8. References
Andersson, M., 1994. Sexual selection. Princeton University Press.
Bickford, D., Ng, T.H., Qie, L., Kudavidanage, E.P., Bradshaw, C.J.A.,
2010. Forest fragment and breeding habitat characteristics explain frog
diversity and abundance in Singapore. Biotropica.
https://doi.org/10.1111/j.1744-7429.2009.00542.x
Birkhead, T.R., Pizzari, T., 2002. Postcopulatory sexual selection. Nat.
Rev. Genet. https://doi.org/10.1038/nrg774
Blanckenhorn, W.U., 2005. Behavioral causes and consequences of sexual
size dimorphism. Ethology.
https://doi.org/10.1111/j.1439-0310.2005.01147.x
Blanckenhorn, W.U., Kraushaar, U.R.S., Teuschl, Y., Reim, C., 2004.
Sexual selection on morphological and physiological traits and
fluctuating asymmetry in the black scavenger fly Sepsis cynipsea. J.
Evol. Biol. 17, 629–641.
https://doi.org/10.1111/j.1420-9101.2004.00693.x
Blanckenhorn, W.U., Meier, R., Teder, T., 2007. Rensch’s rule in
insects: Patterns among and within species, in: Sex, Size and Gender
Roles: Evolutionary Studies of Sexual Size Dimorphism.
https://doi.org/10.1093/acprof:oso/9780199208784.003.0007
Brook, B.W., Sodhl, N.S., Ng, P.K.L., 2003. Catastrophic extinctions
follow deforestation in Singapore. Nature.
https://doi.org/10.1038/nature01795
Cox, R.M., Calsbeek, R., 2010. Sex-specific selection and intraspecific
variation in sexual size dimorphism. Evolution (N. Y). 64, 798–809.
https://doi.org/10.1111/j.1558-5646.2009.00851.x
Culot, L., Bovy, E., Zagury Vaz-de-Mello, F., Guevara, R., Galetti, M.,
2013. Selective defaunation affects dung beetle communities in
continuous Atlantic rainforest. Biol. Conserv.
https://doi.org/10.1016/j.biocon.2013.04.004
Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T.,
Whittingham, L.A., 2007. Sexual selection explains Rensch’s rule of
allometry for sexual size dimorphism. Proc. R. Soc. B Biol. Sci. 274,
2971–2979. https://doi.org/10.1098/rspb.2007.1043
Eberhard, W.G., Rodríguez, R.L., Huber, B.A., Speck, B., Miller, H.,
Buzatto, B.A., Machado, G., 2018. Sexual selection and static allometry:
The importance of function. Q. Rev. Biol.
https://doi.org/10.1086/699410
Emlen, D. J., 1997. Diet alters male horn allometry in the beetle
Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc. R. Soc. B Biol.
Sci. https://doi.org/10.1098/rspb.1997.0081
Emlen, Douglas J., 1997. Alternative reproductive tactics and
male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera:
Scarabaeidae). Behav. Ecol. Sociobiol. 41, 335–341.
https://doi.org/10.1007/s002650050393
Emlen, D.J., 1994. Environmental control of horn length dimorphism in
the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc. R.
Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1994.0060
Emlen, D.J., Lavine, L.C., Ewen-Campen, B., 2007. On the origin and
evolutionary diversification of beetle horns. Proc. Natl. Acad. Sci. U.
S. A. https://doi.org/10.1073/pnas.0701209104
Esperk, T., Tammaru, T., Nylin, S., Teder, T., 2007. Achieving high
sexual size dimorphism in insects: Females add instars. Ecol. Entomol.
https://doi.org/10.1111/j.1365-2311.2007.00872.x
Fairbairn, D.J., 1997. Allometry for sexual size dimorphism: Pattern and
process in the coevolution of body size in males and females. Annu. Rev.
Ecol. Syst. https://doi.org/10.1146/annurev.ecolsys.28.1.659
Foottit, R.G., H. Adler, P., 2009. Insect biodiversity: science and
society., John Wiley & Sons.
https://doi.org/10.1002/9781118945582
Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A.E., Raga,
J.A., Aznar, F.J., 2018. Taxonomic status and epidemiology of the
mesoparasitic copepod Pennella balaenoptera in cetaceans from the
western Mediterranean. Dis. Aquat. Organ. 128, 249–258.
https://doi.org/10.3354/dao03226
Garcia-Gonzalez, F., Simmons, L.W., 2011. Good genes and sexual
selection in dung beetles (Onthophagus taurus): Genetic variance in
egg-to-adult and adult viability. PLoS One 6.
https://doi.org/10.1371/journal.pone.0016233
García-González, F., Simmons, L.W., 2007. Shorter sperm confer higher
competitive fertilization success. Evolution (N. Y).
https://doi.org/10.1111/j.1558-5646.2007.00084.x
Geller, J., Meyer, C., Parker, M., Hawk, H., 2013. Redesign of PCR
primers for mitochondrial cytochrome c oxidase subunit I for marine
invertebrates and application in all-taxa biotic surveys. Mol. Ecol.
Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138
Goh, T.G., 2014. PRELIMINARY SURVEY OF DUNG BEETLE DIVERSITY IN KRAU
WILDLIFE RESERVE, PAHANG, MALAYSIA. J. Wildl. Park. 28, 11–36.
Goh, T.G., Hashim, R., 2020. Trait responses of Peninsular Malaysian
dung beetles (Scarabaeidae: Scarabaeinae) to the loss of megafauna dung.
J. Trop. Ecol. https://doi.org/10.1017/S0266467419000270
Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R., 2003.
Biological identifications through DNA barcodes. Proc. R. Soc. B Biol.
Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
Howden, H.F., Nealis, V.G., 1975. Effects of Clearing in a Tropical Rain
Forest on the Composition of the Coprophagous Scarab Beetle Fauna
(Coleoptera). Biotropica 7, 77. https://doi.org/10.2307/2989750
Kijimoto, T., Costello, J., Tang, Z., Moczek, A.P., Andrews, J., 2009.
EST and microarray analysis of horn development in Onthophagus beetles.
BMC Genomics 10, 504. https://doi.org/10.1186/1471-2164-10-504
Knapp, M., Knappová, J., 2013. Measurement of Body Condition in a Common
Carabid Beetle, Poecilus cupreus : A comparison of Fresh Weight, Dry
Weight, and Fat Content . J. Insect Sci. 13, 1–10.
https://doi.org/10.1673/031.013.0601
Knell, R.J., 2009. On the analysis of non-linear allometries. Ecol.
Entomol. https://doi.org/10.1111/j.1365-2311.2008.01022.x
Kodric-Brown, A., Sibly, R.M., Brown, J.H., 2006. The allometry of
ornaments and weapons. Proc. Natl. Acad. Sci. U. S. A. 103, 8733–8738.
https://doi.org/10.1073/pnas.0602994103
Kudavidanage, E.P., Qie, L., Lee, J.S.H., 2012. Linking biodiversity and
ecosystem functioning of dung beetles in south and Southeast Asian
tropical rainforests. Raffles Bull. Zool. 141–154.
Larsen, T.H., Forsyth, A., 2005. Trap spacing and transect design for
dung beetle biodiversity studies. Biotropica 37, 322–325.
https://doi.org/10.1111/j.1744-7429.2005.00042.x
Lee, J.S.H., Lee, I.Q.W., Lim, S.L.H., Huijbregts, J., Sodhi, N.S.,
2009. Changes in dung beetle communities along a gradient of tropical
forest disturbance in South-East Asia. J. Trop. Ecol.
https://doi.org/10.1017/S0266467409990174
Leigh, J.W., Bryant, D., 2015. POPART: Full-feature software for
haplotype network construction. Methods Ecol. Evol. 6, 1110–1116.
https://doi.org/10.1111/2041-210X.12410
Lemon, J., 2006. Plotrix: a package in the red light district of R.
Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez,
V., Boehm, J.T., Machida, R.J., 2013. A new versatile primer set
targeting a short fragment of the mitochondrial COI region for
metabarcoding metazoan diversity: Application for characterizing coral
reef fish gut contents. Front. Zool. 10, 1–14.
https://doi.org/10.1186/1742-9994-10-34
Liao, W.B., Liu, W.C., Merilä, J., 2015. Andrew meets Rensch: sexual
size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo
andrewsi). Oecologia 177, 389–399.
https://doi.org/10.1007/s00442-014-3147-8
Lovich, J.E., Gibbons, J.W., 1990. Age at Maturity Influences Adult Sex
Ratio in the Turtle Malaclemys terrapin. Oikos 59, 126.
https://doi.org/10.2307/3545132
Lucigen, 2018. QuickExtractTM Plant DNA Extraction
Solution [WWW Document]. URL
https://www.lucigen.com/docs/manuals/MA150E-QuickExtract-DNA-Solution.pdf
McCullough, E.L., Buzatto, B.A., Simmons, L.W., 2017. Benefits of
polyandry: Molecular evidence from field-caught dung beetles. Mol. Ecol.
https://doi.org/10.1111/mec.14127
Meier, R., Wong, W., Srivathsan, A., Foo, M., 2016. $1 DNA barcodes for
reconstructing complex phenomes and finding rare species in
specimen-rich samples. Cladistics.
https://doi.org/10.1111/cla.12115
Meiklejohn, K.A., Wallman, J.F., Dowton, M., 2011. DNA-based
identification of forensically important Australian Sarcophagidae
(Diptera). Int. J. Legal Med. 125, 27–32.
https://doi.org/10.1007/s00414-009-0395-y
Moczek, A.P., 1998. Horn polyphenism in the beetle Onthophagus taurus:
Larval diet quality and plasticity in parental investment determine
adult body size and male horn morphology. Behav. Ecol.
https://doi.org/10.1093/beheco/9.6.636
Moczek, A.P., Emlen, D.J., 2000. Male horn dimorphism in the scarab
beetle, Onthophagus taurus: Do alternative reproductive tactics favour
alternative phenotypes? Anim. Behav.
https://doi.org/10.1006/anbe.1999.1342
Moczek, A.P., Emlen, D.J., 1999. Proximate determination of male horn
dimorphism in the beetle Onthophagus taurus (Coleoptera: Scarabaeidae).
J. Evol. Biol. 12, 27–37.
https://doi.org/10.1046/j.1420-9101.1999.00004.x
Moczek, A.P., Nijhout, H.F., 2004. Trade-offs during the development of
primary and secondary sexual traits in a horned beetle. Am. Nat.
https://doi.org/10.1086/381741
Muggeo, V.M.R., 2008. segmented: an R Package to Fit Regression Models
with Broken-Line Relationships.
Panhuis, T.M., Butlin, R., Zuk, M., Tregenza, T., 2001. Sexual selection
and speciation. Trends Ecol. Evol.
https://doi.org/10.1016/S0169-5347(01)02160-7
Parrett, A.J.M., Slade, E.M., Knell, R.J., 2021. Morph-specific
investment in testes mass in a trimorphic beetle , Proagoderus
watanabei. bioRxiv 2021.05.09.443318.
https://doi.org/10.1101/2021.05.09.443318
Parrett, J.M., Knell, R.J., 2018. The effect of sexual selection on
adaptation and extinction under increasing temperatures. Proc. R. Soc. B
Biol. Sci. 285. https://doi.org/10.1098/rspb.2018.0303
Parrett, J.M., Mann, D.J., Chung, A.Y.C., Slade, E.M., Knell, R.J.,
2019. Sexual selection predicts the persistence of populations within
altered environments. Ecol. Lett.
https://doi.org/10.1111/ele.13358
Parzer, H.F., Moczek, A.P., 2008. Rapid antagonistic coevolution between
primary and secondary sexual characters in horned beetles. Evolution (N.
Y). https://doi.org/10.1111/j.1558-5646.2008.00448.x
Piross, I.S., Harnos, A., Rózsa, L., 2019. Rensch’s rule in avian lice:
contradictory allometric trends for sexual size dimorphism. Sci. Rep. 9,
1–9. https://doi.org/10.1038/s41598-019-44370-5
Pomfret, J.C., Knell, R.J., 2006. Sexual selection and horn allometry in
the dung beetle Euoniticellus intermedius. Anim. Behav.
https://doi.org/10.1016/j.anbehav.2005.05.023
Priawandiputra, W., Tsuji, Y., Widayati, K.A., Suryobroto, B., 2020.
Dung beetle assemblages in lowland forests of pangandaran nature
reserve, West Java, Indonesia. Biodiversitas.
https://doi.org/10.13057/biodiv/d210210
Puniamoorthy, N., Schäfer, M.A., Blanckenhorn, W.U., 2012. Sexual
selection accounts for the geographic reversal of sexual size dimorphism
in the dung fly, sepsis punctum (diptera: Sepsidae). Evolution (N. Y).
https://doi.org/10.1111/j.1558-5646.2012.01599.x
Qie, L., Lee, T.M., Sodhi, N.S., Lim, S.L.H., 2011. Dung beetle
assemblages on tropical land-bridge islands: Small island effect and
vulnerable species. J. Biogeogr.
https://doi.org/10.1111/j.1365-2699.2010.02439.x
Rensch, B., 1959. Evolution Above the Species Level, Evolution Above the
Species Level. Methuen and Co.
Rossi, M.N., Haga, E.B., 2019. Testing rensch’s rule in Acanthoscelides
macrophthalmus, a seed-feeding beetle infesting Leucaena leucocephala
plants. Can. J. Zool. 97, 304–311.
https://doi.org/10.1139/cjz-2018-0063
Rudoy, A., Ribera, I., 2017. Evolution of sexual dimorphism and Rensch’s
rule in the beetle genus Limnebius (Hydraenidae): Is sexual selection
opportunistic? PeerJ. https://doi.org/10.7717/peerj.3060
Rufino, M.B.M., Magintan, D., Ngau, C., Abu Zahrim, I., Hamidi, J.,
Zainal, A.M., Idlan, R., Abdul Kadir, A.H., Dennis, T.C.Y., Fauzul Azim,
Z.A., 2010. Mammals of Temenggor Forest Reserve: Evidence through Camera
Trapping, in: Proceeding of National Biodiversity Seminar.
Silva, D.P., Vilela, B., Buzatto, B.A., Moczek, A.P., Hortal, J., 2016.
Contextualized niche shifts upon independent invasions by the dung
beetle Onthophagus taurus. Biol. Invasions.
https://doi.org/10.1007/s10530-016-1204-4
Simmons, L.W., García-González, F., 2008. Evolutionary reduction in
testes size and competitive fertilization success in response to the
experimental removal of sexual selection in dung beetles. Evolution (N.
Y). https://doi.org/10.1111/j.1558-5646.2008.00479.x
Simmons, L.W., Kotiaho, J.S., 2002. EVOLUTION OF EJACULATES: PATTERNS OF
PHENOTYPIC AND GENOTYPIC VARIATION AND CONDITION DEPENDENCE IN SPERM
COMPETITION TRAITS. Evolution (N. Y).
https://doi.org/10.1554/0014-3820(2002)056[1622:eoepop]2.0.co;2
Simmons, L.W., Ridsdill-Smith, T.J., 2011. Ecology and Evolution of Dung
Beetles, Ecology and Evolution of Dung Beetles.
https://doi.org/10.1002/9781444342000
Srivathsan, A., Meier, R., 2012. On the inappropriate use of
Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature.
Cladistics 28, 190–194.
https://doi.org/10.1111/j.1096-0031.2011.00370.x
Stillwell, R.C., Blanckenhorn, W.U., Teder, T., Davidowitz, G., Fox,
C.W., 2010. Sex differences in phenotypic plasticity affect variation in
sexual size dimorphism in insects: From physiology to evolution. Annu.
Rev. Entomol. https://doi.org/10.1146/annurev-ento-112408-085500
Székely, T., Freckleton, R.P., Reynolds, J.D., 2004. Sexual selection
explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl.
Acad. Sci. U. S. A. 101, 12224–12227.
https://doi.org/10.1073/pnas.0404503101
Teder, T., Tammaru, T., 2005. Sexual size dimorphism within species
increases with body size in insects. Oikos 108, 321–334.
https://doi.org/10.1111/j.0030-1299.2005.13609.x
Toh, K.X., 2019. Reproductive trait variation across populations of the
dung beetle, Onthophagus cf. babirussa. National Universtiy of
Singapore.
Waugh, J., 2007. DNA barcoding in animal species: Progress, potential
and pitfalls. BioEssays. https://doi.org/10.1002/bies.20529
Werner, M., Simmons, L.W., 2011. Ultrastructure of spermatozoa of
Onthophagus taurus (Coleoptera, Scarabaeidae) exhibits heritable
variation. Naturwissenschaften.
https://doi.org/10.1007/s00114-011-0763-6
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Wickham, H., François, R., Henry, L., Müller, K., 2020. dplyr: A Grammar
of Data Manipulation.
Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., 2014. PEAR: A fast
and accurate Illumina Paired-End reAd mergeR. Bioinformatics.
https://doi.org/10.1093/bioinformatics/btt593