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Abstract
From the dimensionless governing equations obtained through an adequate selection of dependent and independent dimensionless variables, and the use of spatial discrimination, the dimensionless groups that govern the solution patterns of the heat transfer problem in aquifers with horizontal flow velocity are determined. As a boundary condition on the surface, the cases of constant and harmonic temperature are studied. The emergence of a characteristic length that, in its dimensionless form, depends on the deduced groups, allows the direct determination of the water flow from experimental measurements of the temperature profiles in the classical form of the inverse problem.
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1. INTRODUCTION 
The study of temperature field (patterns of temperature) or its dimensionless form coming from the heat balance in semiconfined aquifers with horizontal water flow velocity is a complex problem due to the large number of geometrical and physical parameters involved. However, it is a problem of great interest since such field is stuck to the water flow velocity which could be derived through experimental measurements of temperature-depth profiles in the form of inverse problem, avoiding the expensive installation of flow meters. The connection between temperature profiles and water velocity has been studied by many authors, some of them providing semianalytical and empirical solutions, Stallman (1963) and Bredehoeft y Papadopulos (1965), Ziagos and Blackwell (1986), Taniguchi (1993), Holzbecher (2005), Kulongoski and Izbicki (2008) and Duque, Müller, Sebok, Haider and Engesgaard (2016). 

In relation with 2D problems there are many references that try to investigate in a qualitative form the water flow from the temperature profiles, most of them referred to cases study, McCord, Reiter and Phillips (1992), Constantz (2008) and Szymkiewicz, Tisler and Burzyński (2015). Apart from the ancient paper of Stallman (1963), Cartwright (1971) is the only author (up to we know) that studies in a qualitative form the thermal profiles derived from the existence of horizontal water flow in a semiconfined shallow aquifer. However, the analytical solution of the last author assumes the severe hypothesis of a constant horizontal thermal gradient along the aquifer. Really, such a gradient emerges in the entrance region where the lineal thermal profile develops. Beyond this region the vertical thermal profile is lineal and does not depend on water velocity. In addition, harmonic boundary conditions at the soil surface complicates even more the problem, forcing the local temperature to be also a harmonic function of the time.  
Independently of the temperature boundary conditions at the surface and bottom of the aquifer, the existence of a horizontal flow with a given inlet temperature different from the others, gives rise to a balance of drag and diffusion heat fluxes, determining a steady-state temperature field in a limited region of the aquifer. We name characteristic length to the extension of this profile developed region.

Our interest in this work is to investigate the temperature profiles within the characteristic length in which the influence of the water velocity can be appreciated. This is, to search the dimensionless groups that rule the profiles and look for simplified hypotheses that make possible the construction of universal solutions. Pi theorem allows to express these unknown (characteristic length, temperature profiles, field temperature…), written in their dimensionless form, as a function of the dimensionless groups derived with a suitable and precise technique from the geometrical and physical parameters, using the governing and boundary condition equations. Once verified that the set of dimensionless groups rule correctly the problem, the precise dependence between them is adjusted graphically (or by precise mathematical functions) by means of numerical simulations. 

As in many other recent works (Seco-Nicolás, Alarcón & Alhama, 2018, Sánchez-Pérez & Alhama, 2020 and Alhama, García-Ros & Icardi, 2021), the dimensionless groups are formally derived from the dimensionless mathematical model which, in turn, is deduced by introducing dependent and independent, dimensionless and normalized variables. The use of discrimination ensures that references used to set the dimensionless variables are different according to each spatial direction while normalization confines the range of values of the variables to the interval [0,1]. Once the monomials of the problem have been established they are verified through a set of cases in which it is tested that the patterns are identical for the same values of the monomials. Based on these results, a protocol is proposed for the solution of the inverse problem of estimating the water velocity from a set of experimental measurements affected by a random error. The efficiency and success of the proposed protocol is illustrated by means of a classic application supported by numerical simulations that provides very precise results.

2. NOMENCLATURE
	constants (dimensionless)
		volumetric heat capacity of the soil-fluid matrix (cal/(m3 °C))
		volumetric specific heat of the water, (cal/(m3 °C))
		specific heat of water (cal/(m3°C))
		relative random error (%)
 	relative error (%) in the estimated velocity (m/s)
		height of the domain (m)
		convection heat flux density (Jm-2s-1)
		diffusion heat flux density (Jm-2s-1)
		storage heat flux density (Jm-2s-1)
		thermal conductivity of the soil-fluid matrix (cal/(sm°C))
		length of the aquifer (m)
		dimension of the horizontal length
		characteristic length along which the diffusive and drag effects are of the same                               order of magnitude (m)
 		characteristic length (m)
		dimension of the vertical length
		vertical characteristic length due to harmonic variations on the soil surface (m)
		number of experimental measurements for the inverse problem 
		time (s)
		temperature (°C)
		temperature at the soil surface (°C)
 		temperature at the bottom of the aquifer (°C)
 		temperature at the left border (°C)
		medium temperature for harmonic variations at the soil surface (°C)
		initial soil temperature (°C)
		mean temperature at soil surface in harmonic function (°C)
		maximum temperature for harmonic variations at the soil surface (°C)
		minimum temperature for harmonic variations at the soil surface (°C)
	vertical temperature profiles (°C)
	vertical temperature profile at (°C)
 	vertical temperature profile at affected by a random error e (°C)
 	temperature profile (simulated) at  (°C)
	vertical temperature profile at (°C)
 	vertical temperature profile at affected by a random error e (°C)
	simulated temperature profile (°C)
		flow velocity vector (m/s)
, 	first and second velocities introduced for the solution of the inverse problem 		velocity at the iteration j introduced for the solution of the inverse problem
		horizontal flow velocity (m/s)
	estimated velocity (m/s)
 		spatial coordinates (m)
, 		horizontal locations within the interval [0,] (m)
	optimal locations for iteration I
 		location simulated (m)

		thermal diffusivity of the soil-fluid matrix (m2/s), 
	 (m2/s)
		harmonic wave amplitude (°C)
	velocity increment used in inverse problem (m/s)
	increment location (m)
		gradient
	dimensionless group that characterizes the ratio between diffusion and drag effects over the aquifer domain 
	dimensionless monomial of horizontal characteristic length
	dimensionless monomial of the characteristic time 
		wet bulk density of the soil-fluid matrix (kg/m3)
		fluid density of the water (kgm-3) 
		period of harmonic sinusoidal temperature variation (s)
	characteristic time (s)
	characteristic time (s). Half of the period of the harmonic oscillation (s)
 	functional relative to profile at 
 	minimum value of the functional for iteration I
 	minimum value of the functional for iteration j
	functional relative to location  
	functional relative to location  
		absolute value 
		to denote range of values 
	contained in
	order of magnitude
{}	symbol that encloses the dimensions of a quantity
	symbol that encloses the list of relevant parameters of a problem 

Subscripts
	 index of a particular temperature of the profile  
	index of the iteration for calculate the functional
		related to spatial directions x and y, respectively

Superscript
*	denote characteristic quantity
´	dimensionless quantity

3. PHYSICAL AND MATHEMATICAL MODELS
Figure 1 shows the physical scheme of the problem and the temperature and flow boundary conditions at the saturated aquifer. Water penetrates at the left vertical boundary and go out at the right. Horizontal upper and bottom surfaces are no-flow conditions. As regards temperature, the boundaries upper, bottom and left are first class (Diritlech) boundary conditions. The aquifer is large enough as to satisfy that the temperature profile has been completely developed before the right limit and, in order to ensure that the water leaves the aquifer with the temperature at the right boundary, a free condition is imposed there. The origin of the domain is shown in the figure. 

[Please, insert Figure 1]

Field velocity is known and constant throughout the domain, . Thus, the governing equation reduces to the heat conservation expression, a result of the local balance between the diffusion,  (Fourier), drag or convection, , and storage  terms. This equation is 
							(1)
In homogeneous and isotropic domains and rectangular geometry, equation (1) writes as
							(2)
The mathematical model completes with the equations that set the boundary and initial conditions. The temperature at the upper boundary may be constant or harmonic (seasonally time dependent). These are: 
					Step jump		(3a.1)
			Harmonic dependent	(3a.2)
								(3b)
								(3c)
								(3d)
Despite it is no relevant for the steady-state solution, and initial temperature (Tini) is assumed at the whole domain to simulated both transient and stationary (or pseudo-stationary for harmonic variations) solutions. The mathematical model is numerically simulated using the free software Ngspice by a precise model based on the network simulation method (Horno (2002)), a tool that have been demonstrated efficiency and reliability in many other problems of similar or higher complexity (Sánchez-Perez, Conesa, Alhama, Alhama & Cánovas (2017) and García-Ros, Alhama, Cánovas & Alhama (2018)). 

4. PRELIMINARY DISCUSSION
4.1. The steady-state temperature field
By way of illustration, Figure 2 shows the solution of steady-state temperature field or patterns for 4 typical scenarios whose parameters are listed in Table 1, the surface temperature is constant for all of them.  To simplify, simple values are chosen for lengths and temperature. These patterns confirm the more relevant aspects of the solution, such as the emergence of a characteristic length for the steady solution in sufficiently extended scenarios. The precise definition of this characteristic length will be set later. Beyond this length, on the one hand, the temperature profiles  are lineal, independent on time and water velocity. If we name  to this length, the profiles for  bend progressively the more, the smaller is x compared to . On the other hand, the relative value of  in comparison with  and , determines the existence (or not) of inflexions in the curvature of the profiles in a small region close to the left boundary seeming to influence weakly in the value of the characteristic length. As we´ll see later, in this small region the horizontal diffusion and drag effects are comparable. It can be noticed that increases with the greater of the differences  and , and that the inflexions at the profiles emerge when  is within the interval  which is the most general case. 

In real aquifers, with depths of several meters and greater, as we see, the characteristic length increases with the square of the thickness of the aquifer. The entrance region, which reflects the influence of the boundary condition temperatures, makes negligible with respect to the characteristic length. Based on these illustrations, the influence of ,  and  in the characteristic length, whatever be their values, appear to be very small. For the scenarios of the Figure,  < < < Inflexions in the T-y profiles only appear in Scenarios II y III. 
Vertical profiles of temperature at x=2 m are shown in Figure 3 for the four scenarios. According to these results, while the profile is nearly lineal for Scenario II, with an imperceptible inflexion in that location, Scenario III provides a clearly bended profile with a weak inflexion at a point closer to the surface due to that . In Scenario I, the curvature of the profile is even more appreciable and the inflexion has disappeared because . Finally, Scenario IV shows a sharp curvature with different concavity and without inflexion, since  is out of the range  and higher than their ends. In short, we can assure that the shortlist of values ,  and  influences only in cases where the diffusive (horizontal) and drag effects are comparable. 

[Please, insert Table 1]

[Please, insert Figure 2]

[Please, insert Figure 3]

Continuing with the aim of illustrating, Figure 4 show the horizontal temperature profiles of Scenarios I and III at five depths,  and  . To ensure that , a value  = 5 m has been used in the simulation. It is observed that, although the curves are of less slope near the surface, the temperature ranges in which they move are also of lower value.

[Please, insert Figure 4]

Based on these results and assuming that aquifers are enough extensive, in the sense that diffusive effects are negligible with respect to drag effects, would be defined as the extension of the aquifer from which the dimensionless temperature at the center line () reaches a significant percentage (95-99%) of its stationary value,. From Figure 4, for Scenario III with , the characteristic lengths related to percentages 95 and 99% are:  
 		 
 		 
Others criteria to definewould be equally valid, for example, the distance at which the dimensionless, horizontal temperature gradient, on the line , has a sufficiently small value. Figure 5 shows this component of the gradient for the typical Scenario III in which . In the figure, the value of  has been depicted for five regularly distributed depths,  and   m. The values of are: for  = 0.02 (1.15 °C/m), = 3.05 m, while for  = 0.01 (0.57 °C/m), = 3.55 m. 

[Please, insert Figure 5]

As regards the influence of the parameters  and  on , it does not seem necessary to illustrate with new scenarios that increasing values of  and increase the characteristic length while an increase in thermal (vertical) diffusivity decreases it. As the relations of these parameters with are obtained directly from the application of dimensional techniques, we leave the deduction of these relations for the next section.  

Finally, for scenarios in which ,  itself instead of is the parameter that rule the temperature patterns of the problem.  

4.2. Influence of the horizontal diffusivity
It is necessary to delve into the influence of horizontal diffusivity against drag to justify the hypothesis of neglecting the first. The comparison between both effects can be made through the quotient between diffusive and drag terms of equation (2),  y , respectively. The dimensionless group that characterizes this ratio, the result of nondimensionalize and average over the aquifer domain limited by  (Bejan (2013)), is

Assuming the same order of magnitude for diffusion and drag effects, the order of magnitude of  is given by 
									(4)
For the fluid to reach this length, a time value of  will be necessary. Below this time, diffusive effects (in the region ) predominate, while above this time drag effects (in the region ) predominate.

Figure 6 show the dependences and . The diffusive effect will be negligible as long as is well below and for times when the temperature field reaches its stationary value. For example, if we take as a typical value for soils  = 1∙10-6 m2/s, and a velocity of 10-5 m/s, from Figure 6, = 0.1 m y = 10000 s, values that allow us to neglect horizontal diffusivity. However, for a velocity of 10-7 m/s, = 10 m y = 1157 d, too long a waiting time. 

[Please, insert Figure 6]

4.3. Harmonic temperature on the soil surface
It is a common boundary condition that adjusts for seasonal (daily or annual) environmental variations. Vertical diffusivity causes an inflow and/or outflow throughout each half cycle of the period that makes both the amplitude of the harmonic variation and the phase depend on the depth. The amplitude tends to zero below a certain vertical characteristic length () and the phase of the thermal wave progressively increases with depth along that length (Cartwright, 1971). This condition, for aquifers of sufficient depth, separates the aquifer into two horizontal regions, an upper one of thickness  (which will be defined in the next section) where the aforementioned harmonic effects occur, and a lower one that is not influenced by harmonic boundary condition. The characteristic length depends on the diffusivity of the soil and the time during which the boundary condition switches from one half cycle to another, and it increases when increasing these parameters.

To illustrate these results, Scenario III has been simulated with  = 1 °C on the surface and o = 1 d. Figure 7 shows the maximum and minimum temperature envelops ( and , respectively), the mean value () and the deviation (), as a function of depth. The profiles have been taken in two typical locations, one lower than (x=1 m) and another higher (x=20 m). These profiles tend to be lineal beyond the characteristic length  (continuous lines) and change for each value of the x coordinate in the region within the characteristic length (dashed lines). However, the depth  beyond which  is negligible is not dependent on x. Also, while the curvature of  profiles depends on the position x within  (aspect already mentioned), the values () are independent on x.

[Please, insert Figure 7]

5. DIMENSIONLESS CHARACTERIZATION. 
THE CHARACTERISTIC LENGTHS OF THE PROBLEM
Using the pi theorem, in this section we will deduce the relationships between the unknowns of interest (essentially the characteristic lengths), expressed in their dimensionless form, and the independent dimensionless groups that can be formed with the physical and geometric parameters and the data of the boundary conditions. There are several ways to determine the dimensionless groups of a problem, the most commonly used is to deduce these groups directly from the dimensional equations of the relevant parameters of the problem, this procedure derives from the application of classical dimensional analysis (Sonin, 2004 and Madrid and Alhama, 2012). Besides a deep knowledge of the physical phenomena involved in the problem, an accurate application of dimensional analysis requires a correct choice of the dimensional basis and, in 2D scenarios, the use of spatial discrimination (Madrid and Alhama, 2006). 

Another more precise technique to deduce the dimensionless groups is by working with the dimensionless mathematical model, i.e., with the governing equations and boundary conditions. It consists of defining the dependent or independent variables in dimensionless form, introducing them into the government equations and deducing the coefficients that emerge from the new equation. The independent ratios between these coefficients are the searched groups. However, to obtain the minimum and most precise set of monomials, the non-dimensionalization process has to be done in their discriminated form, which assumes that the lengths, parameters and variables associated with different spatial directions, have different dimensional equations according to those directions. Thus, the dimension of a non-discriminate length, {L}, is split in two dimensions in 2D rectangular geometry. {,}. This means, for example, that the ratio (depth)/(horizontal extension) in a 2D domain cannot be considered a dimensionless group since the dimensions of  and  are different because they are associated with different spatial directions. Thus, the dimensional equation of  is .

We will first discuss the case of non-harmonic surface temperature. The relevant variables that define the stationary temperature field in a large aquifer, in which horizontal diffusivity can be neglected, is the set . Introducing the normalized dimensionless variables ,  and  (range of values approximately [0,1])
								(5a)
								(5b)
									(5c)
in the governing equation , yields the dimensionless equation  
			(6a)
or, re-grouping coefficients, 
 						(6b)
Thus, the solution depends on the value of the dimensionless ratio  , which becomes a dimensionless group which we name , precisely the dimensionless form the unknown . Since the equation constitutes a balance of addends since the derivative terms  y  can be averaged to the unit (by the normalized range of values of the variables), the value of  must be necessarily of the order of unity. The pi theorem states that 1, or
								(7)
This expression, which will be verified later, can be write as an equality, , with C1 a constant that can be deduced by an only numerical simulation. In accordance to what was discussed in Section 4, we will adopt as a criterion to define , the distance from the left border to the point of the line  at which the dimensionless temperature has reached 95 (or 99)% of its stationary value, or the point for which  = 0.01 (or 0.02).

Harmonic temperatures at the surface introduces the vertical characteristic length  which, since it is independent of the water velocity and the input temperature, can be derived directly from the equation
 							(8)
Introducing the dimensionless variables , , and , with  the characteristic time corresponding to the half-period of the excitation, the above equation takes the dimensionless form
 							(9)
from which the following monomial results
 								(10)
providing, in turn, the order of magnitude of 
 								(11)
Introducing a specific criterion to define this length, for example the depth at which  is a small percentage (1% or 5%) of its value on the surface, the previous expression could be written as an equality  , where the constant  (with a value close to unity) could be determined by a single numerical simulation.

6. VERIFICATION OF THE EXPRESSIONS OF THE CHARACTERISTIC LENGTHS
To verify the expressions of and ,  equations (7) and (11), we will resort to the simulation of the significant and sufficient set of scenarios whose parameters are shown in Table 2. These parameters ensure in all the scenarios that the horizontal diffusivity is negligible compared to the drag, or what is the same  <<. Temperatures are irrelevant in determining .  Scenarios 1 to 5 allow verifying  . The values of one or more parameters in these scenarios have been changed so that the monomial  is kept constant.

[Please, insert Table 2]

Figure 8 shows the solution of the stationary temperature field of scenarios 1 to 5. As expected, the fields of scenarios 1 to 3 are identical as well as those of scenarios 3 and 4, which are simply a scale change of the first. They all have the same characteristic length. Using the dimensionless and normalized scale of this variable defined as , Figure 9 shows the horizontal profile of  on the line . All scenarios have the same profile. The horizontal gradient of this dimensionless temperature is shown in the same figure and again all scenarios have the same solution. 

[Please, insert Figure 8]

[Please, insert Figure 9]

Choosing as a criterion to define  the length at which the dimensionless temperature () of the profile has traveled 95% (99%) of its total range, the curve in Figure 9 provides the value   = 33.0 m (49.0 m). These lengths are associated with  = 0.01 (0.0021), certainly small values to consider that the temperature profile with depth  is linear beyond .

The introduction of harmonic scenarios 6 and 7 allows to verify the expression  .  In effect, we will define this length as the depth (measured from the surface) at which the  value is 5% (or 1%) of the maximum surface temperature deviation. The evolutions of these cases are shown in Figure 10, and the values obtained for the characteristic length are:  = 0.25 m (99%) the double on scenario 7 as expected. With this criterion, it can be written as definitive expressions for :
 C3  (95%), 		 C4  (99%). 

[Please, insert Figure 10]

All simulations have been run for meshes of 21(vertical)  100(horizontal) volume elements. A few of them have require a more refined mesh. The computing times in the free software Ngspice for each simulation is approximately 30 s. 

7. THE INVERSE PROBLEM, VERSUS PROFILES 
From the conclusions of the previous sections, let´s establish a protocol for the inverse problem of determining flow velocities by direct measurements of a set of discrete values . The parameters  and  are assumed to be known, as well as the temperatures  and . The inlet temperature of the water flow is irrelevant for the characteristic length and for the profiles, when horizontal diffusivity is negligible in from of drag effect, which is equivalent to ensure that measurements are made beyond the region where diffusion and drag effects are comparable. In short, temperature depth profiles are only dependent on both  and the relative horizontal location within the characteristic length. The last, in turn, is also an unknown. 

7.1 Protocol of the inverse problem
The following are known data: , and the temperature-depth profiles at two given coordinates,  and  with . These are two sets of  experimental pairs of values affected by a random measurement error. It is also assumed that the horizontal diffusivity is negligible against drag and that the time necessary to reach the steady state has elapsed. The protocol for the solution of the inverse problem can be synthesized in the following steps:
Step 1. A scenario is numerically simulated with the known data and a random input temperature (for example the mean between  and ). A first random velocity  is also imposed, greater than the supposedly expected one.

Step 2. The set  closest to the water entry boundary is chosen,. These values are compared with those resulting from the simulation in successive x positions (starting with values of x close to locations where the profile is nearly linear. The following functional is defined
 
where  is the set of N values of the simulation corresponding to the position x. Once obtained  for the simulated location , news  are evaluated from sucessive locations  until reaching the location for which  is minimum. Let´s name  and , the final values of this iteration. 

Step 3. The values  are compared with those of the simulated model at . The new functional is built whose value is 
 
Once finalized the former steps related to the iteration , we retain the partial results , ,,  and .

Step 4.  is modified by decreasing it a small value  resulting a the new velocity  for which the model is simulated again. Steps 2 and 3 are repeated (for ) providing the new values, ,  and 

Step 5. If  is less than , go back to Step 4 (leading back to steps 2 and 3 with ) to obtain , ,  and  So on until an iteration , for which   is greater than . The estimate velocity is that corresponding to iteration j, . Experimental profiles  and  are estimated to be at locations  and . 
The characteristic length can be determined from its expression, equation (7).

Step 6. If  is greater tan ,  go back to Step 4 but taking a negative increment for the velocity, - 

Figure 11 shows a block diagram of the protocol, which could be optimized for faster convergence through programming routines, selecting non-constant values (dependent on the results of each iteration) for .

[Please, insert Figure 11]

7.2 Application
To ensure the validity and accuracy of the above protocol we illustrate the following application. In the first place, a direct problem is posed (with known parameters) from which we will obtain the temperature field solution by means of a precise numerical simulation. We determine its characteristic length ) with any of the criteria mentioned in Section 4 and we read the profiles in two arbitrary positions  and  within the region limited by . N readings (regularly distributed) of these profiles are selected,  and  with , . To introduce deviations in these lectures that simulate errors in the measurement, random errors of maximum value  are applied. The new sets of temperature values, which we will call  and  will be the input data of the inverse problem that will allow the estimation of . 

The data for the direct problem (for which a negligible horizontal diffusivity effect, in comparison to drag, is ensured) and the discrete temperature profiles affected by error, which constitute the input data for the inverse problem, are shown in Table 3. The random errors applied to the direct simulation discrete measurements are 1 and 2% and the number of measurements regularly distributed along the depth is . A refined mesh of 41(horizontal)  100(vertical) has been adopted requiring a computing time of 50 seconds for each iteration. The final estimation and a sample of the partial results, with  and  are shown in Table 4.

[Please, insert Table 3]
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Partial results of ,  and  are shown for the same pairs of relative positions  and . There is no a direct correlation between the functional associated with each error in the measurements, although the three functional columns decrease monotonically as the value of the estimated final velocity is approached, what happens for both random errors. The final estimated value for velocity in both cases verify the efficiency and accuracy of the proposed protocol. These estimates with errors, sufficiently small for this engineering problems, are:
, 				for and 
				for 
Note that the size mesh might influences notably in the results for coarse meshes since the partial locations  and  have to be located according to the chosen thickness of the volume element. This is the reason why the partial locations in Table 3 are the same for the two selected random errors. 

8. FINAL COMMENTS AND CONCLUSIONS
The main objective of this work has been the deduction of the dimensionless groups that rule the solution or solution patterns of the coupled problem of water flow and heat transfer in soils under constant or harmonic temperature boundary conditions on the surface. The procedure followed for this objective has been the mathematical manipulation of the mathematical model, converting its equations into their dimensionless forms through an adequate selection of dimensionless variables, a precise technique that formally moves away from classical dimensional analysis. The use of discrimination added to this procedure invariably leads to the most accurate results for both constant temperature and harmonic type excitations. Once the groups were obtained, they have been verified by simulating a significate number of scenarios in which one or more parameters of the problem are changed, retaining the numerical value of the monomials. In all cases, as expected, the patterns do not change. The emergence of a characteristic length, whose dimensionless expression is shown to depend on the deduced groups, allows the profiles to be characterized as a function of the relative position with respect to such characteristic length.

Based on the previous results, particularly the fact that the stationary temperature profiles only depend on the relative position of the measurement point in relation to the mentioned characteristic length, a classical inverse problem protocol is proposed as a secondary objective. This protocol allows estimating the water flow from the experimental measurement of a set of temperatures (affected by error) distributed along soil columns. The global and partial estimates from an illustrative application demonstrate the convergence of the solutions towards very precise values, thus justifying the efficiency and accurate of the proposed protocol. 
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