215 

assessed how much the predicted SAVI increased based on linear least-square fits. The 216 

description of how partial response curves were classified into different response types is 217 

provided in the Supplementary Methods.  218 
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Identifying key(stone) species 219 

To identify key(stone) species, within each habitat we added linear terms for the cover 220 

percentages of all species, one at a time, to the environmental reference model (M0), fitting a 221 

model Mi for each species. For each of these Mi, we assessed how much explained deviance 222 

increased compared to M0. Then, we set the added explained deviance of species with 223 

negative coefficients (negative relationships with productivity) to zero and defined those 224 

species with added deviance in the top 7.5 percent as key species. For keystone species, we 225 

additionally expected linear coefficients to be in the top 7.5 percent. In order to assess the 226 

sensitivity of the resulting key(stone)-species sets on this 7.5% threshold, we also 227 

investigated key(stone)-species sets defined by the 5% and 10% thresholds. 228 

Testing for differences in added explained deviance 229 

We used a Tukey honest significant difference (HSD) test to test for differences in 230 

explained deviance added by community-level predictors and key(stone) species cover. 231 

Across the full dataset, we estimated explained deviance added by each individual 232 

community-level predictor, and by different groups of key species (top, top five, full set) and 233 

keystone species (full set). For each predictor or predictor group, we fitted 100 models based 234 

on 1000 randomly drawn observations from the full dataset. Based on these replicates, we 235 

tested for significant differences at the p≤0.05 level, for all pair-wise predictor combinations. 236 

Furthermore, we used these model replicates to deduce medians and 95%-confidence 237 

intervals of partial productivity responses to community-level predictors. 238 

Investigating key(stone) and ordinary species in trait space 239 

We compared key(stone) species to ordinary species in trait space, focusing on 240 

distances and distinctiveness. Trait space was defined by the scaled and centered values of 241 
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SLA, LNC, and HGT. Before scaling, HGT measurements were log-transformed so that their 242 

frequency distribution assumed an approximately Gaussian shape. For visualization, we ran 243 

one global PCA on the trait space of all species and examined species scores on the first two 244 

principal components. For greater readability, we also fitted Gaussian mixture density 245 

functions to the point sets of key(stone) and ordinary species, by using the R package mclust 246 

(Scrucca et al. 2016). The algorithm, based on the Bayesian information criterion, thereby 247 

defined a number of mixture components for ordinary species (between one and nine) and for 248 

key(stone) species (between one and three). Next, within each habitat, we summarized the 249 

differences between key(stone) and ordinary species in terms of functional distances, and 250 

functional distinctiveness sensu Violle et al. (2017). We tested whether key(stone)-species 251 

traits were different from ordinary-species traits, by conducting permutational multivariate 252 

analyses of variance from distance matrices. To this end, we applied the R function ‘adonis2’ 253 

from the package vegan (Oksanen et al. 2019) on the Euclidean distance matrices of our trait 254 

space, running 999 permutations. Finally, we assessed whether key(stone) species occupied 255 

eccentric positions in trait space by first calculating functional distinctiveness of each species 256 

and then testing for significant differences between key(stone) and ordinary species, using 257 

two-sided Wilcoxon tests. 258 

  259 
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Results 260 

Relationships across the full dataset 261 

Across the full dataset that covered steep environmental gradients, the seven 262 

environmental predictors of the reference model explained 70.4% of the deviance of 263 

productivity. The explained deviance added by biotic predictors was comparably small (Fig. 264 

1). Community-weighted moments added between 0.2% (CWK of HGT) and 1.1% (CWM of 265 

SLA) of explained deviance. Similarly, multivariate measures of functional diversity added 266 

between 0.1% and 0.5% explained deviance (Fig. S4). The cover values of key species, on 267 

the other hand, contributed between 0.6% and 3.1% when the top, the top five, and the full set 268 

(38 species) were added jointly to M0. The full set of keystone species (11 species) explained 269 

1.2% of deviance, when added jointly to M0. According to a Tukey HSD test, the 270 

contributions to explained deviance by the cover values of the full key-species set and the top 271 

five key species were significantly higher than the explained deviance added by any 272 

community-level predictor. The explained deviance added by the cover values of the top key 273 

species alone was only significantly lower than one community-level predictor, CWM of 274 

SLA. Also the summed cover abundance of rare species made a comparably high 275 

contribution to explained deviance (2.0%, Fig. S4), but rare-species cover abundance was 276 

negatively related to SAVI (Fig. S5). 277 

Community-weighted means and variances mostly had positive associations with 278 

productivity across the full dataset while relationships of community-weighted skewness and 279 

kurtosis with productivity tended to be negative (Fig. S5). Productivity showed the most 280 

positive partial response to CWM of SLA. The response to CWM of HGT was similar, 281 

except for the uppermost part of the range, where productivity levelled off. The positive 282 
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productivity responses to CWVs were fairly consistent for all traits. They started to increase 283 

linearly with a moderate slope and then leveled off in the upper third of the range. CWS 284 

(absolute values) and CWK negatively influenced productivity for all traits, indicating that 285 

productivity tends to decrease when trait distributions are skewed or sharply peaked. 286 

However, these latter relationships were comparably weak. 287 

Key species primarily included grasses and forbs, while keystone species consisted of 288 

forbs and legumes (Fig. 2a). The 38 key species across all environments (Table S3) 289 

individually added ≥0.10% explained deviance to M0 (Fig. 2a). Among them, eleven species 290 

also were of high relative importance and thus keystone species. However, there seemed to be 291 

an upper limit to the combination of absolute and relative importance, with no species 292 

dominating in both. Many species also had negative linear coefficients and thus a negative 293 

association with productivity (Fig. 2a). Yet, these species generally were of low absolute 294 

importance.  295 

Keystone species and particularly key species differed from ordinary species when 296 

compared in trait space defined by SLA, LNC, and HGT (Fig. 2b, c). Functional distances 297 

within both, key and keystone species, were significantly shorter than distances between them 298 

and ordinary species (p=0.001 and p=0.050, respectively, Adonis test). Key species generally 299 

were taller than average and had higher specific leaf areas, while keystone species were only 300 

slightly taller and stood out mainly through high SLA. Furthermore, key(stone) species did 301 

not show atypical positions in trait space: key species were even significantly less 302 

functionally distinct than ordinary species, while no difference was found for keystone 303 

species (p=0.048 and p=0.191, respectively, two-sided Wilcoxon test). Key(stone) species 304 

differed from ordinary species in a similar way when defined more strictly on the basis of the 305 
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95th percentiles of absolute and relative importance, but the differences began to erode when 306 

the 90th percentiles were used as thresholds (Fig. S6).  307 

Relationships by habitat 308 

In most habitats, the top-ranked biotic community-level predictors, mostly CWM of 309 

SLA, added more explained deviance to M0 than the top key species. Explained deviance 310 

added by biotic predictors generally increased when the dataset was divided into several 311 

habitats, using clustering (Figs. 3, S7, and S8). Furthermore, the added explained deviance 312 

was higher under warm conditions with high soil fertility and low humidity than under cool 313 

and humid conditions (Fig. 3a, b). In 6-20% of habitats, mostly under cool and moderately 314 

humid conditions, top key species added more explained deviance than community-level 315 

predictors (Fig. 3c, Figs. S7-S8). Among community-level predictors, community-weighted 316 

means most frequently ranked highest (Fig. 3a). This was particularly true for CWM of SLA, 317 

which dominated under warm conditions. Top key species were often forbs when conditions 318 

were cold and humid, or grasses and legumes when conditions were warmer and less humid 319 

(Fig. 3b). 320 

Not only did the strength of the relationships between community-level predictors and 321 

productivity vary across habitats, but so did their shape (Fig. 4). Productivity increased with 322 

CWM of SLA when conditions were moderately warm, whereas the relationships were 323 

mostly unimodal under warm and dry conditions (Fig. 4a). In cold environments with low 324 

soil fertility, productivity was often negatively related to CWM of LNC, whereas unimodal 325 

relationships prevailed under low humidity (Fig. 4b). Productivity showed increasing partial 326 

responses to CWM of HGT in particular in the cooler half of environmental space with lower 327 

soil fertility, and unimodal responses in the warmer part (Fig. 4c). For CWVs, relationships 328 
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were similarly variable: partial productivity responses to CWV of LNC were particularly 329 

positive under warm and dry conditions (Fig. 4e), and partial relationships between CWV of 330 

plant height and productivity changed from increasing to unimodal with increasing 331 

temperature and soil fertility (Fig. 4f). Partial relationships were also variable between 332 

productivity and CWS and CWK of traits, although in these cases relationships were more 333 

often classified as non-significant (Fig. S9). The patterns remained similar when the number 334 

of separated habitats was five or 50 instead of 25 (Figs. S10 and S11). 335 

The traits involved in the most positive associations between community-level 336 

predictors and productivity were structured in environmental space (Fig. 4g). In cold habitats, 337 

and in cool habitats with low humidity, productivity showed most positive partial responses 338 

to CWM or CWV of HGT. In contrast, CWM of SLA drove most positive productivity 339 

responses when temperature, soil fertility, and humidity were moderately high. CWV and, to 340 

a lesser extent, CWM of LNC showed the most positive relationships with productivity when 341 

temperatures were cool and humidity was high, and in some of the warmest habitats. CWS 342 

and CWK of traits were rarely associated with the most positive productivity responses 343 

among community-level predictors. These patterns remained when the dataset was split into 344 

five habitats (Fig. S10), but were less clear when 50 habitats were distinguished (Fig. S11). 345 

Most of the key species found across all habitats were forbs, but grass and legume 346 

species were more often identified repeatedly in several habitats (Fig. 5a). Forbs were 347 

typically key species only in one to few habitats, and within them their added explained 348 

deviance was comparably low. Among the key species with comparably high average 349 

explained deviance added, several species, often grasses and legumes, were in the key-350 

species sets of many habitats. This was particularly true for the legume Trifolium pratense 351 

that was among key species in 23 of 25 habitats (Fig. 5b), but also the grasses Anthoxanthum 352 
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odoratum, Holcus lanatus, and Trisetum flavescens were identified in 18, 15, and 14 habitats, 353 

respectively. For A. odoratum this was the case for environments of moderate humidity (Fig. 354 

5c), for H. lanatus it was primarily the case in warm environments (Fig. 5d), and for T. 355 

flavescens in moderately warm environments of rather low humidity (Fig. 5e). Keystone 356 

species similarly included several species that were identified in multiple habitats. These 357 

were mainly forbs, for example Rumex acetosa which was identified in nine habitats of 358 

mostly warm conditions (Fig. S12). 359 

Key species tended to be taller and to have higher SLA than ordinary species in 360 

habitats of intermediate and high productivity, but not when productivity was low (Fig. 5f). 361 

Both, key-species and ordinary-species sets, showed variable centroids in trait space across 362 

habitats. Generally, these centroids were defined by greater plant height and higher SLA 363 

when habitat productivity increased. Moreover, the shifts between key-species centroids and 364 

ordinary-species centroids increasingly pointed towards higher SLA and HGT in habitats of 365 

increasing productivity (Fig. 5f), and of increasing temperature and soil fertility (Fig. 5g). In 366 

low-productivity habitats, trait shifts pointed in various directions and functional distances 367 

within key species did not significantly differ from functional distances between key and 368 

ordinary species (Adonis test, Fig. 5g). In environments of intermediate and high 369 

productivity, on the other hand, trait shifts were significant at the p≤0.05 level in 50% and 370 

89% of cases, respectively. Relationships remained stable when the dataset was split into five 371 

or 50 habitats instead of 25 (Figs. S13 and S14). 372 

  373 
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Discussion 374 

We investigated the associations of community-level functional properties and 375 

key(stone)-species cover with grassland productivity across the French Alps and Switzerland 376 

and found them to be similarly strong and heavily modulated by the environment. Key 377 

species were generally tall and had high SLA - traits that are associated with high growth 378 

rates (Wright et al. 2004; Poorter et al. 2009; Borgy et al. 2017) and competitive ability 379 

(Körner 2003; Violle et al. 2009). Their lower functional distinctiveness compared to 380 

ordinary species indicates that their phenotypes may be selected for in grassland communities 381 

(Grime 2006; Brun et al. 2019). Advantages from fast growing and competitive strategies 382 

may be reinforced by additional traits such as mowing-tolerance, which may be why several 383 

key species are important forage crops (Table S3). These include, for example, the cross-384 

habitat top key species T. pratense and T. flavescens (Fig. 5). Moreover, high ability to 385 

disperse may be important for key species: six of the 38 key species of the full dataset are 386 

listed among the 468 globally most noxious neophytes (Table S3) and others are known to be 387 

regionally invasive (e.g., Ranunculus acris; Lamoureaux & Bourdôt 2007). The traits of 388 

keystone species, on the other hand, were less distinct, apart from high SLA. The lack of 389 

species that ranked very high in absolute and relative importance indicates that keystone 390 

plants, with respect to productivity, tend to be specialized to a restricted range of conditions. 391 

The required adaptations and traits may therefore be more context-specific and variable.  392 

With respect to community-level predictors, we found the strongest associations 393 

between community-weighted means and productivity. This is consistent with the assumption 394 

of Trait Driver Theory (TDT) that productivity is primarily determined by the effect of the 395 

traits that lead to the best fitness in a given environment, which are reflected by CWMs 396 
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(Garnier et al. 2004; Enquist et al. 2015). Unlike the predictions of TDT, however, 397 

productivity increased with trait variance and decreased with kurtosis. It seems that in the 398 

diverse grasslands of the European Alps inefficiencies from trait deviations from the 399 

optimum are compensated by benefits from niche differentiation, resource-use 400 

complementarity, and mutualistic effects like nitrogen fertilization (Darwin 1859; Diamond 401 

1979; Pacala & Tilman 1994; Barneze et al. 2020). Finally, as expected by TDT, we found 402 

productivity to decline with absolute trait skewness, indicating that skewness may mainly 403 

arise from disequilibria with the local environment, rather than from the presence of 404 

functionally distinct key species (Enquist et al. 2015). It is possible to better understand how 405 

different predictors at the community level determine productivity when taking into account 406 

the environmental context. 407 

Environmental conditions shape the relationships between community-level predictors 408 

and productivity by governing which ecological strategies are capable to thrive, how trade-409 

offs between traits play out, and how species interact. The range of thriving ecological 410 

strategies is particularly constrained in cold environments with poor soils, which only support 411 

small plants (Körner 2003). In these environments, the relationships between productivity 412 

and CWMs of plant height were especially positive (Fig. 4). Additional height among small 413 

plants seems to directly translate into higher biomass produced per season, and thus higher 414 

productivity. Only when environmental stress is lower, the growth benefits from greater 415 

height are eventually offset by costs for increased maintenance of stems (Falster & Westoby 416 

2003) and higher vulnerability to mowing and grazing (Diaz et al. 2001), leading to unimodal 417 

relationships between height and productivity (Fig. 4). Variations in the relationship between 418 

productivity and CWM of SLA may be driven by environmental control of the growth rate-419 

longevity trade-off (Wright et al. 2004). Productivity increased with CWM of SLA when 420 
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conditions were moderately warm and humid, while under warm and dry conditions 421 

relationships were mostly unimodal. In principle, growth rates (and thus productivity) 422 

increase with SLA, as material costs per photosynthetically active leaf area decrease (Wright 423 

et al. 2004; Poorter et al. 2009; Borgy et al. 2017). Yet, this advantage of faster growth 424 

comes with shorter leaf life spans and higher water loss through transpiration (Wright et al. 425 

2004). When water stress is low and growing seasons comparably short, these disadvantages 426 

are of little consequence, but they can be detrimental in warm and dry environments. Finally, 427 

environmental control of interactions may have driven the variations in productivity response 428 

to CWV of LNC, which was particularly positive under warm and dry conditions. CWV of 429 

LNC was more associated with legume coverage than with any community-level predictor 430 

(Spearman r = 0.57, Fig. S15), indicating that the positive effect of CWV of LNC may be 431 

linked to increased biological nitrogen fertilization from more legumes in the community 432 

(Barneze et al. 2020). Legumes are known for fixing atmospheric nitrogen via symbiosis with 433 

root bacteria and making it available to themselves as well as to neighboring plants (Pirhofer-434 

Walzl et al. 2012). However, fixing atmospheric nitrogen is energy-intensive and reaction 435 

rates of nitrogenase, the enzyme responsible, quickly decrease when temperatures sink below 436 

22°C (Vitousek et al. 2013). Biological nitrogen fixation is, therefore, less efficient in cold 437 

than in warm environments (Cleveland et al. 1999). 438 

We combined large observational datasets to investigate the biotic control of 439 

grassland productivity and obtained detailed insight on species-specific effects and 440 

environmental context, but we also had to make several limiting assumptions. Firstly, we 441 

only considered three traits did not account for intraspecific trait variation. Although SLA, 442 

LNC, and HGT are key determinants of productivity (Lavorel & Garnier 2002; Wright & 443 

Westoby 2002; Wright et al. 2004), additional traits such as mowing tolerance, as discussed 444 
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above, or physiological rates are important too. Moreover, while intraspecific trait variation 445 

may be smaller than interspecific variation, they interact in complex ways with implications 446 

that can be significant (Kichenin et al. 2013). Secondly, with our empirical approach we have 447 

no certainty that the identified associations between biotic predictors and productivity are 448 

causal. Although our results generally are plausible and correspond to ecological theory, 449 

key(stone)-species effects, for example, could also arise from species associations with 450 

unmeasured environmental conditions. Finally, we focused on vascular plants and ignored 451 

pteridophytes and mosses. While in most habitats these latter groups may not drive 452 

productivity, in some cold and moist places this may have been different.  453 

Once the primary environmental effects are acknowledged, the remaining cross-454 

habitat rules to link biotic properties to grassland productivity are weak, as the nature and 455 

importance of relationships varies greatly depending on environmental context. In this study, 456 

we have demonstrated that the effect of environmental context can be quantified when dataset 457 

and approach are chosen appropriately. This, in turn, allows for deeper insights and a better 458 

process understanding with significant benefits, e.g., for global vegetation modeling (Prentice 459 

& Cowling 2013). Moreover, we have shown that beside community-level trait attributes the 460 

cover values of key(stone) species are powerful indicators of ecosystem productivity. The 461 

effect of key(stone) species is linked to trait values characteristic of productive strategies 462 

such as high SLA but it cannot be sufficiently captured by traditional concepts like functional 463 

groups (Jaillard et al. 2018) as other factors, including ability to disperse, play important 464 

roles, too. Future studies will be necessary to comprehensively identify the properties of 465 

key(stone) plants and establish a more complete picture of the biotic control of productivity. 466 

  467 
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Figures 611 

 612 

Fig. 1 | Explained deviance added by community-level predictors and individual-species cover.  613 
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Fig. 2 | Importance and traits of key(stone) species.  616 
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Fig. 3 | Explained deviance added by community-level predictors and key-species cover across 25 habitats.  619 
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 621 

Fig. 4 | Partial responses of productivity to community-weighted means and variances across 25 habitats.  622 
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 624 

Fig. 5 | Importance and traits of key species across 25 habitats.  625 
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Figure legends 628 

Fig. 1 | Explained deviance added by community-level predictors and individual-629 

species cover. Shown are contributions of community-weighted moments, key-species cover, 630 

and keystone-species cover to explained deviance of model fits explaining productivity (soil 631 

adjusted vegetation index) with environmental conditions. Community-weighted moments 632 

were represented with smooth terms of three degrees of freedom while linear coefficients 633 

were used to model the effect of the cover values of individual species. Bars represent 634 

medians and error bars are interquartile ranges of 100 models fitted on resampled data. 635 

Fig. 2 | Importance and traits of key(stone) species. a, productivity improvement 636 

per percent cover (relative importance) and explained deviance added to the reference model 637 

(absolute importance) of all species considered. Key species are shown as squares and 638 

colored according to plant type (see legend), their subset of keystone species is outlined in 639 

black, and ordinary species are shown as grey circles. b and c, key species and keystone 640 

species, respectively, in a two-dimensional representation of trait space (PCA axes with 641 

explained variance in brackets, see Methods). Isolines are Gaussian mixture density functions 642 

of the distributions of key species (dark red) and ordinary species (grey), respectively. Note 643 

that for one key species trait information was not available (see Table S1). 644 

Fig. 3 | Explained deviance added by community-level predictors and key-species 645 

cover across 25 habitats. a, identity and added explained deviance of smooth terms of best-646 

performing community-level predictors. b, plant type and explained deviance of best-647 

performing key species. c, class of predictor with highest explained deviance added: 648 

community-level predictor (c) or key-species coverage (k). Axes are a rotation of the first two 649 

principal components of environmental space (see Methods) with arrows representing 650 
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loadings for increasing temperature, soil fertility, and humidity. Surface depicts inverse-651 

squared-distance interpolation of productivity (soil adjusted vegetation index, SAVI) levels 652 

and superimposed isolines represent the density of observations. 653 

Fig. 4 | Partial responses of productivity to community-weighted means and 654 

variances across 25 habitats. Partial responses of productivity (soil adjusted vegetation 655 

index, SAVI) to community-weighted means (a-c) and community-weighted variances (d-f) 656 

of SLA (a, d), LNC (b, e), and HGT (c, f) across 25 subsampled datasets from similar 657 

environments. Curve types are classified as increasing (blue), decreasing (red), concave 658 

positive (purple), unimodal (yellow), and non-significant (grey, see Supplementary Methods). 659 

Axes are a rotation of the first two principal components of environmental space with arrows 660 

representing loadings for increasing temperature, soil fertility, and humidity. Surface depicts 661 

inverse-squared-distance interpolation of productivity levels and superimposed isolines 662 

represent the density of observations. g, identity (shape) and slopes (size) of community-level 663 

predictors with steepest slopes across the observed gradient. Figs. S7-S9 show partial 664 

responses to additional predictors, and partial responses to CWMs and CWVs when five and 665 

50 habitats are distinguished. 666 

Fig. 5 | Importance and traits of key species across 25 habitats. a, increase in 667 

productivity per percent cover (relative importance), and explained deviance added to the 668 

reference model (absolute importance) of key species of all habitats. Key species are colored 669 

according to plant type (see legend); ring size represents the number of habitats in which a 670 

species belongs to the key-species set; the four most global key species are highlighted with 671 

semi-transparent filling. b-e, added explained deviance across environmental space for the 672 

four most global key species. Circles are only shown for habitats where the species are in the 673 

set of key species. f, centroids of key-species sets (colored circles) and ordinary-species sets 674 
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(grey rings) from each habitat in a two-dimensional representation of trait space (PCA axes 675 

with explained variance in brackets). Point pairs are connected by grey lines. g, magnitude 676 

and direction of shifts between the centroids of keystone and ordinary species, with directions 677 

corresponding to the axes in panel f. Axes in panels b-e and g are a rotation of the first two 678 

principal components of environmental space with arrows representing loadings for 679 

increasing temperature, soil fertility, and humidity. Surface depicts inverse-squared-distance 680 

interpolation of productivity levels and superimposed isolines represent the density of 681 

observations. 682 

  683 



39 

 

Text boxes 684 

Box 1: Definitions of key(stone) species and trait driver theory 685 

Key(stone) species: The effect of individual species on ecosystem functioning can 

be measured in absolute terms or relative to their abundance. Species that are important in 

absolute terms, i.e., that significantly promote ecosystem functioning across the studied 

region, are called ‘key’ species (Maire et al. 2018). The common surgeonfish Acanthurus 

albipectoralis, for instance, is a key species to fish biomass and coral cover in the reefs of 

the Indo-Pacific (Maire et al. 2018). Species that are disproportionately important relative 

to their abundance distinctly increase ecosystem functioning locally, when they are present, 

but they may be geographically rare and thus have a small impact at the study-system level. 

If species are important in both absolute and relative terms they are called ‘keystone’ 

species (Power et al. 1996), including, for example, the North American beaver with its 

capacity to change the structure of riverine ecosystems (Naiman et al. 1988).  

Trait driver theory (TDT): TDT states that the moments of the functional trait 

distribution (mean, variance, skewness, and kurtosis) of a given community serve as 

proxies for several ecosystem processes. Community-weighted means (CWMs) represent 

the traits of the dominant phenotype, which indicate the potential productivity of the 

individuals, according to the Mass-Ratio Hypothesis (Grime 1998; Garnier et al. 2004). 

Community-weighted variance (CWV) and kurtosis (CWK) are expected to capture 

different aspects of the diversity of ecological strategies, which increases the average 

deviation of individuals from the optimal strategy, and thus reduces productivity (Enquist 

et al. 2015). Community-weighted skewness (CWS) depicts the asymmetric nature of the 

trait distribution, and thus the imbalance of ecological strategies present in an ecosystem. 

Imbalances result, for example, from rapid environmental change, and they tend to have 

negative effects on productivity (Enquist et al. 2015). There is growing evidence that these 

different moments are useful to better understand the functional structure of plant 

communities and to predict their implications on ecosystem functioning (Garnier et al. 

2016; Gross et al. 2017; Wieczynski et al. 2019). 
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