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Summary

Deep learning models perform remarkably well for the same task under the
assumption that data is always coming from the same distribution. However, this is
generally violated in practice, mainly due to the differences in the data acquisition
techniques and the lack of information about the underlying source of new data.
Domain Generalization targets the ability to generalize to test data of an unseen
domain; while this problem is well-studied for images, such studies are signifi-
cantly lacking in spatiotemporal visual content – videos and GIFs. This is due to
(1) the challenging nature of misalignment of temporal features and the varying
appearance/motion of actors and actions in different domains, and (2) spatiotempo-
ral datasets being laborious to collect and annotate for multiple domains. We collect
and present the first synthetic video dataset of Animated GIFs for domain general-
ization, Ani-GIFs, that is used to study domain gap of videos vs. GIFs, and animated
vs. real GIFs, for the task of action recognition. We provide a training and testing set-
ting for Ani-GIFs, and extend two domain generalization baseline approaches, based
on data augmentation and explainability, to the spatiotemporal domain to catalyze
research in this direction.
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Learning, Explainability.

1 INTRODUCTION

Deep neural networks allow us to learn representations for
a variety of computer vision tasks when large amounts of
labeled data are available, but are susceptible to a domain shift,
when applied to unseen data of new domains at test time. Solu-
tions such as further fine-tuning the network on new data, are
not always efficient or trivial, and data collection and anno-
tation are expensive and time-consuming processes, setting
obstacles to the application and generalization of the existing
models to other domains.

Domain adaptation attempts to address these shortcomings,
by training a network on labeled data from a single1,2,3 or
multiple4,5,6,7,8 source domains, and on a related but differ-
ent target domain, to learn more transferable representations.
Since labeled data are often limited and hard to obtain,
unsupervised domain adaptation9,10,11,12,13 is of most interest,
aiming to leverage the few or no labeled samples. A more
complex problem is Deep Domain Generalization14,15,16,17, in
which the model is completely unaware of the target domain,
and does not see any samples from the target distribution dur-
ing training. These methods have been widely explored for
images, but the scarcity of work and applications in videos
serves as a motivation for our current approach.
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Our paper comes to address the crucial need to build high-
quality benchmark video datasets, in multiple domains, to
objectively measure the performance of these techniques, as
well-defined, rich in features, labeled datasets, allow for a uni-
versal evaluation of the different methods18,19,20,21,22. Given
the arduous real-world data collection and labeling, synthetic
data have grown in popularity, as they can be generated
in abundance, introducing a substantial domain gap when
compared to other domains’ data23,24,25,26,27.

Our focus is on videos, and, more specifically, on Ani-
mated GIFs28, in which this gap is identified in both space and
time (unlike in images, which suffer only from spatial domain
shift.) Temporal features can be misaligned between domains,
which makes the problem more challenging, and significantly
under-explored. GIFs are videos that are short in duration,
designed to repeat (or re-play), and do not include audio. They
typically illustrate a certain action, and have the ability to
express a broad spectrum of emotions, aiming at performance
of affect and conveyance of cultural knowledge29. GIFs are
created by sampling frames from a video and are extensively
used nowadays on the internet, especially in social networks
and online communication30,31. Animated GIFs are syntheti-
cally generated and tend to posses exaggeration or anticipation
of action motion. In this work, we aim to answer the following
questions: How large is the domain gap between (1) videos
and GIFs, (2) animated and real GIFs?

We propose the first synthetic Domain Generalization Ani-
mated GIFs dataset, Ani-GIFs, designed for the task of action
recognition in videos. To our knowledge, no other synthetic
GIFs dataset exists designed explicitly for spatiotemporal
Domain Generalization. Figure 1 presents sample examples
from Ani-GIFs, and contrasts it with GIFs of the real domain
from the Kinetics GIFs dataset. We evaluate domain general-
ization baselines on Ani-GIFs using an I3D action recognition
model32.

In order to verify the model robustness on our benchmark
and the suitability of the dataset for testing domain adaptation
and domain generalization methods, we employ the Data Aug-
mentation approach proposed in33 for images and extend it to
GIF (video) frames. We define a series of content-preserving
frame transformations (e.g. contrast enhancement, sharpness/-
color adjustment), which do not alter the content of the frames,
but only the way it is presented. Starting with the identity
transformation, we apply a set of concatenated data transfor-
mations, given as tuples of a specific size, to the training data,
in an alternating process of augmenting the samples with a
uniformly selected tuple from the set, and training the model
to choose the one among those applied which maximizes the
model loss, using a random-search algorithm for selection, so
as to strengthen our model.

We also extend an explainability-based domain gener-
alization technique initially proposed for images34 to the
spatiotemporal domain. Explainability, i.e. using the correct
evidence for prediction is utilized to bridge the gap between
the real and the synthetic domains. The black-box nature of
deep neural network models creates highly non-linear fea-
ture representations that make it difficult to understand what
causes models to make certain classification decision. We use
the extended saliency-based explainability approach to iden-
tify regions in the image that contribute most to the models
predictions. We leverage these spatiotemporal saliency tubes
to guide the model in focusing on image regions where a
particular action is being performed, as opposed to focusing
on domain-specific details that do not necessarily generalize
across domains.

To summarize, our contributions are: providing a spatiotem-
poral dataset, a training and testing setting, a spatiotempo-
ral baseline, an augmentation-based spatiotemporal training
strategy, and an explainability-based spatiotemporal training
strategy, to enable research addressing the challenging domain
generalization problem.

Our paper is organized as follows: First, we discuss the
related work on GIF and video dataseta, state-of-the-art meth-
ods for domain generalization, domain adaptation, data aug-
mentation (Section 2), and explainability. We then describe
our dataset and the processes of collection and annotation
(Section 3). We analyze the selected baseline methods for the
task of action recognition (Section 4) and evaluate the per-
formance presenting the experimental results of our approach
(Section 5), before concluding our work (Section 6). Our
dataset and baseline implementations will be made publicly
available upon acceptance.

2 RELATED WORK

Video Domain Adaptation. The problem of domain adap-
tation in video action recognition is still under-explored,
despite the extensive work in this area for image classifica-
tion and object recognition. Two approaches are introduced
in36, Action Modeling on Latent Subspace (AMLS), which
models the videos as points or sequences of points in a latent
space, and uses adaptive kernels to learn from source domain
points to target domain point sequences, and Deep Adversarial
Action Adaptation (DAAA), an adversarial learning frame-
work built to minimize the domain shift. In a most recent
work,37, a variety of alignment and learning techniques are
being proposed or extended to minimize domain discrepancy
in videos along the spatial and temporal directions: TemPool-
ing, TemPooling with Adversarial Discriminator, TemRela-
tion, TA2N and TA3N. In38, the authors propose a generative
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FIGURE 1: This figure highlights the spatiotemporal domain
gap between Ani-GIFs, our proposed benchmark dataset, and
GIFs of the real domain - from the Kinetics dataset35 -
for three classes: Bench Pressing, Brushing Teeth and Break
Dancing. This illustrates the domain gap between real vs.
animated frames.

adversarial network, VideoGAN, which uses an X-shape gen-
erator to preserve the intra-video consistency during transla-
tion of video data across different domains, and a color-based
loss, to tune the color distribution of each translated frame and
bridge the domain gap.

Video Domain Generalization. In Domain Generalization
methods, a relaxed approach is adopted in learning distri-
butions of source domains to generalize to unseen domains,
without prior knowledge of the target distribution. Several
techniques have been introduced to solve this problem with
deep models14,16,39,40, and with important results for a variety
of datasets and data types, but the area is significantly under-
explored with respect to video datasets, due to the complexity
of entangling spatial and temporal domain shifts. In41, the
only recent prominent work in this area, the authors present
the Adversarial Pyramid Network (APN), a network captur-
ing the videos’ local-, global-, and multi-layer cross-relation
features.

Video Domain Adaptation - Generalization Datasets.
Several existing datasets built for Video analysis tasks are

or could be extended to solve the problem of domain shift
in action videos, but few new video datasets have been
introduced exclusively for the task of Domain Adaptation
or Generalization for Video Action Recognition, and are all
depicting real actions. The Gameplay dataset37 is a col-
lection of videos of length 1-10 seconds in 91 categories
from two video games. Selecting 30 overlapping categories
between Gameplay and Kinetics35,42, the authors create the
Kinetics-Gameplay dataset, observing a significant domain
shift in the distributions of virtual and real data. In the
same work, all relevant and overlapping categories between
existing video datasets UCF10143 and HMDB5144 are com-
bined in UCF-HMDBfull, a large-scale collection of videos
of length 1-33 seconds in 12 classes, used in evaluat-
ing several state-of-the-art video Domain Adaptation meth-
ods45,46,47,48. For Domain Generalization, in41 the authors
propose four video Domain Generalization benchmarks, UCF-
HMDB, Something-Something, PKU-MMD, and NTU, built
from existing action recognition videos, in which they divide
the source and target domains according to different datasets,
consequences of actions, and camera views, to test their
method’s performance. In parallel, datasets with a focus on
more specific tasks such as autonomous driving49 and med-
ical diagnosis50 have been introduced, allowing for domain
adaptation evaluation in a variety of sub-domains.

GIF Datasets and Analysis Techniques. There is an abun-
dance of GIF datasets collected and available in the literature.
TGIF51 is a dataset of 100K animated GIFs from Tumblr and
120K natural language descriptions obtained via crowdsourc-
ing, serving as a benchmark for the task of visual content
captioning, namely in generation of natural language descrip-
tions for animated GIFs or video clips. In Vid2GIF52, a robust
framework, RankNet, is proposed, to learn the content in
videos most frequently selected for creating popular animated
GIFs, and produce a ranked list of segments according to
their suitability, generalizing this ability to other tasks such as
video highlight detection. To this purpose, a dataset of 120K
user generated animated GIFs with their corresponding video
sources is collected, that is one to two orders of magnitude
larger than existing datasets in the video highlight detection.
GIF Super-Resolution53 is an approach proposed to tackle the
problem of slow download speed of GIFs, by using the first
and last high-resolution frames of a GIF and a low-resolution
representation of it, to reconstruct a GIF easier to process. To
this purpose, the authors create GIFSR, a dataset of 1000 GIFs
in 5 categories: Emotion, Action, Scene, Animation and Ani-
mal. In GIFGIF+54, an emotions GIF dataset is introduced,
consisting of 23,544 GIFs over 17 emotion categories, as the
authors propose a novel method for animated GIFs collection,
to explore the problem of automatic analysis of emotions in
GIFs. Similarly, in55, 4,000 GIFs are collected, with scores for
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17 discrete emotions, and are used in a computational analy-
sis and evaluation of emotions prediction on animated GIFs.
However all these datasets were designed to be used for tasks
other than Domain Adaptation or Generalization.

Data Augmentation. Data Augmentation is widely used
as a model domain generalization improvement technique in
computer vision, to obtain more information from the train-
ing dataset, and reduce the gap between this and the unseen
validation set, preventing the model from performing poorly
in evaluation56. When applied on image datasets, data aug-
mentation techniques exploit the spatial properties of the data,
and can range from image manipulations, such as geometric
or color transformations, rotation, or blurring57,58,59, to feature
space augmentation60, adversarial training techniques61,62,63,
and GAN-based approaches64. Expanding the objective to
videos, the proposed methods augment the dataset in both
spatial and temporal dimensions, in domain generalization
approaches for tasks such as semantic segmentation65 and
video action recognition41.

Explainability. Explainability techniques were initially
developed as a diagnostic tool to visualize and explain a
model’s behavior. GradCAM66 is a gradient-based approach
that uses gradients flowing into a target layer to compute
coarse localization maps at that layer. In recent work on
explainability, Zunino et al. 34 use an explainability-based
training strategy on images to boost model performance.
We extend this to the spatiotemporal domain by computing
saliency tubes using GradCAM66 in space and time.

3 OUR DATASET: ANI-GIFS

In this section, we introduce our benchmark dataset together
with conducted collection and filtration procedures. Our
dataset focuses on actions occurring in Animated GIFs, in
mirror classes of the Kinetics-600 dataset.

We propose Ani-GIFs as a domain generalization bench-
mark, acting as the target domain in a Domain Generalization
approach from a source domain of actions performed by
human characters, Real, to a target domain of actions per-
formed by animated/cartoon/graphical characters, Synthetic.
As the Real domain dataset, we are using the GIFs from the
existing Kinetics dataset35, and we collect the GIFs in the
Synthetic Domain, forming the proposed dataset, Ani-GIFs.

Data collection. We created the Ani-GIFs dataset by col-
lecting animated GIFs using the Bing search engine. For each
action class in the Kinetics-600 dataset, we set up an auto-
mated script to search and download. Three search terms
keywords were used, the first being ‘animated’ or ‘cartoon’
or ‘graphics’, the second being the action class, and the third
being ‘GIF’. For example, for the action class ‘Applauding’,

we performed three separate searches: ‘animated Applauding
gif’, ‘cartoon Applauding gif’, and ‘graphics Applauding gif’.
We then collected GIFs from each separately. Each of the three
collection processes, for all 600 classes, took approximately
100 hours to complete.

Filtration and Annotation. After collecting the animated
GIFs, we performed extensive filtering. The first stage of fil-
tering was combining search results of animated, cartoons,
and graphics and removing duplicates. The second stage was
performed manually by four graduate students. This stage
involved ensuring a downloaded video was indeed: (1) a GIF,
(2) performed by an animated, cartoon or graphics character,
and (3) depicting the exact class action in Kinetics-600. Figure
2 provides examples of animated GIFs collected which were
rejected or accepted during the filtering process.

Correspondence with Kinetics-600. Ani-GIFs is designed
to have one-to-one correspondence with the classes of
Kinetics-600, to act as a domain generalization benchmark.
60 classes from Kinetics-600 did not have corresponding ani-
mated GIFs after filtration. Examples for such classes that do
not typically have associated animated GIFs, are: Arranging
flowers, Changing Oil, Curling Hair, Feeding Goats, Making
Jewellery, Sharpening Knives, Putting On Sari. Therefore, the
resulting Ani-GIFs dataset has 536 classes, and 17,095 ani-
mated GIFs in total, all intersecting with Kinetics-600. Figure
4 shows the number of GIF samples per class in the Ani-GIFs
dataset for the top-frequency 100 classes.

Subset for Domain Adaptation. While our dataset is
designed for the task of GIF domain generalization, we iden-
tify a subset of Ani-GIFs for the task of GIF domain adaptation
for action recognition. The subset consists of the forty classes
having the highest frequency. This would allow for standard
testing of domain adaptation, i.e. from Real to Animated GIFs
and from an animated GIF to Real.

4 SPATIOTEMPORAL DOMAIN
GENERALIZATION

In this work we address the challenging problem of single-
source domain generalization for spatiotemporal GIFs. At
training time, we only have access to a single source domain,
and at test time we have access to a different target domain that
is unseen at training time. We focus on the real videos/GIFs
source domain and the animated GIFs target domain. While
the problem of attributing an action to an animated spatiotem-
poral progression is trivial for humans, it is a significantly
challenging task for machine learning models that have only
been trained on real video data. The gap between the two
domains in this problem setting is large. The two domains
exhibit significant variations in color templates, as animated
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FIGURE 2: In this figure we can see that first GIFs, in Blow-
ing out candles and Bending metal classes, were rejected
as the actions are not performed by any character. We also
rejected GIFs in the Shopping class, as the action was not
relevant to the class (i.e. no shopping action is observed).

GIFs tend to only have a few colors in all frames, while
real videos or GIFs have a significantly richer color template.
Moreover, animated GIFs tend to have a smaller level of detail,
in contrast to real videos or GIFs. At the same time, animated
GIFs exhibit a faster speed for actions than real videos or
GIFs, i.e. while the difference in motion between subsequent
frames in real videos is usually small even after sub-sampling,
the difference between subsequent frames in GIFs is signif-
icantly larger. We demonstrate how large this domain gap is
experimentally in Section 5.

To reduce this huge domain gap, we use a GIF version of
the Kinetics dataset - Kinetics GIFs35 - as the source domain
in our baseline experiments. Samples in Kinetics GIFs are
GIFs produced from original Kinetics videos, which have a
fixed length of 40 frames and a significantly smaller resolu-
tion, typically of 400 by 400 pixels. After training the model
on Kinetics GIFs we evaluate it on Ani-GIFs to obtain a base-
line performance, that are then compared to applying Domain
Generalization techniques.

We also use the AVA-Kinetics Localized Human Actions
Video Dataset67 to extend the explainable training strategy of
Zunino et al. 34 on images to the spatiotemporal domain to
achieve better evidence for domain generalization. The dataset
is an extension of the Kinetics dataset with AVA-style bound-
ing boxes and atomic actions, which makes it suitable as a
train set in our explainability-based approach. AVA-Kinetics
has more than 230k clips labeled with one of 80 AVA action
classes, which are manually mapped to their corresponding
top related Kinetics classes.

Data Augmentation Approach. We extend the work of
Volpi et al. on images33 and develop a spatiotemporal data
augmentation approach for animated GIFs. Data Augmenta-
tion is a very powerful technique to create additional repre-
sentations and increase the generalization ability of a model to
domains that are unseen at training time. We artificially inflate
the dataset by applying transformations in space and time. Fol-
lowing Volpi et al. 33, we apply a set of image transformations
 from the Python library Pillow, to compute the augmented
versions of each GIF. We consider transformation tuples of
length four, i.e. four transformations are applied concurrently
to a GIF of the training set for every augmentation. The pool
of transformations is (intensity in parenthesis): auto-contrast
(20), sharpness (20), brightness (20), color (20), contrast (20),
gray scale conversion (1), R-channel enhancer (30), G-channel
enhancer (30), Bchannel enhancer (30), solarize (20).

Starting with a model pre-trained on the Kinetics-400
dataset, and the transformations set  containing only identity
transformations, we perform a fine-tuning process to identify
the tuple of transformations that the model is most vulnera-
ble to. Vulnerability of the model is defined to be the tuple of
transformations that leads to the highest value of cross-entropy
loss when applied to the input batches. At every iteration of
the training process, we randomly sample a tuple from our set
of vulnerable transformations  , and apply those to our train-
ing batches with their associated intensity values. We train
our model using Stochastic Gradient Descent to minimize the
cross-entropy loss. The transformations set is updated every
200 training iterations, using Random Search.

The identification process targets adding one tuple of trans-
formations to the set of known vulnerable transformations 
using a Random Search Approach. At every iteration of the
Random Search, four transformations are randomly sampled
with repetition, from the pool of transformations at random
intensity values to create a tuple. While extending the aug-
mentation approach to account for temporal shifts, all four
transformations of the tuple are applied to all frames of the
input batches. This ensures that the same transformation is
performed on all frames of the video to obtain a single aug-
mented instance. The vulnerability of the model to this tuple
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of transformation is then determined by evaluating the cross-
entropy loss. At the end of 50 iterations of the searching
process, the tuple of transformations that led to the highest
cross-entropy loss is identified and added to our set of vul-
nerable transformations  , along with its intensity value. In
subsequent iterations of the standard training process, this
identified tuple of transformations is available to be randomly
sampled from our set  and applied to the training batches
for training with the Adam optimizer. In Figure 3, we show
images after different tuples of transformations applied to
frames that were equally sampled from a video in class ‘Yoga’
taken from the Kinetics GIFs dataset. Transformations are
applied after Batch Normalization.

Explainability Approach. We extend and apply a saliency-
based spatiotemporal explainability approach34 on our
dataset. At training time, saliency maps for the ground-truth
class are periodically computed as saliency tubes in space and
time. As training progresses, we have access to these regions
as bounding box co-ordinates for the input batch. Saliency
maps are computed using the GradCAM66 algorithm after the
last block of the feature extactor layer l of the model. We
estimate saliency on the last spatial layer as it models higher
level spatial patterns, that are most co-related with the target
label. If the peak saliency does not fall within the ground-truth
region, we enforce that by utilizing a multiplicative binary 3D-
mask (saliency tube) that is applied to the forward activations
of layer l. This mask contains a value of 1 for pixels that lie
withing the spatiotemporal region of interest and 0 otherwise.
We run the saliency estimation periodically every 200 batches,
and train using the Adam optimizer.

5 EXPERIMENTS

In this section, we start by experimentally demonstrating the
huge domain gap between real videos vs.GIFs of the same
videos, and real videos vs.animated GIFs. We then demon-
strate how spatiotemporal domain generalization can reduce
the gap in the latter scenario.

Experimental Setup. We use the I3D model architecture32

as the first baseline for the spatiotemporal training and testing
of our videos and animated GIFs. While training, we per-
form certain preprocessing on the input frames that aims to
improve quality by suppressing unwanted noise in the frames,
and enhancing important features. Animated GIFs are pre-
processed frame-wise - each frame was rescaled such that its
shorter side has length of 224 pixels. Realignment was fol-
lowed by center cropping, resulting in a frame of size 224
by 224. Hence, during training, each training sample has a
fixed size of (40, 224, 224, 3). The number of frames in Ani-
GIFs samples may though vary, so we upsampled frames for

Original Frames

Frames after preprocessing

Autocontrast, Solarize, Brightness, Autocontrast

Greyscale, Sharpness, Renhancer, Solarize

Renhancer, Solarize, Autocontrast, Benhancer

Sharpness, Genhancer, Color, Greyscale

FIGURE 3: This figure presents frames sampled equally from
a video in class ‘Yoga’. The first set of frames belong to the
Kinetics GIFs dataset, and are followed by the frames after
Batch Normalization is applied. The subsequent set of images
depicts the frames after tuples of transformations, chosen by
the Random Search approach, are applied to them.

animated GIFs that had less than 9 frames, and subsampled
frames of animated GIFs that had more than 60 frames, such
that the chosen frames have equal spacing in time. All values
were rescaled to the [-1, 1] interval.

The models were trained on four Nvidia TITAN V GPUs
for 60 epochs with a batch size of 32 samples, using Adam
optimizer68 with the following hyper parameters: learning rate
= 10−4, �1 = 0.9, and �2 = 0.999. We start with an I3D model
that is pre-trained on Kinetics videos69.

While extending the data augmentation approach to ani-
mated GIFs, we started with the model trained on the Kinetics
GIFs using the I3D model architecture. The model was fur-
ther fine-tuned with the Random Search approach and Adam
optimizer68. The fine tuning process was performed on three
Nvidia TITAN V GPUs, in batches of eight animated GIFs. The
model was tuned for 600 Random Search iterations, using the
following hyper parameters: learning rate = 10−4, �1 = 0.9,
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FIGURE 4: The 100 most-frequent classes after filtration of the Ani-GIFs dataset. Classes that have the highest frequency are
those that belong to actions with a large number of associated GIFs, e.g. common actions and emotions. The forty classes of
highest frequency are identified as a subset for GIFs domain adaptation.

Source (Train)
Domain

Target (Test)
Domain

Spatiotemporal
Augmentation

Test Accuracy (%)
Top-1 Top-5

Kinetics Kinetics 8 71.70 90.40
Kinetics Kinetics GIFs 8 21.12 40.86

Kinetics GIFs Kinetics GIFs 8 23.10 46.28
Kinetics GIFs Ani-GIFs 8 1.95 6.09
Kinetics GIFs Ani-GIFs 4 2.91 8.44

TABLE 1: Our Experimental Results. Top-1 and top-5 test accuracies of our baseline algorithm are given, from various training
on different testing domains. The difference in the reported accuracies between rows one and two demonstrates the existing
domain gap from Kinetics to Kinetics GIFs, and in rows three and four the domain shift between Kinetics GIFs and Ani-GIFs,
with the latter dataset used in its entirety for measuring accuracy while testing. The increase from row four to five shows the
gain in accuracy yielded by extending and applying the spatiotemporal data augmentation algorithm for Domain Generalization
on the training dataset, Kinetics GIFs.

and �2 = 0.999. We used the same upsampling and subsam-
pling criteria as in the training process, which resulted in every
animated GIF having a fixed shape of (40, 224, 224, 3). Every
frame was similarly preprocessed with realignment, center
cropping and rescaling. In order to augment the animated
GIFs, we made sure the same transformations are applied to
the entire batch of input GIFs, resulting in a batch with a shape
of (8*40, 224, 224, 3).

Experimental Results. The results of our experiments are
presented in Table 1. We begin with two experiments demon-
strating the domain gap within videos, and also between
videos and GIFs, both from the same (Real) domain. The first
row of the table reports the results of training and testing
processes on Kinetics 600 real videos35, with a 71.7% top-1

accuracy, and the second row reports the outcome of test-
ing the same model on the GIFs version of the Kinetics 600
dataset70, similarly in the Real domain.

We mark the significant accuracy drop, to a 21.12% top-
1 accuracy, which we can attribute to the frames’ sampling
process in GIFs, or the difference in GIFs frames’ speed, in
comparison to videos, between the source and target domains,
in the second variation of the model application. We then train
a model on the Kinetics GIFs dataset70 and test on GIFs from
the same dataset and, hence, domain. This, as we can observe,
increases the model performance to a higher top-1 accuracy
of 23.1%, compared to the previous experiment, as expected
when training and testing within the same domain. This result
is given in Row 3 of Table 1, while Rows 4 and 5 show how our
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domain generalization baseline performs, when trained on the
Kinetics GIFs dataset and tested on the Ani-GIFs dataset, with
and without data augmentation. We can see how our proposed
data augmentation approach gives an absolute improvement of
0.96% in the top-1 accuracy and 2.35% in the top-5 accuracy
and can serve as an initial baseline for Ani-GIFs.

Explainability for Spatiotemporal Domain Generaliza-
tion. We utilize explainability as a visualization tool for
evaluating the generalization capability of models for domain
generalization on spatiotemporal data. We show that a model
is able to generalize an action across various domains, in our
case real vs. animated GIFs for the task of action recognition.

Typically, classification accuracy is reported to summarize
the recognition capability of models on classification datasets.
However, classification accuracy alone is not indicative as to
whether the models have learnt to generalize an action across
the source and target domains. For example, it may be that the
model is correctly classifying a sample based on the wrong
cues. Figure 5 illustrates examples of poor generalization abil-
ity of the baseline model from the source, AVA-Kinetics, to
the target domain, Ani-GIFs, compared against the saliency
model trained with domain adaptation using the explainability
approach. We use GradCAM to visualize saliency on different
GIFs from the Ani-GIFs dataset.

6 CONCLUSION

We introduce the first Domain Generalization GIFs Dataset,
Ani-GIFs, designed for the task of video action recognition
in a synthetic domain, which consists of 536 classes, mir-
roring the classes in the real domain of the Kinetics GIFs
dataset. We discuss the collection and filtration process, pro-
vide the results of evaluating a domain generalization baseline,
trained on Kinetics GIFs, and an explainability-based domain
generalization model, trained on the AVA-Kinetics Localized
Human Actions Video Dataset, and also evaluate the base-
lines after extending and applying an existing image data
augmentation technique. Our results show that it is evident
that the domain gap in the temporal space is a great challenge.
Current domain generalization techniques for images, when
extended to Videos/GIFs, showcase a performance improve-
ment, though small enough to highlight the need for better
methods tailored towards the temporal dimension. Our dataset
serves as a benchmark to catalyze the development and testing
of state-of-the-art domain generalization techniques tailored
for videos and animated GIFs, and as a motivation for fur-
ther exploration and enrichment of the existing GIF datasets,
to span different domains for the tasks of domain adaptation
and domain generalization.

Baseline Model, Predicted: Marching

Saliency Model, Predicted: Motorcycling

Baseline Model, Predicted: Arm Wrestling

Saliency Model, Predicted: Reading Book

Baseline Model, Predicted: Break Dancing

Saliency Model, Predicted: Break Dancing

Baseline Model, Predicted: Cheerleading

Saliency Model, Predicted: Cheerleading

FIGURE 5: This figure presents the visualizations of pre-
dictions of four different GIFs from the AniGIFs dataset
(GIF frames equally sampled) demonstrating evidence of
the baseline model without domain generalization and the
model trained with the explainability-based domain general-
ization approach (Section 4). The top two examples show that
for some GIFs the explainability approach boosts both the
model accuracy and generalization ability. And the bottom
two examples show that even when making a correct predic-
tion, the baseline model does not use discriminative cues to
make that prediction. In contrast, the model trained with the
explainability-based domain adaptation accurately highlights
the correct action-specific cues.
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