8. References
Andersson, M., 1994. Sexual selection. Princeton University Press.
Bickford, D., Ng, T.H., Qie, L., Kudavidanage, E.P., Bradshaw, C.J.A., 2010. Forest fragment and breeding habitat characteristics explain frog diversity and abundance in Singapore. Biotropica. https://doi.org/10.1111/j.1744-7429.2009.00542.x
Birkhead, T.R., Pizzari, T., 2002. Postcopulatory sexual selection. Nat. Rev. Genet. https://doi.org/10.1038/nrg774
Blanckenhorn, W.U., 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology. https://doi.org/10.1111/j.1439-0310.2005.01147.x
Blanckenhorn, W.U., Kraushaar, U.R.S., Teuschl, Y., Reim, C., 2004. Sexual selection on morphological and physiological traits and fluctuating asymmetry in the black scavenger fly Sepsis cynipsea. J. Evol. Biol. 17, 629–641. https://doi.org/10.1111/j.1420-9101.2004.00693.x
Blanckenhorn, W.U., Meier, R., Teder, T., 2007. Rensch’s rule in insects: Patterns among and within species, in: Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. https://doi.org/10.1093/acprof:oso/9780199208784.003.0007
Brook, B.W., Sodhl, N.S., Ng, P.K.L., 2003. Catastrophic extinctions follow deforestation in Singapore. Nature. https://doi.org/10.1038/nature01795
Cox, R.M., Calsbeek, R., 2010. Sex-specific selection and intraspecific variation in sexual size dimorphism. Evolution (N. Y). 64, 798–809. https://doi.org/10.1111/j.1558-5646.2009.00851.x
Culot, L., Bovy, E., Zagury Vaz-de-Mello, F., Guevara, R., Galetti, M., 2013. Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biol. Conserv. https://doi.org/10.1016/j.biocon.2013.04.004
Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T., Whittingham, L.A., 2007. Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proc. R. Soc. B Biol. Sci. 274, 2971–2979. https://doi.org/10.1098/rspb.2007.1043
Eberhard, W.G., Rodríguez, R.L., Huber, B.A., Speck, B., Miller, H., Buzatto, B.A., Machado, G., 2018. Sexual selection and static allometry: The importance of function. Q. Rev. Biol. https://doi.org/10.1086/699410
Emlen, D. J., 1997. Diet alters male horn allometry in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1997.0081
Emlen, Douglas J., 1997. Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behav. Ecol. Sociobiol. 41, 335–341. https://doi.org/10.1007/s002650050393
Emlen, D.J., 1994. Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1994.0060
Emlen, D.J., Lavine, L.C., Ewen-Campen, B., 2007. On the origin and evolutionary diversification of beetle horns. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0701209104
Esperk, T., Tammaru, T., Nylin, S., Teder, T., 2007. Achieving high sexual size dimorphism in insects: Females add instars. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.2007.00872.x
Fairbairn, D.J., 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.ecolsys.28.1.659
Foottit, R.G., H. Adler, P., 2009. Insect biodiversity: science and society., John Wiley & Sons. https://doi.org/10.1002/9781118945582
Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A.E., Raga, J.A., Aznar, F.J., 2018. Taxonomic status and epidemiology of the mesoparasitic copepod Pennella balaenoptera in cetaceans from the western Mediterranean. Dis. Aquat. Organ. 128, 249–258. https://doi.org/10.3354/dao03226
Garcia-Gonzalez, F., Simmons, L.W., 2011. Good genes and sexual selection in dung beetles (Onthophagus taurus): Genetic variance in egg-to-adult and adult viability. PLoS One 6. https://doi.org/10.1371/journal.pone.0016233
García-González, F., Simmons, L.W., 2007. Shorter sperm confer higher competitive fertilization success. Evolution (N. Y). https://doi.org/10.1111/j.1558-5646.2007.00084.x
Geller, J., Meyer, C., Parker, M., Hawk, H., 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138
Goh, T.G., 2014. PRELIMINARY SURVEY OF DUNG BEETLE DIVERSITY IN KRAU WILDLIFE RESERVE, PAHANG, MALAYSIA. J. Wildl. Park. 28, 11–36.
Goh, T.G., Hashim, R., 2020. Trait responses of Peninsular Malaysian dung beetles (Scarabaeidae: Scarabaeinae) to the loss of megafauna dung. J. Trop. Ecol. https://doi.org/10.1017/S0266467419000270
Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
Howden, H.F., Nealis, V.G., 1975. Effects of Clearing in a Tropical Rain Forest on the Composition of the Coprophagous Scarab Beetle Fauna (Coleoptera). Biotropica 7, 77. https://doi.org/10.2307/2989750
Kijimoto, T., Costello, J., Tang, Z., Moczek, A.P., Andrews, J., 2009. EST and microarray analysis of horn development in Onthophagus beetles. BMC Genomics 10, 504. https://doi.org/10.1186/1471-2164-10-504
Knapp, M., Knappová, J., 2013. Measurement of Body Condition in a Common Carabid Beetle, Poecilus cupreus : A comparison of Fresh Weight, Dry Weight, and Fat Content . J. Insect Sci. 13, 1–10. https://doi.org/10.1673/031.013.0601
Knell, R.J., 2009. On the analysis of non-linear allometries. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.2008.01022.x
Kodric-Brown, A., Sibly, R.M., Brown, J.H., 2006. The allometry of ornaments and weapons. Proc. Natl. Acad. Sci. U. S. A. 103, 8733–8738. https://doi.org/10.1073/pnas.0602994103
Kudavidanage, E.P., Qie, L., Lee, J.S.H., 2012. Linking biodiversity and ecosystem functioning of dung beetles in south and Southeast Asian tropical rainforests. Raffles Bull. Zool. 141–154.
Larsen, T.H., Forsyth, A., 2005. Trap spacing and transect design for dung beetle biodiversity studies. Biotropica 37, 322–325. https://doi.org/10.1111/j.1744-7429.2005.00042.x
Lee, J.S.H., Lee, I.Q.W., Lim, S.L.H., Huijbregts, J., Sodhi, N.S., 2009. Changes in dung beetle communities along a gradient of tropical forest disturbance in South-East Asia. J. Trop. Ecol. https://doi.org/10.1017/S0266467409990174
Leigh, J.W., Bryant, D., 2015. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
Lemon, J., 2006. Plotrix: a package in the red light district of R.
Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T., Machida, R.J., 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14. https://doi.org/10.1186/1742-9994-10-34
Liao, W.B., Liu, W.C., Merilä, J., 2015. Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia 177, 389–399. https://doi.org/10.1007/s00442-014-3147-8
Lovich, J.E., Gibbons, J.W., 1990. Age at Maturity Influences Adult Sex Ratio in the Turtle Malaclemys terrapin. Oikos 59, 126. https://doi.org/10.2307/3545132
Lucigen, 2018. QuickExtractTM Plant DNA Extraction Solution [WWW Document]. URL https://www.lucigen.com/docs/manuals/MA150E-QuickExtract-DNA-Solution.pdf
McCullough, E.L., Buzatto, B.A., Simmons, L.W., 2017. Benefits of polyandry: Molecular evidence from field-caught dung beetles. Mol. Ecol. https://doi.org/10.1111/mec.14127
Meier, R., Wong, W., Srivathsan, A., Foo, M., 2016. $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics. https://doi.org/10.1111/cla.12115
Meiklejohn, K.A., Wallman, J.F., Dowton, M., 2011. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int. J. Legal Med. 125, 27–32. https://doi.org/10.1007/s00414-009-0395-y
Moczek, A.P., 1998. Horn polyphenism in the beetle Onthophagus taurus: Larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behav. Ecol. https://doi.org/10.1093/beheco/9.6.636
Moczek, A.P., Emlen, D.J., 2000. Male horn dimorphism in the scarab beetle, Onthophagus taurus: Do alternative reproductive tactics favour alternative phenotypes? Anim. Behav. https://doi.org/10.1006/anbe.1999.1342
Moczek, A.P., Emlen, D.J., 1999. Proximate determination of male horn dimorphism in the beetle Onthophagus taurus (Coleoptera: Scarabaeidae). J. Evol. Biol. 12, 27–37. https://doi.org/10.1046/j.1420-9101.1999.00004.x
Moczek, A.P., Nijhout, H.F., 2004. Trade-offs during the development of primary and secondary sexual traits in a horned beetle. Am. Nat. https://doi.org/10.1086/381741
Muggeo, V.M.R., 2008. segmented: an R Package to Fit Regression Models with Broken-Line Relationships.
Panhuis, T.M., Butlin, R., Zuk, M., Tregenza, T., 2001. Sexual selection and speciation. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(01)02160-7
Parrett, A.J.M., Slade, E.M., Knell, R.J., 2021. Morph-specific investment in testes mass in a trimorphic beetle , Proagoderus watanabei. bioRxiv 2021.05.09.443318. https://doi.org/10.1101/2021.05.09.443318
Parrett, J.M., Knell, R.J., 2018. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B Biol. Sci. 285. https://doi.org/10.1098/rspb.2018.0303
Parrett, J.M., Mann, D.J., Chung, A.Y.C., Slade, E.M., Knell, R.J., 2019. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. https://doi.org/10.1111/ele.13358
Parzer, H.F., Moczek, A.P., 2008. Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution (N. Y). https://doi.org/10.1111/j.1558-5646.2008.00448.x
Piross, I.S., Harnos, A., Rózsa, L., 2019. Rensch’s rule in avian lice: contradictory allometric trends for sexual size dimorphism. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-44370-5
Pomfret, J.C., Knell, R.J., 2006. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. https://doi.org/10.1016/j.anbehav.2005.05.023
Priawandiputra, W., Tsuji, Y., Widayati, K.A., Suryobroto, B., 2020. Dung beetle assemblages in lowland forests of pangandaran nature reserve, West Java, Indonesia. Biodiversitas. https://doi.org/10.13057/biodiv/d210210
Puniamoorthy, N., Schäfer, M.A., Blanckenhorn, W.U., 2012. Sexual selection accounts for the geographic reversal of sexual size dimorphism in the dung fly, sepsis punctum (diptera: Sepsidae). Evolution (N. Y). https://doi.org/10.1111/j.1558-5646.2012.01599.x
Qie, L., Lee, T.M., Sodhi, N.S., Lim, S.L.H., 2011. Dung beetle assemblages on tropical land-bridge islands: Small island effect and vulnerable species. J. Biogeogr. https://doi.org/10.1111/j.1365-2699.2010.02439.x
Rensch, B., 1959. Evolution Above the Species Level, Evolution Above the Species Level. Methuen and Co.
Rossi, M.N., Haga, E.B., 2019. Testing rensch’s rule in Acanthoscelides macrophthalmus, a seed-feeding beetle infesting Leucaena leucocephala plants. Can. J. Zool. 97, 304–311. https://doi.org/10.1139/cjz-2018-0063
Rudoy, A., Ribera, I., 2017. Evolution of sexual dimorphism and Rensch’s rule in the beetle genus Limnebius (Hydraenidae): Is sexual selection opportunistic? PeerJ. https://doi.org/10.7717/peerj.3060
Rufino, M.B.M., Magintan, D., Ngau, C., Abu Zahrim, I., Hamidi, J., Zainal, A.M., Idlan, R., Abdul Kadir, A.H., Dennis, T.C.Y., Fauzul Azim, Z.A., 2010. Mammals of Temenggor Forest Reserve: Evidence through Camera Trapping, in: Proceeding of National Biodiversity Seminar.
Silva, D.P., Vilela, B., Buzatto, B.A., Moczek, A.P., Hortal, J., 2016. Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol. Invasions. https://doi.org/10.1007/s10530-016-1204-4
Simmons, L.W., García-González, F., 2008. Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles. Evolution (N. Y). https://doi.org/10.1111/j.1558-5646.2008.00479.x
Simmons, L.W., Kotiaho, J.S., 2002. EVOLUTION OF EJACULATES: PATTERNS OF PHENOTYPIC AND GENOTYPIC VARIATION AND CONDITION DEPENDENCE IN SPERM COMPETITION TRAITS. Evolution (N. Y). https://doi.org/10.1554/0014-3820(2002)056[1622:eoepop]2.0.co;2
Simmons, L.W., Ridsdill-Smith, T.J., 2011. Ecology and Evolution of Dung Beetles, Ecology and Evolution of Dung Beetles. https://doi.org/10.1002/9781444342000
Srivathsan, A., Meier, R., 2012. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194. https://doi.org/10.1111/j.1096-0031.2011.00370.x
Stillwell, R.C., Blanckenhorn, W.U., Teder, T., Davidowitz, G., Fox, C.W., 2010. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-112408-085500
Székely, T., Freckleton, R.P., Reynolds, J.D., 2004. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. U. S. A. 101, 12224–12227. https://doi.org/10.1073/pnas.0404503101
Teder, T., Tammaru, T., 2005. Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x
Toh, K.X., 2019. Reproductive trait variation across populations of the dung beetle, Onthophagus cf. babirussa. National Universtiy of Singapore.
Waugh, J., 2007. DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays. https://doi.org/10.1002/bies.20529
Werner, M., Simmons, L.W., 2011. Ultrastructure of spermatozoa of Onthophagus taurus (Coleoptera, Scarabaeidae) exhibits heritable variation. Naturwissenschaften. https://doi.org/10.1007/s00114-011-0763-6
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Wickham, H., François, R., Henry, L., Müller, K., 2020. dplyr: A Grammar of Data Manipulation.
Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., 2014. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. https://doi.org/10.1093/bioinformatics/btt593