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Abstract

COGLE (COmmon Ground Learning and Explanation) is an explainable artificial intelligence (XAI) system for autonomous drones that deliver supplies in mountainous areas to field units. The drone missions have risks that vary with topography, flight decisions, and mission goals in a simulated environment. Users must determine which AI-controlled drone is better for a mission. Narrative explanations identify the advantages of a drone’s plan (“What?”) and reasons that the better drone is able to do them (“Why?”). Visual explanations highlight risks from obstacles that users may have overlooked (“Where?”). A model induction user study showed that post-decision explanations produced a small effect on the participants’ abilities to identify the better of two imperfect drones and their plans for a mission, but they did not teach participants to judge the multiple success factors in complex missions as well as the AI pilots. In a decision support variation of the task, users would receive pre-decision explanations to help them to decide when to trust the XAI’s decision. In a fielded XAI application, every drone available for a mission may lack some competencies. We created a proof-of-concept demonstration of automatic ways to combine knowledge from multiple imperfect AIs to get better solutions that the individual AIs do not find on their own.
This paper reports on the research challenges, technical approach, and findings of the project and also reflects on the multidisciplinary journey that we took.









1. Introduction 
COGLE (COmmon Ground Learning and Explanation) is an explainable artificial intelligence (XAI) system for autonomous drones that deliver supplies in mountainous areas to field units. This paper reports on the research challenges, technical approach, and findings of the project. 
This paper is also a reflection on the multidisciplinary journey of the project. Understanding how to create AIs that learn to perform difficult tasks and explain themselves to people has required us to combine ideas from multiple fields. When researchers from different disciplines come together around a problem, they need to build bridges to explore the insights and opportunities brought by their different perspectives. Different fields value and ask different questions and pursue different insights. In XAI, basic questions include: What must be learned in order to perform a task? What did an AI learn and what did it miss? What is an appropriate way for people and AIs to work together? Who are the explanations for and what should they explain? Such questions do not reside within the boundaries or research goals of one discipline. During the course of our project, our understanding on such questions and related challenges grew incrementally. To reach the roots of the problems we needed to evolve our hypotheses, methods, and technology, and to pivot in our approach.

2. The “Two Cultures” of XAI
The first generation of artificial intelligence (AI) systems showed that computers could solve problems that had previously required human intelligence. However, these systems were expensive to build and maintain, and they were limited to prescribed and narrow subject areas. 
In the wake of results from a second generation of AI systems based on deep machine learning, the Defense Advanced Research Projects Agency’s (DARPA) announcement [1] of a research program in eXplainable Artificial Intelligence (XAI) crystallized public awareness and interest in explainability. Deep learning systems were equaling or outperforming earlier systems in several applications including computer vision, language translation, and game playing. The announcement stated that systems were expected eventually to “perceive, learn, decide, and act on their own” in other applications. However, these machine-learning based AI systems could not explain their reasoning or limitations to their human users. This lack of transparency to human understanding is an impediment to deploying machine learned AIs, especially in critical applications. DARPA’s research program proposed to focus on developing new explainable machine learning techniques. It would foster technology and approaches for future AI systems that users could appropriately trust and manage. Without XAI, the adoption and acceptance of machine learning-based AI systems would be hampered. 
AI systems are more complex and less interpretable than ever. Several cross-disciplinary researchers have called attention to extensive studies of explanation in fields outside of AI. Orin Biran and Courtenay Cotton distinguished [2] two main bodies of work: explanation systems based on interpretable models and systems that interpreted or justified predictions. Surveying findings from philosophy, cognitive psychology, and the social sciences, Tim Miller suggested [3] that understanding how people explain to each other should be a natural starting point for explainable artificial intelligence, but that computer science researchers had mostly ignored that research and focused instead on interpretability [4]. Interpretability approaches typically do not model the thought processes and explanation needs of their intended users.
Roughly, the idea of interpretability is that AI systems should represent AIs as decision processes in the form of explanations that are easy to understand. Interpretability researchers present a model class such as sparse linear models [5], decision trees or Bayesian rule lists. They demonstrate that their models accurately describe the behavior or reasoning of a complex process for an application at least in piecewise regions. They present studies showing that the explanations enable users to accurately assess trust within those regions. However, interpretable models typically beg questions of scale, which is a major issue when models can have thousands or millions of regions. 
Finale Doshi-Velez has argued [6] that there is little consensus on what is meant by interpretability or how it should be measured. She proposed steps to understand the dimensions and limitations of interpretability. For example, in the context of validating systems in complex environments, a complete end-to-end system testing approach is almost never feasible because a complete list of all of outputs or all of the ways that the system may fail cannot be compiled. In other cases, a system may fail to optimize its incomplete objectives because there are poorly understood trade-offs between competing objectives. 
Robert Hoffman et al. published a comprehensive series of articles about explanation, describing theoretical foundations [7] from different disciplines, empirical foundations [8] causal approaches [9], and deep networks [10]. They asked how people actually explain things, and give examples of causal explanation from philosophy, psychology, and computation. An essay [11] by Peter Lipton is an example of how philosophical literature about explanation focuses on the logic of causes. Tania Lombrozo’s study [12] of explanation and abductive inference is an example of how psychological research illuminates multiple human purposes for explanation. 
Multi-disciplinary research requires the difficult work of building conceptual bridges between fields. Five decades before XAI at Cambridge University, Charles Percy Snow gave a lecture that was subsequently published as Two Cultures and the Scientific Revolution [13]. This book was widely discussed, cited, and still being reviewed [14] fifty years later. Snow attended gatherings of people who were highly educated in the humanities. He noticed that people in these gatherings often characterized scientists and technologists as unfamiliar, disinterested, and illiterate about culture and literature. In analogous gatherings of scientists and engineers, he observed a mirror-image assessment. The scientific gatherings characterized those educated mainly in the humanities as unfamiliar and ignorant about the basic concepts of science. Snow suggested that the intellectual life of western civilization was divided in this way into two cultures. Since Snow’s book was published, many leading universities have created multi-disciplinary institutions [15] specifically to bring together diverse perspectives to understand and solve difficult and important problems.
Analogous to Snow’s observations, the XAI research community might be characterized broadly as having “two cultures” with researchers in machine learning and those in the social and cognitive sciences. In more detail, the disciplines engaged in XAI research include subfields of machine learning, symbolic artificial intelligence, human-machine interaction, experimental psychology, cognitive psychology, and others. Anticipating the need for multidisciplinary approaches, DARPA’s XAI program included multi-disciplinary teams as research performers and an advisory team to report on psychological models of explanation. 
Our progress on COGLE required contributions from several disciplines. As additional XAI research challenges were identified, we used a “radical research” approach [16] to bring in additional people and disciplines to get to the root of the problems.

3. Challenges from COGLE’s Domain

All missions in COGLE take place in a simulated world that includes mountainous and forested settings, bodies of water, and structures including towers, buildings, and roads. The rules of the simulated world mimic our familiar real world.
Figure 1 shows a mission map and a flight plan for an AI-controlled drone. The yellow stick figure shows where the hiker is. The curved arrow shows a drone’s flight plan. The timeline below the map shows the altitude of the drone along its flight plan. Symbols on the maps indicate objects. The pointy symbols are high mountains that are too high to fly over. The curve-topped symbols are low and high foothills. Green areas are meadows. The tree-shaped symbols represent forests. 


[image: ]
Figure 1. Example map for a mission in COGLE's domain.
The early versions of COGLE were based on the high-fidelity simulation model of ArduPilot [17]. Using a realistic simulator was intended to simplify the path to operationalizing COGLE to flying actual drones. ArduPilot SITL simulates low-level craft actions. The computational resources required for ArduPilot’s detailed simulations proved unwieldy and unnecessary for strategic planning of missions. Low-level flight control is already widely implemented in commercial autopilots and in radio-controlled hobbyist drones. In order to focus COGLE’s task on mission planning and to reduce the computational requirements of machine learning, we developed a lower precision simulation model (“ArduPilot Light”) with five levels of altitude and eight unique directions in a turn-based grid world. We modeled the programming interface (API) of ArduPilot Light on the API of ArduPilot SITL, in order to preserve a path to operationalizing results. 
Figure 2 illustrates the coarse granularity of COGLE’s simulation world for mission planning. When drones fly too close to obstacles that are at the same altitude or higher, they risk crashing. If a drone releases its package above forests, high foothills, or water, then its package may be damaged. A package may become inaccessible floating down a river, getting hung up in trees, or landing on high foothills. Altitude matters when drones drop packages. The higher a drone flies the further its packages may drift during the parachute drop.
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Figure 2 Illustrations from COGLE's flight school showing illustrating the model with 5 discrete altitudes and the increasing spread of the drop zone when packages are dropped from different altitudes.
Using an early version of COGLE, we carried out self-explanation studies with users, as described [18] by Gary Klein, Robert Hoffman, and Shane Mueller among others. The AI pilots used for these studies were based on our early deep reinforcement learner (RL). They exhibited surprising and unexplained looping behaviors even on very simple missions. The study participants tried to explain these behaviors using behavioral, cognitive, and rational explanations. The behavior explanations cited observed patterns in the drone’s behavior. The rational explanations referred to inferred goals, utility costs, and preferences of the drone. The cognitive explanations interpreted the drone’s perception, reasoning, and knowledge. The self-explanations were a lens on the kinds of explanations that participants wanted and used for themselves. 
When asked to make predictions during the study, a frequent participant response was “I don’t know.” The success of a mission depends on decisions made throughout a flight plan. An AI pilot might take risks at the beginning, middle, or end of a mission. A pilot’s early decisions on a mission with an intricate topography can interact in subtle ways with later ones. For example, choices about how to avoid an obstacle early in a flight plan can lead to a route that precludes safe approaches to a chosen point to drop a package much later. Study participants were creative in their self-explanations (“It is afraid of water!”), but they had no reliable basis for determining whether their interpretations were correct. It turned out that the surprising behaviors of our early AI-controlled drones were due to incompetence from their limited training. Serious users who want to field an autonomous pilot in the real world would never deploy such incompetent AIs. 

4. Training Competent AI Pilots 

Creating a competent XAI pilot required finding a way to train the learning-based drones to high levels of competence, creating common ground for describing drone decisions for users and the AIs, and creating explanations at a level appropriate for users. 
The challenges in training a drone to a high level of competence included architecting a neural network to produce better abstractions, generating enough earth-realistic training examples to cover the diverse topographical configurations of missions, and arranging the training examples in a staged curriculum to facilitate machine learning. This section describes those challenges and our methods. 
The deep reinforcement learner (RL) that we used to create the AI pilot for the self-explanation studies used a convolutional neural network (CNN) [19]. Agents were trained to perform RL using with A2C [20], a synchronous advantage actor critic. The Deep RL architecture had two separate pipelines encoding two different image views of the drone’s activity as shown in Figure 3. The views were an allocentric view and an egocentric view. The encoded abstractions by CNNS were concatenated and fed to a sequence of fully connected layers. Finally, the network had two outputs: the probability for performing an action given a particular set of states, and the expected reward/outcome from a given state (i.e., how much reward the drone should expect from current state).

[image: ]
Figure 3. The CNN Deep RL architecture of COGLE’s deep reinforcement learner.
CNNs are typically used to analyze visual imagery. CNNs are shift invariant, that is, they learn to detect visual features no matter where they appear in the image.  

[image: A picture containing table

Description automatically generated]
Figure 4. Example cases where changes to the CCN architecture were needed to pick up abstractions beyond shift invariance.
When a neural network has shift invariance, it does not need more training examples to learn to recognize a feature in all of the places on a map where it could appear. There are additional invariants and abstractions that people use in understanding images and plans. People have or learn many of these abstractions when they are very young and do not notice them later. Within the COGLE project, we referred to these abstractions and competencies informally as “toddler common sense” (TCS). Although such informal language is not typically part of the terminology of the machine learning research community, others in the project found it helpful to be concrete about what the agents needed to learn. 
Many TCS competencies are about navigation in free space as suggested in the panels in Figure 4. The top row in panel (a) shows a craft flying east towards a hiker with no blocking obstacles. This case is easy because only two moves are required to go from the craft location to the hiker. Once a deep RL learns this case for flying east in the first row, it can handle a similar case in the second row because it has learned shift invariance and feature invariance. CNNs do not have rotational invariance. The case in the rightmost column flies the drone north rather than east. Flying north requires additional learning cases, as does flying in other directions including changes of altitude in a 3D space. The craft in the bottom row flies east but requires more steps to reach the destination. The case shown in the right tile board requires the craft not only to reach a specific location, but also to arrive with a specific heading. Panels (b) and (c) give more examples of TCS competencies. Panel (b) in Figure 3 gives examples of navigation competencies for going over or around obstacles. An RL-based system would need to generalize its rules to apply to various kinds of objects that can act as obstacles, such as trees, watch towers, and so on. Panel (c) shows examples of competencies for choosing safe package release points. The bottom case in panel (c) is about penalizing the dropping of packages on the far side of a river that acts as a blocking object for the hiker. 
An AI pilot needs to be able to plan in any arrangement of mountains, foothills, forests, water bodies, and hiker locations that can appear in a mission setting. Flight planning is sensitive to small changes in terrain. For example, adding an obstacle in a canyon or other tight space can make flying through it or turning around impossible or prevent descent to a low package dropping altitude, requiring routing changes to earlier parts of a plan. The method described above is a model-free RL approach. Model-free RL learns without a built-in domain model. There is no composition of skills to higher-order tasks. The CNN and action-layers learn in concert. After sufficient end-to-end training, the whole network learns and encodes competencies in order to maximize reward. The necessary learning requires many realistic training examples.
When our self-explanation study participants observed odd behavior by a drone and tried to understand it, they were probably used to reasoning about adults who already possess mature navigational competencies. People do not think of intelligent drone pilots as immature infants.
To train a reinforcement learning algorithm to work in diverse settings, we developed a procedural content generator to create as many realistic terrain examples as were needed. COGLE’s procedural generator draws on technical approaches developed for movie and video game industries to generate realistic artificial and imagined landscapes. Roland Fischer et. al. review [21] technology in this area. Figure 5 shows that COGLE’s generator created and composed layers representing terrain, rainfall and water bodies, biomes and terrain types, roads and buildings. 
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Figure 5. COGLE's procedural content generator used earth-realistic generative models with layers for terrain, rainfall, biome, and roads and buildings.
To recap, in order to be able to fly missions competently, an AI pilot based on model-free reinforcement learning needed to acquire competencies for the navigational and task challenges of diverse settings. Creating the conditions for effective learning required extending the architecture of the CNNs, creating a programmatic generator of diverse earth-realistic settings, and presenting experiences in a curriculum of cases with staged increases in complexity.
Researchers in deep approaches to machine learning understand well that much learning can be required for AIs to achieve task-level competence. Before we created the AI pilots based on machine learning, concrete examples of the low and high-level competencies required for COGLE’s task had not been identified. Identifying specific competencies is interesting for computer scientists and psychologists in the context of reasoning with commonsense knowledge. Low-level competencies are far removed from the concerns and interests of COGLE’s intended end users and user study participants. To create explanations that would be meaningful for end users, we needed to ground the explanations of an AI pilot’s decisions and rationale at a higher level and express them symbolically. 



5. Experiments with a Cognitive Architecture to Bridge the Gap to Symbolic Representations 

Like other model-free deep RL systems, COGLE’s uses a distributed neural network to represent what it learns. This network generalizes from the combinations of features encountered in the training examples and is used as a policy to guide future decisions. However, causal explanations of an AI’s behavior like the behavior, cognitive, and rational self-explanations offered by user study participants require symbolic descriptions. Symbolic representations include descriptions of procedural actions and declarative objects. They are typically hierarchical and compositional. To produce such explanations an explainer must bridge the gap from distributed representations to symbolic representations. 
This section briefly describes our experiments with a cognitive architecture [22,23] to bridge this gap. A cognitive architecture is a computational framework for representing cognitive processes including attention, memory, and pattern-matching, organized in a structure analogous to that of the human brain. Cognitive psychologists have developed families of cognitive architectures [24] to model and control human and robot interactions. We use the ACT-R architecture [25] developed by John Anderson and colleagues. ACT-R stands for Adaptive Control of Thought and the “R” stands for “Rational.” Anderson developed ACT-R to explain how the brain works when it is learning [26]. ACT-R is organized into modules for declarative memory, procedural knowledge, vision, audition, and motor control. We primarily use ACT-R’s declarative memory module, specifically the instance-based learning (IBL) theory of decision making based on storage and retrieval processes from memory. ACT-R’s hybrid architecture admits both symbolic and sub-symbolic processing and has appropriate machinery for bridging the representational gap. In previous work [27, 28] Lebiere and colleagues showed how an ACT-R cognitive architecture can leverage scalable and efﬁcient learning mechanisms and replicate human sensemaking processes to transform loosely structured data from heterogeneous sources into a more structured symbolic form. 
Building on an approach that we had used previously to capture human reasoning [30], we proposed to set up drone missions to be annotated by human users using a domain ontology. These annotations would consist of instructions specifying how to perform complex procedures. COGLE agents would plan the same missions using their learned experience accumulated in problem-solving episodes in the training system. The next steps would involve training a cognitive mapper and then using the mapper to generate appropriate symbol structures for explanations. To train the mapper we would analyze patterns of activations in the nodes in the upper levels of the neural network for missions, and then correlate those activation patterns with activation patterns in an ACT-R cognitive model of how humans solved the same missions. This training would bootstrap a conceptual mapper for translating COGLE’s autonomous actions into user-understandable actions and provide a foundation for generating XAI explanations.
When we started experimenting with this approach, COGLE’s learning system was not yet competent at planning missions in the autonomous drone task domain. We opted to first develop a proof-of-concept system [30, 31] for the cognitive architecture approach using simple problems and missions in StarCraft 2 (SC2). SC2 is a real-time strategy game where players control units from a third-person perspective with the aim of eliminating opponents. We used a system configuration for our experiments that included a neural network architecture similar to COGLE’s and ACT-R modules as shown in Figure 6. The focus in our experiments and proof-of-concept demonstrations was to understand what an analysis would tell us about the ascribed mental states of the learned model.
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Figure 6. In the Starcraft 2 proof-of-concept experiments, image-like features are generated for screen and map information. These are passed through two convolution layers and are concatenated with the non-spatial features. The value prediction, which represents the expected reward from the current observation, and the action type are determined by the concatenated feature representation passed through a fully connected (fc) layer with 256 units. The activities of this layer are sent to the ACT-R module for further processing. The spatial action is sampled from the probability distribution formed by a 1_1 convolved representation of the feature concatenation.
The details of the analyses of our experiments and the sample problems in SC2 are described in two papers [30, 31 and are beyond the scope of this paper. We built on an implementation by Vinyals et al. [32] and defined basic missions in a mini game. Our experiments were an initial evaluation of using a computational cognitive model to introspect upon the activity of the network. As reported in [30, 31] we modeled both human and artificial agent performance and identified activation patterns in the network of their high-level actions. We gathered data for models of human and agent play by recording both human and artificial agents during free play of the game. At each step of the game, we recorded the observation and the corresponding action. The raw data was converted into symbolic data and later loaded into the model’s memory. In different experiments we analyzed the network for representations of features of the environment and also for abstract representations of features. The symbolic content came from interpreting signals from the game and an ontology created by human players. The ontology represented the kind of knowledge that a competent player should have. 
	Although the long-term goal is to create explanations of agent behavior for end users, the explanations arising from the analysis were developed for cognitive psychologists. Further research and engineering work would be needed to create explanations suitable for COGLE end users. For example, we would need to move the experimental setting from SC2 to COGLE’s domain. As suggested by the discussion of developing COGLE’s RL learner, this would involve markedly more complex tasks and more training for the artificial and human participants. The human users would need to create an ontology for abstract actions in COGLE mission plans, and they would need to annotate a larger set of missions for training the ACT-R models. 
In the program schedule, we needed to shift our emphasis to user studies with explanations for end users. While the research progress on analyzing the cognitive activity of the neural networks was encouraging, there were too many unsolved research and engineering issues to rely on this approach for our end user studies. We opted to continue the research on cognitive modeling, but to develop in. parallel a more direct approach to creating appropriate symbolic explanations. We focused on the approach described in the next sections.



6. Analyzing and Explaining Agent Plans Using Game Terminology

Finding the best solutions for COGLE’s more complex mission scenarios is difficult even for the most experienced members of our team. Our XAI explanations are intended to help people to understand autonomous systems. From the self-explanation studies, we knew that study participants wanted causal explanations. The causal logic of risks and time in missions had to take into account interactions over entire flight plans set in rich and varied topographic settings. 
To create shared and precise language about COGLE’s decisions and rationale, we adopted the practices and terminology of formal games [33], with game rules, outcomes, strategies, and strategic interdependence. In this approach, a game is any rule-governed situation with a well-defined outcome. The rules are the statements and directions that must be followed within a given game in order for it to be played correctly. Outcomes are game states that result from player actions. Strategy refers to a plan of action intended to lead to a desired terminal outcome. Strategic interdependence means that outcomes depend on the strategies used by the players.
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Figure 7. Accessible state variables in the simulator corresponded to decisions factors. In this figure, risk factors aggregate into higher-level categories of risk. Although we roughly designed adversary risks, we did not implement them for our studies
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Figure 8. COGLE state variables representing n aggregation hierarchy for kinds of elapsed time. There is ae red line through egress route time to indicate that the time to deliver a package does not include the flight time of the drone after dropping a package.
COGLE’s simulator has rules for actions and for rules for winning. Action rules govern how a drone, hiker, or package can move in the world model as depicted in Figures 1 and 2. The outcome rules determine changes of state in a turn, including changes to location, passage of time, and risk. The data describing the outcomes is stored in simulator state variables. For example, local outcome rules define the increased risks for a drone when it flies too close to objects at the same or higher altitude. Additional state variables represent delays experienced by the hiker when a package lands out of sight or the hiker needs to climb a hill, walk around an obstacle, or swim in a body of water. Figures 5 and 6 show the hierarchies of state variables that represent risks and delay times. 
The rules for “winning” refer to a competition between two AI drones. In the human-machine tasks for our user studies, we supply study participants with two drones having different competencies. Different mission present different requirements and drones with different competencies perform differently and make different flight plans. The rules for “winning” are that the drone whose plan incurs the lowest risk wins as long as it does not violate any time or risk constraint.

7. From “Introspective” to “Extrospective” Explanations 

Informally we called the cognitive architecture approach to explanation an “introspective” approach to explanations.” It is called introspective because it analyzes patterns of activity in the representations in the agents’ neural networks. It would collect data from human performance on identical missions to align segments of parallel reasoning and rationale. It would use the human annotations of plans to yield common ground terminology for creating explanations. Data from the human annotations would be used to label the rationale and activities and to train a cognitive mapper. As described earlier, our experiments and proof-of-concept with a cognitive architecture did not complete all of these steps.
This section describes an alternative approach that we informally call “extrospective.” The mission plans produced by agents reflect their task-level decisions. The extrospective approach requires that an explanation system be able to control a simulator in order to conduct focused experiments on agents. The explanation presents AI agents with different situations and invokes the simulator. It then analyzes their resulting performance as represented in their plans. These experiments reveal information about the competencies and trade-offs made by the agents. The extrospective approach augments the simulator to provide common ground terminology for elements of the task domain and for strategic elements of the game rules. 
To recap, the extrospective approach relies on an architecture where common ground language about the domain and game is built into the simulator, and the simulator can set up experiments that control agents and missions in order to understand their rationales and competencies. The extrospective explanations amount to a different experimental basis for understanding the AI agents base on experimentation. The extrospective approach resembles approaches to verification and validation in that it analyzes the performance of agents rather than analyzing their internal representations. It can be used with any approach to produces the plans of agents.
In complex missions, early decisions in a plan can greatly impact later ones and explanations need to reflect task-level trade-offs across entire plans. COGLE’s user task required users to understand and compare the plans of two drones. Explanations needed to how one agent’s plan was better than the other agent’s plan (“What?”) and also why one agent was able to create a better plan than the other (“Why?”). These explanations provide causal explanations of what agents do in terms of their competencies and consequent differences in the trade-offs they make. This led to the HMF model described in he previous section and to our methods for computing causal explanations using counterfactuals and a world simulator controlled by the explanation system that could experiment with the drones. 
The panels in Figure 9 show block diagrams for two configurations of COGLE, with a simulator, an explainer, and AI pilots based on deep reinforcement learning or symbolic planning. Each system block has a particular job. The simulator models the world. AI pilots make mission decisions. The explainer analyzes flight plans and compares the pilots and their plans. Programmatic interfaces between the blocks enable a learning system to develop a policy, an AI pilot to take actions in the world, and an explainer to set up mission situations and to get the data it needs to compare plans and create explanations. 
[image: ]
Figure 9. Block diagram showing two versions of COGLE's system architecture. One version uses learned policies to fly the drone. The other uses a variation of a simple A* planner. In either case, the explainer produces explanations comparing two drones and their performances in the simulated world.
Panel (a) of Figure shows the configuration with the deep RL. In this configuration, a learning phase precedes the human-machine task of choosing the better drone for a mission. For each drone, the deep RL learner considers mission cases generated by the procedural content generator. It builds up from the TCS level concerns to task level concerns, incrementally improving the competence of an AI pilot based on feedback about outcomes in the simulated world. In the performance phase, the learned policy is fixed and becomes an AI pilot. When this AI pilot is presented with a challenge mission, it chooses a sequence of actions as it constructs a flight plan. 
Panel (b) shows an analogous configuration using a planner. For our experiments we did not want to manually program a knowledge-based planner. Instead, we used a variation of the A* algorithm [34] with an additional provision that any path that violates a constraint is rejected. A* carries out a complete search for an optimal solution for the given drone on the given mission. Since A* does not have a learning phase, it is not trained over a diverse set of training missions. It searches for an optimal flight plan from scratch for each given mission. In our implementation, this computation typically takes about twenty minutes, making this the more convenient configuration for experimenting with different drones, missions, and game rules. 



An important function of the simulator is to provide a set of terms with consistent meanings and common ground names that can be used in explanations to users. An example of a narrative explanation comparing the flight plans of two agents is:
“Drone 1 drops the package where there is lower package inaccessibility risk, because only it can safely fly close to obstacles.”
The term “lower package inaccessibility risk” corresponds to the aggregated state variable “package inaccessibility risk” and computed by the simulator as part of the outcome state representing where a package landed. Similarly, observations about drone performance like “only it can safely fly close to obstacles” (or paraphrased “it incurs lower risks when flying close to obstacles”) reference the state variable “craft safety risk.” 
Martin Erwig et al. describe [35] a method for decomposing rewards or penalties into different types and explaining choices of actions by a minimal sufficient explanation (MSE). An MSE is a minimal set of rewards that are sufficient for distinguishing the benefit of one action over another. Building on and extending this work, we developed a Hierarchical Multi-Factor Framework (HMF) for decision problems. 
The HMF framework aggregates different kinds of factors in making decisions. For example, one drone may incur greater risks to craft safety in order to reach a drop point where a package can be released to land with lower inaccessibility risk, lower package safety risk, or lower package delivery time. The different kinds of risks such as package risk or craft safety risk correspond to the types of rewards or penalties described in the paper by Erwig et al. but extended to include type hierarchies. Furthermore, in HMF, some types of quantities are not directly additive with each other or comparable. Types of risk factors quantitatively relate to probabilities of damage that imperil the success of a mission. Types of time factors correspond to the time it takes a drone or hiker to reach a destination. Systems with non-additive factors are informally called “multiple currency systems.” 
In HMF, the conditions for winning are described by a combination of constraints on state variables and optimization criteria. In this way, COGLE’s problem combines characteristics of discrete constraint satisfaction problems [36] and optimization problems. In our default formulation of COGLE, the drone with the lowest total risk penalty wins unless it violates a time constraint. Another reasonable formulation is that the winner is the drone that delivers a package in the least amount of time unless it violates a risk constraint. 

7. Creating Drones that have Different Competencies

To define the different drones, we associate each AI-controlled drone with a vector of weights that adjusts the influence of state variables relative to a baseline drone. By setting the weights in the vector, we can adjust the level of risks the drone or package incurs in different situations, adjust time requirements and delays for drones and hikes, and control how well the AI can process information for predicting actions of the hiker or other mission elements. The outcome rules in the simulator are expressed for a baseline drone, whose default weight vector is 1 for every factor. The outcomes for specific drones are computed as the dot product of the drone’s assigned weights with the corresponding simulation factors.
The weighted vector concept for generating different drones was deployed after our deep RL version had already been developed. To create different machine learning drones, we had to hardcode different versions of the simulator. This development and subsequent training sequence needed to be repeated for every variation of the drones. This approach made experiments with the game rules and drone differences more cumbersome and was a practical reason for switching to the planner configuration as the focus of the research shifted to evaluating the effectiveness of explanations in the later phases of the project.


Because of the differences in competencies, the optimal plan for different drones is different. Each drone may have some advantages for a particular mission. The better drone for a particular mission depends on the challenges in the mission.
When a drone has errors in processing information about a scene, predictions that it makes in planning can be wrong and its decisions can be suboptimal. A drone can be overly optimistic or pessimistic about its performance. Two different vectors are required to distinguish the world that the drone perceives from the world as it is. The world as perceived effects how the drone makes decisions. The second vector is needed in order to compute what actually happens when a drone executes its plan. 

8. Purpose and Computation of COGLE Explanations 
To test the effectiveness of our XAI explanations we set up a model induction task as shown in Figure 10. User study participants are presented with a mission and two different AI-controlled drones. The drones perceive their environment differently, perform differently, and make different flight plans. Participants are asked to choose the best drone for each mission. After participants pick a drone, the system shows COGLE’s explanations. 
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Figure 10. Users are presented with two drones and their flight plans for a mission. They are asked to select the best drone for a mission.
Figure 11 shows narrative and visual explanations that are intended to help users to understand the drones and their plans. The terminology used in the narration comes from the HMF hierarchies as shown in Figures 7 and 8. The narrative explanations explain advantages for what the drones did and competency differences as reasons for why the drones could do it. 
COGLE’s computation of the narrative explanations combines MSEs with counterfactuals. The “what” phrase in the narrative explanation is the factor with the biggest risk difference. To simplify the narrative, sibling factors low in the hierarchy can be combined and accounted for in terms of their parent risk unless the contribution is mostly from one low-level risk. For example, multiple low-level package accessibility factors can be combined and reported as the aggregated parent risk “package accessibility.” 
The “why” phrase reports the responsible competency difference. The explainer can instruct the simulator to fly a drone on a mission using the counterfactual flight plan of the other drone. Low-level craft flight differences show up as different amounts of risks for the two drones taking the same actions. Differences in information processing competencies show up as differences in state variables representing the information that the drone uses.  In the earlier explanation example,
“Drone 1 drops the package where there is lower package inaccessibility risk, because only it can safely fly close to obstacles.”
the phrase about lower package accessibility risk uses the MSE, and the phrase that drone 1 can fly safely close to obstacles is computed by comparing craft safety state variables with their counterparts in the counterfactual condition.
The visual explanations overlay the map with highlights to call attention to places where there are risks. The risky obstacles are identified and displayed on the map by the simulator. As a participant scrubs the timeline, the drones move, and the simulator highlights the risks accumulated so far in the flight plan.
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Figure 11. Example mission with explanations with two candidate drones and their different flight plans. Narrative explanations say what the winning drone did and why it had an advantage. The interactive visual explanation shows where on the map the crafts encountered risks. As a user scrubs through the timeline, obstacles on the map light up with increasing intensity indicating greater risk.
Figure 11 shows another mission with the same two drones but where the other drone is the better choice. Drone 2 (Falcon) has a superior competency in processing information about the hiker’ condition. This enables Falcon to know that the hiker hikes quickly. Although Drone 1 (Eagle) can fly with less risk when it gets close to obstacles, it does not process hiker information. Eagle assumes that the hiker hikes at a baseline speed. Consequently, it overestimates the hiker’s hiking time and rejects a route like Falcon’s believing that the hiker would take too long to get to the package landing point. 
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Figure 12. Mission with the same drones as Figure 11. In this case, Drone 1 (Eagle) pessimistically discards the route used by drone 2 (Falcon) believing that that would cause the package retrieval time to exceed the time limit.
The mission in Figure 13 presents different drones. In this case, drone 2 (Peregrin) is flight-advantaged and drone 1 (Osprey) has superior competence in processing hiker data. The hiker in this mission has limited mobility. Peregrin incorrectly assumes that the hiker hikes at a baseline speed. Because Peregrin underestimates the amount of time required by the hiker to reach a drop point that is safe for the package, its plan exceeds the time limit for the mission.
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Figure 13. This case involves different drones. Drone 2 (Peregrin) plans a route that exceeds the maximum retrieval time limit. 



9. A Model Induction User Study 
Figure 14 illustrates the structure of our model induction user study. Our hypothesis was that the users receiving XAI explanations after choosing the best drone for a mission would learn to make better choices about the best drone in later missions. The study task missions were arranged in a curated curriculum that introduced domain challenges incrementally. Initially participants were exposed to situations where one drone’s plan was better for a single main reason. In later missions, the reasons for a plan’s advantage vary. Missions were randomly ordered as to which drone had the advantage. In the later missions the terrains were more complex and varied. 
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Figure 14. Study plan for user study. In each case, users were asked to select the best drone for a mission and afterwards were shown the correct answer and given the XAI explanations. We removed the qualification step in the final study because flight school did not improve user performance in predicting the performance of the drones.
N = 92 participants were recruited for this study from Amazon Mechanical Turk. Of these N = 92, N = 76 successfully completed the study (17% excluded from analysis for incomplete responses). Participants were randomly assigned to either receive Explanation first or Explanation second. Furthermore, participants were also randomly assigned one of the pairs of drones to see first. 
We used a 2 x 2 within-participants (repeated measures) design with a within-participant variable of Explanation Interface (Explanation, No-Explanation) and a between-participants variable of Order (Explanation First, No-Explanation First) and counterbalanced with Drone Pairs (Eagle and Falcon First, Osprey and Peregrin First). 
Each participant proceeded through a Training Block followed by two Testing Blocks. In a Training Block, we gave participants a description of and training on the domain world and how to select which drone would win a mission. Approximately half the participants received the Explanation Interface in Testing Block 1 and then the No-Explanation in Testing Block 2 at random. The remaining participants had the opposite order (No-Explanation in Testing Block 1 followed by Explanation in Testing Block 2). Each Testing Block consisted of 30 mission trials. In each Testing Block trial, participants were presented with two different drones on the screen (See Appendix B). The first ten mission trials were designed to have participants experience a successive revelation of Drone behavior as described above. Of those ten missions, the first four, Eagle or Osprey, would win. The following two missions were won by Falcon or Peregrin. Then the missions would vary winning and losing. From missions 11 to 30 within a Testing Block, the terrains were arranged randomly so that different drones had the advantage.
The primary objective of this experiment was to determine whether more people correctly predicted the better of two drone flights in the Explanation condition than in the No-Explanation conditions. We defined Success Rate to be the proportion of correct predictions over 30 trials in the Explanation or No-Explanation condition. We ran a paired t-test testing the difference between the Explanation conditions Success Rate (M = .57, SD = .16) and No-Explanation’s Rate (M = .54, SD = .16). The mean of the differences (0.04) suggests that the effect is positive, significant, and small (95% CI [1.78e-03, 0.08], t (75) = 2.08, p < .05; Cohen's d = 0.24, 95% CI [0.01, 0.47]).
Figures 15 and 16 graph the findings from the model induction study. Figure 15 shows that there was a small positive model induction effect of explanations as measured by the participants ability to correctly predict which drone was better for the mission. The Explanation condition produced a small but reliable effect on the ability to predict future drone success. It is specific to the drones explained. 
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Figure 15. Boxplot showing the Explanation and No-Explanation Success Rates (proportion of correct predictions for 30 trials in each condition).
Figure 16 illustrates the performance of the participants over the aggregated test conditions using a logistic histogram as described [37] by Jennifer Smart and colleagues. The red line is the fit of a logistic regression to the percentage of accurate predictions. The case numbers refer to different missions and drones in the balanced conditions of the study. Participants in both conditions improved in performance as they trained in more missions. The difference between the explanation and no-explanation conditions contributes approximately as much benefit as one additional case in the 30 cases of each condition. 
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Figure 16. Logistic histogram plot showing Prediction Accuracy by Trial as well as frequency histograms of successes (1) and failures (0) by Trial. The y-axis for the histograms is on the right. Top box plot is the distribution of Success over Trial; bottom box plot is distribution of Failure over Trial. The boxplots can be interpreted in the usual manner: the central notch is the median, the gray box encompasses the second and third quartiles, and the outer whiskers are the extremes (1.5*inter-quartile range). The red line is the fit of a logistic regression. The y-axis for the fit line is on the left.
The model induction user study showed that the effect of the after-decision explanations was weak in improving the performance of prediction on future missions. In hindsight, we realized that positioning the explanations after the users had made their decisions was backwards from how explanations would sensibly be positioned to support human decision making in a practical application. The user study had been designed to test explanation effectiveness as if the main goal of XAI was teaching. COGLE was not designed to be an intelligent tutoring system.

10. Pivoting to Decision Support 
The HMF model is intended for modeling problems where finding optimal solutions requires accounting for many interacting factors. Practical classes of problems that can be described in terms of HMF include design, planning, and scheduling problems. When are HMF problems challenging for people? What problems are appropriate for human-machine collaboration, including machine learning? This section describes how we approached these questions in the context of thinking about further research and practical applications.
Researchers in complexity theory and psychology bring different methods to study combinatorial problems and approximations that are complex for people or for various classes of machines. Choosing the best drone for a COGLE mission has challenges in correctness and completeness. By correctness we mean accounting for the details of correct decisions for navigation, object avoidance, safe dropping of packages, and so on. Correctness requires mastering the game rules of the domain. By completeness we mean thoroughly covering the space of possible solutions. Completeness is typically required for finding optimal solutions and is connected to high time complexity for solution methods. 
Like the A* algorithm on which it builds, the time complexity of the planner configuration of COGLE depends on the heuristic used. The heuristic accounts for the risk taken on the flight plan so far except that it also involves ruling out plans that violate a constraint. In the worst case of an unbounded search space, the number of nodes expanded is exponential in the depth of the solution (the shortest path) d: O(bd), where b, the branching factor, is the average number of successors per state. The time complexity of a machine learned policy is unknown but could be different. It would depend on the heuristic that was learned by the neural network over the cases on which it was trained.
The travelling salesman problem [38] (TSP) is a much studied and closely related problem. TSP requires finding an optimal route that visits all of the nodes in a graph. It is famous as an intractable combinatorial optimization problem. Although new approaches to TSP continue to be studied [39], no polynomial time solution is known. 
Studying human performance in finding nearly optimal solutions to TSP, Edward Chronicle et al. proposed [40] a boundary-following heuristic that seems to draw on human perceptual processing and accounts for fast human performance on instances of the problem. Their study illustrates that in the right circumstances, people can reliably find nearly optimal solutions for discrete combinatorial optimization problems whose exact solution is intractable for machines. 
Robert Thomson and Jordan Richard Schoenherr explain [41] that humans have memory limitations that cause them to use heuristics to process complex decisions, but that they can spontaneously reorganize knowledge based on growing expertise. Current AIs do not natively have an ability to dynamically and hierarchically represent knowledge in the same way.
From a perspective of human-machine teaming, these observations raised two opposing questions: For what classes of problems are AIs likely to be better than people? When are the combined abilities of people and AIs better at solving problems than people alone or machines alone? 
Stepping back again, these questions brought to mind other AI examples where humans and machines have solved combinatorial puzzles. Using earlier AI technology, the DENDRAL program [42, 43] routinely solved structure elucidation problems on mass spectroscopy data. The project recognized that identifying the molecular structure from the hundreds of points in a mass spectrum is a difficult task. Initially DENDRAL was limited to solving acyclic structure problems such as amino acids, ketones, ethers, alcohols, and others.  Cyclic compounds, including steroids such as estrogens and marine steroids, required developing an efficient generator for compounds whose molecular structures include cycles. The project recruited collaborators from the Stanford mathematics department, who recognized the relevance of a branch of group theory [44] for formulating an approach. This extension to DENDRAL required a deeper understanding of the structure elucidation problem [45, 46] than had been previously known.
In his autobiography, Carl Djerassi [47] reflected on a graduate chemistry class that he taught at Stanford University where he assigned students to use DENDRAL to check chemistry papers that had been published in scientific journals for errors. They found that practically every article had errors because it missed solutions or reported incorrect ones. These errors were missed by both the authors and the reviewers. This informal study showed that even in professional scientific publications, errors that were detectable by an AI were missed by expert authors and reviewers.
Another analogous and widely reported [48] example of AI superior performance is move 37 in the Go match between AlphaGo and Lee Sedol. The rules of Go are well known. The combinatorial challenge is in thoroughly exploring possible solutions. AlphaGo was highly competent and exploited human oversights. As described in an article [49] in Nature, AlphaGo reached a “superhuman” level in the strategy game Go, without learning from any human moves. Why even world class human players overlooked and were surprised by the winning line of play has been analyzed and discussed for several years. 
These examples were on our mind as we reflected on our model induction study and the question of what problems are appropriate for human-machine collaboration, including machine learning. Like the DENDRAL and AlphaGo examples, the problem of predicting the best drone for a mission is both a discrete constraint satisfaction problem and an optimization problem. In designing cases for the study, members of the COGLE team were occasionally surprised by solutions found by an AI pilot. The surprises came for different reasons. Often, we had overlooked a possible move that an AI pilot found. Another cause was that sometimes the discrete version of the ArduPilot Lite did not exactly model the real continuous world and permitted moves that “looked” impossible. (We changed the game rules to count such moves as riskier.) After many successive missions, we got tired and make mistakes. These examples brought to mind the American legend [50] of John Henry, the man who raced against a machine in the hard physical work of blasting and laying tracks for a railroad. 
Figure 17 illustrates a non-technical problem that suggests one way that the different abilities of people and machines may be sensibly combined. Consider a young family with children that is considering a move to take a new job in a new community. In an HMF formulation, there would be state variables about money such as job salary, expenses for housing, and various living expenses. In the applications we have described previously, the problems were given in closed worlds where the constraints and winning criteria are predetermined and fixed. In contrast, in open world formulations, it is often more useful to adjust the criteria and constraints as part of understanding and defining the problem. For example, there can be interacting issues about quality of life such as considerations about educational opportunities the ready availability of healthy foods. Variables related to time would include travel time for commuting and for visiting family. 
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Figure 17. Deciding whether to move and accept a new job is an example HMF-style problem from ordinary life where many factors are important in a decision. However, in contrast to game-like closed world problems that have fixed game rules and criteria of winning, ordinary life presents challenges where humans have advantages with their broad knowledge of the world to usefully refine problem statements, vary constraints, and adjust the criteria for “winning”.
In open worlds and in contrast with the closed worlds of games, any computer advantages on combinatorial problems may be complemented by human advantages. People may recognize what factors are most constraining in the real world, and also when constraints should be added or could be relaxed given additional knowledge about the open world. These conditions suggest teaming formulations where humans can adjust the constraints. The role of the AI can be to efficiently solve given problems and the role of humans can be to oversee and adjust the problem definitions and to use XAI explanations to check the reasonableness of AI solutions. In such formulations, explanations need to be powerful enough to help people understand AI solutions but do not need to teach people to “think like computers.” Analogous divisions of labor across teams have been studied previously for social reformulation of tasks using tools based on interactive information visualization [51].

11. Getting Better Solutions with Imperfect AIs
Autonomous systems are desirable for real-world applications because of their potential to add to the scarce labor and expertise that is needed. AIs that learn on their own could potentially reduce the cost of their development and also enable in-field tuning of their capabilities to respond to evolving and unforeseen situations that arise. This gap between current capabilities of AIs and their anticipated value is driving research in the defense and commercial sectors. For example, many manufacturers of self-driving vehicles have extensive research and engineering programs to develop machine learned and engineered policies that understand where the self-driving vehicles are competent and where they may fail. 
As reported [52] by Heather Wojton and Daniel Porter, current quality assurance processes involving verification and validation are not designed for systems based on machine learning. The autonomous systems available in field situations may not be ideal because their training cases may not cover key combinations of conditions. 
Returning to the cases arising in COGLE missions, the task of picking the best available drone for a mission does not necessarily produce the best flight plan for the available drones when neither drone is ideal for the mission. A question naturally arises “If the available drones have different learned competencies and neither drone has all of the important knowledge, why don’t you just combine the knowledge from the different drones to create the ideal drone for the mission?” This is a fair and interesting question whose answers have practical consequences. This section briefly considers approaches from related research and a cross-over approach based on counterfactuals. 
An important distinction is between learnable and unlearnable competencies. By design, the drones and missions for our experiments had different competencies. In our suite of drones, Eagle and Peregrin drones incurred low risk when flying near obstacles at the same or higher altitude. The backstory for the differences between the drones is that unpredictable cross winds could arise and blow a craft about in close quarters. Such a flight safety competency is achieved in the real world by sensitive and fast acting low-level stabilizer controls. Such low-level controls operate in a higher fidelity level than is represented in the ArduPilot Lite simulator that we used. Differences in craft safety risks in our research were established by by the vectors of factor weights as previously described.
In contrast to such unlearnable competencies, there were potentially learnable competencies involving processing of information about the hiker or (say) about adversary locations and capabilities. In the backstory of our suite of drones, Falcon and Osprey drones both had better information processing competencies than their paired counterparts, Eagle and Peregrin. Falcon was able to process information about hikers that were extremely fit, and Osprey was able to process information about hikers with impaired mobility. In a backstory applicable for machine learning based drones, the planner-based drones Eagle and Peregrin would not have been deployed or trained in situations that had atypical hikers. 
In related research, Tung-Long Vuong et al. reported [53] on a framework for identifying training experiences that can be shared across separately trained RLs. Haiyan Yin and Sinno Jialin Pan reported [54] on a policy distillation sampling framework for sharing subtask knowledge among RLs in a multi-task network where knowledge transfer used supervised regression to train a student network to generate the same output distribution as taught by teacher networks. Bob Price and Craig Boutilier reported [55] on a Bayesian implementation of implicit imitation, a form of social learning where teaching and imitation aid the transfer of knowledge from expert AIs to learner AIs in RL.
Our approach exploits counterfactual reasoning where the explainer controls the simulator. Figure 12 shows a case where Eagle and Falcon are given the same mission. Neither drone is perfect for the mission. Eagle does not know that the hiker hikes quickly, picks a pessimistic drop point based on the estimate of a baseline hiker, and produces a plan with a total risk of 60.83 risk points that are mostly package risk for dropping the package near the hiker. Falcon produces knows that the hiker hikes fast, picks a safer drop location, and accrues a total risk of 57 points of mostly craft safety risk. 
Like the related research above, the crossover approach is based on imitation. The explainer can identify the differences in the competencies of the drones by directing them to fly exactly the same flight and analyzing differences in hiker times, risks, and so on. It can direct either drone to fly the other drone’s flight plan. For example, it can tell Eagle to fly Falcon’s flight plan in order seeking to combine the effects of Falcon’s knowledge about the hiker with Eagle’s greater flying competence. Eagle flying Falcon’s flight plan results in a much better plan evaluation with only 9.5 points of risk penalty and the same retrieval time as Falcon. (Falcon’s flight plan is “unthinkable” for Eagle because its faulty information processing causes it to reject the plan for violating the mission time constraint.)
This “cross-over” approach does not retrain an RL drone to combine knowledge, but it does produce an executable flight plan better than either AI-controlled drone could produce on its own and a correct explanation of the risks and times.
Similarly, Figure 13 shows another case where Peregrin has enhanced flying competence but does not know that the hiker has impaired mobility. It produces a plan that assumes a baseline hiker speed and exceeds the retrieval time constraint. Osprey knows that the hiker has impaired mobility and picks a drop point near the hiker. The explainer directs the simulator to fly both drones on identical flights and determines their different competencies. It directs Peregrin to fly Osprey’s plan, effectively combining Osprey’s knowledge about the impaired hiker with Peregrin’s superior flying competence. Again, this results in a flight plan for Peregrin which has a total penalty better than Osprey’s with 84 penalty points. The time required for the simulator and the explainer’s analysis is under a second.
As a reasonableness check that would not be available for AIs based on machine learning, we used the competency vector technique to create planner-based drones whose competencies combined the competencies of the two competing drones. In each case the enhanced planner-based AIs produced exactly the same plans as the cross-over approach.
In a fielded XAI application of autonomous drones based on machine learning, every drone available for a mission may lack some competencies due to differences between their training and the field situation. This approach combines knowledge from the imperfect AIs to get superior solutions that the individual AIs do not find on their own due to the shortfalls in their competencies. The approach can produce superior and explainable plans for human review even when there is insufficient time and resources to retrain the AIs.
This cross-over approach is in the spirit of imitating a teacher. It uses the implicit knowledge of a teacher but does not represent that knowledge it in a learned policy. In human terms, this is akin to a student succeeding by imitating what a teacher by does by rote but without acquiring the teacher’s underlying knowledge. 

12. Conclusions and Observations 
This paper is a report from the trenches from one multi-disciplinary XAI team, reflecting on insights from the COGLE (COmmon Ground Learning and Explanation) project. 
Researchers in different disciplines are driven by curiosity and come with experience of the main questions of their disciplines. In the course of our project, insights and approaches from one discipline typically provided a starting point for addressing part of the problem. Collectively, we needed to build bridges and ask different questions than had been addressed directly by any of the disciplines. In summary, below are some examples of combining insights across disciplines in our XAI journey. 
· Although the self-explanation studies from psychology provided a lens about the kinds of explanations that users wanted, the approach was stymied when the competencies of the RL drone being studied were far too low to solve the problems. The AIs had less than toddler-level competencies in reasoning about navigation. Creating a competent RL for the task required bringing in technology from movie and game applications to generate enough earth-realistic scenarios. Training the RL also required developing a staged curriculum and other insights from machine learning and arguably intelligent tutoring systems. 
· By combining the MSE concepts with ideas from traditional AI approaches to ontology, combining an optimization approach with constraint satisfaction, and following concepts from applications of game theory, we developed HMF as a general framework for describing problems with hierarchical and multi-currency decision factors. This framework appears to be useful for broad classes of problems in design, planning, scheduling, and other areas.
· By combining insights about MSEs with insights about how to use counterfactuals, we developed a way to explain why an AI had better performance in terms of competency differences.
· We carried out a user study to measure user model induction. The study showed little benefit for improving participant prediction in future missions from the after-decision explanations. In hindsight, we realized that the study was designed as if the purpose of XAI was teaching. In decision support, it seemed to make more sense to give pre-decision explanations so that the explanations could be used in decision support. This application-driven shift in perspective suggested further research where the narrative and visual explanations might enable people to check an AIs solution even if they were unable to completely compare and evaluate solutions on their own.
· A computer’s computational advantages on combinatorial problems can be complemented by human advantages in understanding what factors are constraining in the real world. This led us to a proposed reformulation of roles in the human machine partnership. The AI could efficiently solve given problems and humans could oversee and adjust the problem definitions based on their knowledge of an open world and use XAI explanations to check the reasonableness of AI solutions. This formulation has been used previously in interactive information retrieval.
· The computer architecture where the simulator can be controlled by the explainer enabled us to notice a “cross-over” opportunity where imitation led to superior solutions that the imperfect AIs could not plan on their own. This approach reflects the conventional wisdom that it can be possible to do better with imitation even when the rationale for choices is not yet understood. Combining this approach with a framework where XAI supports decision-making for a human-computer team, this approach addresses the limitation of current validation and verification methodology for autonomous systems based on machine learning.
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