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Summary

We study a user-guided approach for producing global explanations of deep networks
for image recognition. The global explanations are produced with respect to a test
data set and give the overall frequency of different “recognition reasons" across the
data. Each reason corresponds to a small number of the most significant human-
recognizable visual concepts used by the network. The key challenge is that the
visual concepts cannot be predetermined and those concepts will often not corre-
spond to existing vocabulary or have labelled data sets. We address this issue via an
interactive-naming interface, which allows users to freely cluster significant image
regions in the data into visually similar concepts. Our main contribution is a user
study on two visual recognition tasks. The results show that the participants were
able to produce a small number of visual concepts sufficient for explanation and that
there was significant agreement among the concepts, and hence global explanations,
produced by different participants.

KEYWORDS:
Explainable AI, Computer Vision, Human-Computer Interaction

1 INTRODUCTION

Many explanation methods have been proposed for many types of deep networks. Among these, explanations can be divided
into two broad types, local and global. Local explanations give insight into a network’s “reasons" for decisions on individual
instances. In the simplest case, the reasons can simply be the parts of the input or image region responsible for the decision.
More generally they can be abstracted into location and scale invariant image properties, e.g., presence of a hooked beak, which
we call abstract local explanations. These explanations can be used by end-users or developers to adjust confidence in these
decisions or to diagnose errors. In contrast, global explanations give insight into a network’s overall decision-making behavior.
For example, a global explanation may provide summary statistics of abstract local explanations produced over a test data set.
This can be useful for proactively assessing strengths and weaknesses of a network’s decision logic.
In this work, we consider the generation of global explanations for deep image recognition. Specifically, our global explana-

tions are derived from local explanations that, for a given image, highlight the most significant image regions to a network’s
decision. The global explanations are based on summarizing the local explanations over a test set by abstracting away the spatial
information. In particular, the significant regions are abstracted by associating them with semantically-meaningful visual con-
cepts, so that the abstracted local explanations are combinations of those concepts. The global explanation is then the frequency
profile of the abstracted local explanations. This type of explanation can help to identify semantically-anomalous explanations
or help assess the number of distinct decision types and their generality level.
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There are two main challenges in generating the above explanations. First, the local explanations require computing the
significant image regions for a decision. This problem has been addressed by computing activation maps (or heat maps) in
an image for network nodes that are important to the decision. For example, activation maps have been derived via backward
network analysis1,2,3,4,5,6,4,7,8 or image perturbation techniques9,10. As described in Section 2, we use a novel combination of
existing techniques to compute local explanations that ideally involve a small number of significant regions.
The second challenge, which is themain focus of this paper, is that global explanations require associating the significant image

regions to human-meaningful concepts. One approach to this problem is to use labelled data to automatically map individual
network nodes, and in turn their activation regions, to a set of predetermined concepts. While such approaches have shown some
promise11,12,13, current results suggest that often the activations of individual nodes do not consistently map to a single concept
across different images. For example, 75% of a node’s activations may correspond to a bird’s beak, while the remaining 25%
are distributed across other known and unknown concepts. In general, without significant research breakthroughs, node-level
concept mappings should be expected to be noisy, which can lead to unsound and misleading global explanations.
Even if network nodes and/or their activations could be reliably mapped to predefined concepts, the explanations would be

limited to just those concepts. Rather, we should expect that networks will uncover concepts outside of any predefined set,
including visually-coherent concepts that don’t correspond to existing vocabulary. For example, in our bird species recognition
task, the significant image regions often correspond to concepts that combine parts, e.g. “beak and part of bird crown". We can
also expect and hope that networks will uncover completely new concepts, which, once identified, may provide new domain
insights to humans.
To address these challenges, we follow a human-guided approach for mapping significant image regions to meaningful visual

concepts over test data. In particular, we provide an interface for a human to cluster the significant image regions in the data into
meaningful groups called “visual concepts"—an activity we call “interactive naming.” Drawing from the lessons of previous
work14, our interface provides maximum flexibility to human annotators by presenting them with significant image regions and
allowing them to freely move the images around into clusters. Unlike previous work, however, which seeks to group images
according to a predetermined label set, our approach allows annotators to create clusters that make the most sense to them and
give them meaningful names. The flexibility of this approach is desirable since it avoids presupposing concepts. However, the
flexibility also raises at least two practically important research questions.
RQ1 (Coverage of Interactive Naming):What fraction of the significant image regions are covered by the human-defined visual
concepts? The annotators are not forced to cluster all significant image regions, since some regions may not be recognizable
as coherent concepts. If coverage is low, then local explanations are not represented well by the visual concepts, resulting in
lower-quality global explanations.
RQ2 (Inter-annotator Agreement): How much do the visual-word clusters from different annotators overlap? If different
annotators produce semantically similar sets of visual concepts, then the resulting global explanations depend little on the
annotator. Intuitively, this is highly desirable since the semantics of a global explanation should be primarily a function of the
neural network and not the annotator.
Our main contribution is a user study that investigates these two research questions on two data sets: a bird species classifi-

cation dataset15, and a breast cancer classification dataset16. To the best of our knowledge this is the first time these practically
important questions have been addressed in a user study. Our results reveal that for these datasets and trained networks, the
annotators are able to cluster the vast majority of significant image regions into a small number of visual concepts. The results
also show that there is significant agreement about the concepts between different annotators. Overall, the results suggest that
interactive naming is a promising approach for generating global explanations and deserves further study in image recognition
and other deep network applications.

2 INTERACTIVE NAMING FOR GLOBAL EXPLANATIONS

Our overall motivation is to develop tools to help understand the decisions of deep neural networks (DNNs) that are trained
for image recognition. In particular, we aim to generate meaningful global explanations of the decision-making behavior with
respect to a representative set of test images. This can provide insight into the strengths and weaknesses of the learned DNN
that may not be apparent by just observing test set accuracy. For example, one might hope to discover situations where the DNN
is making the right decision, but for the wrong reason, which would identify potential future failure modes.
Figure 1 shows an overview of our interactive naming approach for producing test set explanations. At a high-level, each

DNN decision for a test image is dominated by a set of the most significant activations of neurons in the penultimate layer. Thus,
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FIGURE 1 Given a test set the xNN is used to classify each image and identify the significant active x-features. The local
explanation for the classification of an image is then a visualization of the salient image regions/activations of those features.
Next interactive naming is used to abstract the local explanations by representing each significant activation by a meaningful
visual concept. Specifically, the set of all significant activations are collected and a human uses our interface to cluster significant
activations into semantically meaningful groups called visual concepts. These concepts are then used to produce abstract local
explanations, each being the set of visual concepts associated with a local explanation. The global explanation (far right) is
then the frequency profile of the usage of each abstract local explanation over the test data. For example, we see that on 88% of
the test data, the visual concept “Orange Beak" is the sole contributing concept to the classification.

highlighting the image regions responsible for those activations is a useful type of local explanation. Further, as described in
the introduction, abstracting the activations removing the spatial details and attaching meaningful concepts to them is useful
for producing global explanations. However, typical DNNs use very large penultimate layers, which makes training easier,
but can result in less compact explanations due to the large numbers of significant activations. For this reason, we attach an
explanation neural network (xNN) to the penultimate layer of the DNN, which is trained to reproduce the decisions of the DNN,
but dramatically reduces the number of activations. To further reduce the number of signficant activations we employ the notion
of minimal sufficient explanation (MSX). MSX consists of a minimal number of units in the penultimate layer (here the xNN),
whose sum of activations is sufficient to overcome any negative activation and classify the image.
In order to attach meaning to the significant xNN activations we developed an interactive-naming interface which displays

visualizations of the significant activations (i.e. image regions) in a test set to a human annotator. The annotator is then able to
cluster the activations into meaningful groups, called visual concepts, and attach linguistic labels to the groups if desired. Given
one of the test images, the abstract local explanation for the decision is the group identities/names of the significant activations.
A global explanation can then be formed by giving the statistics of how frequent different combinations of concepts appear as
local explanations. This allows for a comprehensive understanding of the different qualitative decision types over the test set.
The rest of this section explains the above steps in more detail.

2.1 Explanation Neural Networks (xNNs)
An xNN17 is an additional network module that can be attached to any intermediate layer of an original DNN, which typically
has thousands of neurons. The xNN learns a lower dimensional embedding for the DNN layer, resulting in a vector of X-features,
and then linearly maps the X-features to the output ŷ in order to mimic the output y of the original DNN model. In our work, we
apply xNNs to a convolutional DNN trained on the available multi-class data. The DNN outputs p(ci|I) for each given image I
and category ci ∈ 1,… , C . The penultimate layer of the DNN can be considered as scoring functions for each category s(ci|I),
where a softmax unit p(ci|I) =

s(ci|I)
∑C

i=1 s(ci|I)
serves as the final layer of the DNN that computes the class-conditional probability

from the scores. xNN is trained starting from the first fully-connected layer in the DNN for each class, aiming at being faithful
to the scoring functions s(ci|I) for each category. The xNNs can then be used for multi-class prediction by computing the scores
produced by each xNN and returning the highest scoring class.
It is desirable for X-features to have the following 3 properties: 1) faithfulness, the DNN predictions can be faithfully approxi-

mated from a simple linear transform of the X-features; 2) sparsity, a relatively small number of X-features are active per image,
and 3) orthogonality, the X-features are as independent from each other as possible. Details of the optimization technique to
achieve these properties are beyond the scope of this paper.
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FIGURE 2 Examples of visualization of x-feature activations of bird species and breast cancer datasets.

2.2 Explanations via Interactive Naming
Given a test image and a class c, we can use the xNN for c to produce a class score. This score is a linear combination

∑

i wi ⋅xi of
the X-features xi and their associated weights. The positive terms (i.e. X-features with positive weights) in the linear combination
sum to provide a positive score that can be viewed as providing positive evidence for c. Typically only a subset of the positive
terms are significant. Thus, we define the significant X-features for the image to beMinimal Sufficient Explanation (MSX). The
MSX keeps the minimal subset of positive weights whose sum of activations exceeds the sum of all negative activation. The
concept of minimal sufficient explanation was introduced in closely related work on explanations for optimal Markov Decision
Process policies18 and more recently in model-free reinforcement learning19. The significant X-features can be viewed as a type
of local explanation of why the image might be assigned to class c. However, they do not have associated semantics, so the
explanation is not very useful for human consumption.
To produce human-consumable local explanations, we produce an activation map for each significant X-feature in an image,

which identifies the “salient" image region that is responsible for the X-feature activation. In this work, we applied the
(Integrated-Gradients Optimized Saliency (I-GOS) algorithm20 for computing activation maps. I-GOS is a new visualization
method that optimizes an image mask, or heatmap, so that the classification scores on the masked image would maximally
decrease. It computes descent directions based on the integrated gradients instead of the normal gradient, which avoids local
optima and speeds up convergence. Compared with previous approaches, such as ExcitationBP7, this method can flexibly com-
pute heatmaps at any resolution. Figure 2 shows examples of 9 X-feature activations of breast cancer cell images, which are
superimposed on the original image.
We call the maps of significant X-features the significant activation maps or simply the significant activations. We consider

the set of significant activations for an image to be the local explanations, which can be easily viewed by a human. While local
explanations give insight into a specific prediction, they do not provide a general understanding of the core semantic concepts
and combinations of those concepts used for predictions across an entire test set, i.e. a global explanation, which is our goal.
The goal of interactive naming is to cluster the significant activations in the test set, where each group is intended to represent

a semantically meaningful visual concept to the annotator. Activations that are assigned to a visual concept are considered
to be named, while other activations are considered to be unnamed. The complete set of named activations resulting from
interactive naming is called a naming of the test set. Given a test-set naming, we can now generate an abstract local explanation
for each test image as the set of visual concepts for the significant activations. If a significant activation is unnamed, then the
explanation includes “other" for the name of the activation. A global explanation can then be displayed, which depicts the
frequency of the different abstract local explanations in the test data. Note that the global explanations ignore certain details of
local explanations, such as the absolute and relative positions of activations. However, by ignoring this information, we find that
the global explanations in our experiments are quite succinct and still yield significant insight into the DNN decision making.
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FIGURE 3 Annotation Interface: Our approach allows annotators to explore feature activations and group them into meaningful
textual / visual concepts. The top row displays some number of currently unlabeled activation images. The lower rows correspond
to user defined concepts for images they have assigned to the concept. The user can freely create new concepts (new rows) at any
time or delete concepts. Unlabeled activation images can be moved to any of the concept rows, which indicates the assignment
of that activation to the concept. Image that are determined to be noise can be put in the trashcan.

TABLE 1The relevant X-feature activations of 12 bird categories: (a) Laysan Albatross, (b)Crested Auklet, (c) Brewer Blackbird,
(d) Red-winged Blackbird, (e) Northern Fulmar, (f) Green Jay, (g) Mallard, (h) Black Tern, (i) Common Tern, (j) Elegant Tern,
(k) Green-tailed Towhee, and (l) Black-capped Vireo. The table shows the number of images for which each feature makes a
significant positive contribution.

Index of category a b c d e f g h i j k l
Number of images 60 44 59 60 60 57 60 60 60 60 60 51
True Positive images 52 41 40 57 53 54 53 45 39 45 55 49
False Positive images 10 3 23 5 15 9 0 10 18 11 9 7

2.3 Interactive Naming Interface
One of the key aspects of interactive naming is that the set of visual concepts is not known beforehand and varies from person
to person. Moreover, the visual concepts in an image are not immediately apparent until the annotator sees multiple images. In
previous work it was shown that human labelers are more efficient and more consistent when they are presented with multiple
instances at once and are allowed to choose the ones they want to label14,21.
Following this previous work, we designed a flexible user interface (Figures 3) to group the significant activations into different

visual concepts and give them textual labels/names. The set of X-feature activations is shown to the annotator in the “Unlabeled
Examples” section of the interface. The annotator can cluster activations into visual concepts and give them names. The interface
allows the annotators to compare all instances, create new visual concepts for which they are confident and leave the rest as
unlabeled. The interface also allows for moving images across clusters, and merging clusters.

3 INTERACTIVE-NAMING USER STUDY

Data Sets and Procedure. All our experiments were conducted on 12 bird categories of Caltech-UCSD Birds-200-2011
dataset15, and 5 categories of microscopic images of breast cancer cells called CEL dataset16. Given a convolutional DNN
trained on the available training data, we train a separate xNN for each category connected to the penultimate DNN layer. For
the Birds and CEL data sets, we used 5 and 9 X-features respectively, which significantly reduces the dimensionality for the
4,096 feature penultimate layer.
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TABLE 2 The relevant X-feature activations of 5 breast cancer cells categories. The table shows the number of images for which
each feature makes a significant positive contribution.

Category Actinedge Filopodia Hemispherebleb Lamellipodia Smalbleb
Number of images 275 268 231 324 250
True positive images 214 254 228 264 247
False positive images 4 4 62 34 37

Tables 1 and 2 show the number of images in each category of the Birds and CEL datasets along with the number of true and
false positives of the DNN for each category. Somewhat surprisingly, for all images in both data sets, there was a single X-feature
in the MSX and hence a single significant activation. This indicates that the xNN is highly effective at concisely capturing the
“reason" for the original DNN decisions. Thus, each local explanation was a single activation map and each image produces a
single significant activation for the interactive-naming process.
We conducted our user studies with 10 and 5 human subjects on the Birds and CEL data sets, respectively. We focus on

producing global explanations for each category, which give the reasons that each category is predicted by the DNN. Thus,
each user conducted the interactive-naming process for each category. In particular, for each category, the users were asked to
use the interactive-naming interface to cluster and name the significant activations of images the DNN predicted as positive
for that cateogory (the false positives and true positives). The annotators were instructed to only introduce visual concepts that
contained at least three significant activations. Thus, if a signficant activation was visually coherent, but not like at least two other
activations it received the default label “other". Otherwise, the participants were free to cluster and label as many activations as
it made sense to them. However, not all subjects followed these instructions and included some clusters with less than 3 images.
In the following analysis, we removed all such clusters.

RQ1: Coverage of Interactive Naming. Since the annotators are not forced to assign visual concepts to, or name all signif-
icant activations, some of the activations in the data are unnamed and treated as noise/outliers. Here we are interested in how
well the annotations cover the activations and explanations and how this coverage varies across annotators.
Figure 4 (top) and Figure 4 (bottom) show the mean of the fraction of significant activations that are named by annotators

for each category of Birds and CEL dataset, respectively. In addition, the bar labeled “Any Annotator", shows the fraction of
significant activations that were assigned to a visual concept by at least one annotator. We see that within a particular class,
there is relatively small variation among users and that the “Any Annotator" bar is not much higher than that of the typical
individual annotator. This indicates that there is some consistency in the set of activations that users consider to be noise. For
most categories there is a relatively small amount of activations not labeled by users. However, in Hemispherebleb category
of CEL dataset in Figure 4 (bottom), in average 40% of the activations were not labeled by the users. The activations of this
category are more difficult to annotate in comparison to the others.
We performed a qualitative analysis to understand some of the reasons that annotators were not able to assign names to

activations. One of the major reasons was when activations were difficult to interpret and appeared to be noise. For example,
this happens when activations highlight the edge of the image or fall on the background. Such activations are potential warning
indicators about a classifier. Thus, uncovering these examples through interactive naming has value. In other cases, the activation
map was interpretable to the annotator, but there were not enough similar activation maps to form a cluster. This case may be
resolved by using a larger test set.

RQ2: Inter-annotator Agreement. We first characterize the fraction of images annotated by pairs of annotators. For this we
use the Jaccard index, which is the ratio of the intersection to the union of the two sets of signification activations labeled by
two annotators, to measure the fraction of the images both annotators annotated. This is shown in the last column of Table 3
averaged over different pairs of annotators. The Jaccard index is fairly high for all categories, indicating that there is a good
overlap between the sets of activations chosen by different annotators to annotate.
Next we consider the extent to which the namings of different annotators can be translated to one another. Are there one-to-one

correspondences, subsumption relationships, or cases of purely incompatible concepts? Understanding this issue is important
for understanding the extent to which explanations are fundamentally annotator-specific.
Given two namings Ni and Nj of annotators i and j, we are interested in matching the clusters between the namings. For

this purpose, we applied a cluster matching framework, called D-family matching22. It first defines the “intersection graph” G
of Ni and Nj as a bipartite graph where the vertices in the two partite sets correspond to the clusters of Ni and Nj . Each pair



Hamidi-Haines ET AL 7

FIGURE 4 Fraction of labeled significant activations for each category of Birds dataset (top) and CEL dataset (bottom).
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FIGURE 5 An example of pairwise similarity matching between two annotators. Blue circles represent the visual concepts
created by Annotator i and Red circles are the visual concepts created by Annotator j

of clusters of Ni and Nj has an edge with the weight equal to the size of their intersection. D-family matching is a partition of
all nodes of the bipartite graph into some number of disjoint sets S1, S2, ... such that the diameter of all subgraphs of G over the
nodes in Si is ≤ D. The best D-family matching maximizes the sum of the weights of all edges in all the subgraphs. Figure 5
shows an intersection graph for a pair of namings and its best D-family matchings for D = 1 and 2
We compute the agreement between the two annotators for D = 1 and 2 as the total weight of all edges in the D-family

matching as a fraction of the number of activations labeled by both annotators. If we interpret the matchings as translations
between namings, then the agreement is the fraction of activations that are translatable between namings. The columns labeled
“Agreement” in Table 3 shows the statistics of 1-family and 2-family agreements for each category over the set of all annotator
pairs for Birds and CEL datasets, respectively. The agreement numbers are fairly high across most categories except for a few
categories in the birds dataset (b and k) for D = 1, where it ranges from 71-73 %. Since 2-family matching is more permissive
than 1-family matching, the agreement numbers are higher for D = 2. Overall the high agreements show that there is reason to
be optimistic about developing a common ontology for explanations.

Examples of Global Explanations. Recall that the final goal of the interactive naming task is to produce global explanations
over a test set, which depend both on the category of interest and the annotator. For example, one global explanation of category
g of the birds dataset consists of 29% of activations clustered as ‘eye’, 55% as ‘green feathers’ and 11% as ‘yellow beak’ while the
remaining 5% unclustered. For category d a global explanation consists of 82% of cases clustered as ‘red spots on wings’, another
11% clustered as ‘eye and red spots on wings’ and the rest unclustered. Thus the global explanation of category g indicates that
green feathers are an important indicator and for category b red spots on wings as important. Such global explanations might
either confirm or contradict a practitioner’s prior knowledge and help modulate their trust or provide new insight.
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TABLE 3 Pairwise comparison between clusters generated by annotators over all categories.

Pairwise similarity scores for Bird Dataset
Category Agreement (D=1) Agreement (D=2) Jaccard index

a 0.83±0.12 0.95±0.03 0.93±0.04
b 0.73±0.17 0.95±0.1 0.96±0.04
c 0.95±0.04 0.98±0.02 0.89±0.05
d 0.96±0.02 0.98±0.02 0.95±0.03
e 0.88±0.07 0.94±0.04 0.86±0.06
f 0.9±0.05 0.97±0.03 0.86±0.09
g 0.8±0.16 0.94±0.03 0.92±0.05
h 0.9±0.09 0.97±0.03 0.77±0.16
i 0.79±0.13 0.91±0.05 0.92±0.05
j 0.8±0.13 0.99±0.02 0.86±0.07
k 0.71±0.24 0.92±0.06 0.87±0.07
l 0.99±0.01 1±0.01 0.93±0.04

Global Average 0.85 0.957 0.8924

Pairwise similarity scores for CEL Dataset
Category Agreement (D=1) Agreement (D=2) Jaccard index
Actinedge 0.91±0.03 0.96±0.02 0.94±0.02
Filopodia 0.63±0.1 0.75±0.07 0.94±0.03

Hemispherebleb 0.89±0.08 0.99±0.04 0.58±0.07
Lamellipodia 0.98±0.01 0.99±0.01 0.99±0.01
Smalbleb 0.96±0.02 0.98±0.01 0.91±0.08

Global Average 0.874 0.934 0.872

3.1 Correspondence Between X-features Activations and Visual Concepts
Ideally, we would like X-features to correspond to distinct semantic concepts (i.e. visual words), since that would allow for fixed
vocabulary terms to be associated with them. However, as discussed in Section 1, work toward such “disentanglement" has not
achieved this ideal condition. While not the main objective of this paper, we now exploit the human-annotations of visual words
to observe how close the X-features come to achieving the ideal.
We adopt the metric of purity to measure the correspondence between visual concepts and X-features23. The purity of a

clustering is defined as the number of examples that belong to the plurality class of each cluster as a fraction of the total number
of examples. Here, we employ purity to measure both the degree to which each visual concept maps to a single X-feature, i.e.,
visual concept → X-feature purity or CX-purity, and the degree to which each X-feature maps to a single visual concept, i.e.,
X-feature→ concept or XC-purity.
We call the set of clusters of activations created by each annotator, a naming. To compute CX-purity of a naming, we first

assign each visual concept to the X-feature to which a plurality of its significant activations belong. We call it the majority
X-feature of that concept. CX-purity is the number of activations in the naming that belong to the majority X-feature of their
concept as a fraction of all named activations. Similarly we define the majority concept of an X-feature to be the concept that is
assigned to a plurality of activations of that X-feature. XC-purity is the number of activations in the naming that belong to the
majority concept assigned to their X-feature as a fraction of all named activations.
As it may be clear, both CX-purity and XC-purity vary from category to category. Table 4 and Table ?? show the CX-purity

and XC-purity values averaged over all annotators for each category of Birds and CEL dataset, respectively. The first observation
is that the standard deviations of all these numbers are low, suggesting inter-annotator consistency. The CX-purity numbers in
Table 4 are generally high ranging from 0.82 to 1.0 with an average of 0.92, with the exception of Category bwhere it is 0.61. The
XC-purity numbers are generally worse than CX-purity, going down to 0.47 in one case (Category k) and a maximum of 0.96,
with an average of 0.74. This suggests that the mapping from X-features to visual concepts is more one-to-many than the other
way around in Birds dataset. There are two reasons for this. First the Birds dataset only has 5 X-features, which forces each X-
feature to represent multiple concepts. Second, in most categories of Birds dataset, the significant activations are mostly covered
by one or two X-features, which further reduces the number of available significant X-features to cover the visual concepts.
Except for the difficult category of F ilopodia, the CX-purity numbers vary from 0.82 to 0.98 and the XC-purity varies from
0.89 to 0.99 for the remaining categories of CEL dataset with averages of 0.82 and 0.86 respectively (Table ??).

4 SUMMARY AND FUTURE WORK

In this paper, we studied the use of human guidance for the purpose of grounding global explanations of DNNs in meaningful
visual concepts. Our interactive-naming approach involves augmenting the original DNN with a sparser xNN, visualizing the
significant activation maps for each decision of the xNN on a test set, and then allowing annotators to flexibly group the acti-
vations into recognizable visual concepts, while attaching names to the concepts if desired. The visual concepts can then be
used as the basis for abstracting local explanations and generating corresponding global explanations relative to a test set. We
reported on our experience of having annotators use our interface for DNNs trained to recognize different bird species and cell
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TABLE 4 CX-purity and XC-purity results for both dataset.

Bird Dataset
Category CX-purity XC-purity

a 0.84 ± 0.03 0.69 ± 0.08
b 0.61 ± 0.05 0.76 ± 0.17
c 0.89 ± 0.03 0.85 ± 0.05
d 1 ± 0 0.93 ± 0.03
e 0.95 ± 0.01 0.78 ± 0.08
f 0.82 ± 0.01 0.91 ± 0.05
g 1 ± 0 0.77 ± 0.13
h 0.93 ± 0.02 0.58 ± 0.07
i 1 ± 0 0.51 ± 0.1
j 1 ± 0 0.68 ± 0.16
k 1 ± 0 0.47 ± 0.22
l 0.99 ± 0.01 0.96 ± 0.04

Mean 0.92 0.74

CEL Dataset
Category CX-purity XC-purity
Actinedge 0.98 ± 0.01 0.92 ± 0.04
Filopodia 0.56 ± 0.01 0.62 ± 0.08
Hemispherebleb 0.87 ± 0.08 0.89 ± 0.14
Lamellipodia 0.86 ± 0 0.99 ± 0.01
Smalbleb 0.83 ± 0.05 0.96 ± 0.02
Mean 0.82 0.86

types. Our results showed that 1) in all cases, the xNN is able to produce single significant activations that are sufficient for
classification, 2) the annotators are able to assign names to a very high fraction of significant activations, and 3) there is very
good agreement between the namings produced by different annotators.
In the current paper, we are not focused on optimizing the efficiency of labeling. There is significant room for future work on

interfaces that partially automate the labeling, e.g. by inferring which unlabeled activations are likely to belong to the emerging
concepts. Our work suggests that there is significant overlap between the namings of different annotators so that interfaces that
can actively transfer namings across different annotators might prove useful.
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