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In this paper we consider the global existence, regularizing-decay rate and asymptotic behavior of mild solutions to the
Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Using the properties of fractional heat
semigroup and the classical estimates of fractional heat kernel, we first prove the global-in-time existence and uniqueness
of the mild solutions in the frame of mixed time-space Besov space with multi-linear continuous mappings. Then we show
the asymptotic behavior and regularizing-decay rate estimates of the solution to equations with power-law nonlinearity by
the method of multi-linear operator and the classical Hardy-Littlewood-Sobolev inequality. Copyright © 2021 John Wiley
& Sons, Ltd.
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1. Introduction

In this paper we consider the global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity

Orv+ N = -V - (VTV¢), t>0,xeR"
Ow + AN*w =V - (W"V), t>0,x€eR", (1.1)
Ap=v—w, t>0x€eR", '

v(x,0) = w(x), w(x,0) = wo(x), x €RY,

where m > 1 is an integer, v(x, t), w(x, t) are the densities of negatively and positively charged particles, ¢(x, t) is the electric
potential determined by the Poisson equation A¢ = v — w. The difficulties mainly come from higher order nonlinear couplings.
By the fundamental solution of Laplacian

—%\x\, N=1,
dy(x) =< —5Inlx], N =2, (1.2)
1
vz N2 3.
where w(N) denotes the volume of the unit ball in R" the electric potential ¢ can be expressed by the convolution
b= () w =)= wx (w=v) = [ Ou(x=y)w = V)(»)dy. (13)
R

A = +/—A is the Calderén-Zygmund operator, and the fractional Laplacian A% = (fA)% with 1 < a < 2N is a non-local fractional
differential operator defined as

Nv(x) = FHEIFr(€), (1.4)
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where F and F ! are the Fourier transform and its inverse [1].

In probabilistic terms, replacing the Laplacian A by its fractional power —A% = —(—A)%, it leads to interesting and largely
open questions of extensions of results for Brownian motion driven stochastic equations to those driven by Lévy ac—stable flights.

In the physical literature, such fractal anomalous diffusions have been recently enthusiastically embraced by a slew of
investigators in the context of hydrodynamics, acoustics, trapping effects in surface diffusion, statistical mechanics, relaxation
phenomena, and biology [2].

An important technical difficulty is that the densities of the semigroups generated by —A% = ,(,A)% do not decay rapidly
in x € R as is the case of the heat semigroup S(t) = e (a = 2), the Gauss-Weierstrass kernel K¢(x) = f’l(e’t‘g‘z) decays

exponentially while the densities F~ (e t*)(0 < a < 2) of non-Gaussian Lévy a—stable semigroups Su(t) = e *®7 have
only an algebraic decay rate |x|~V~%.

For a more general nonlinear term in (1.1), the motivation is the Keller-Segel model [3, 4], a prototype of cross-diffusion
models related to pattern formation, it describes the time and space dynamics of the density of cells (or organisms) n(t, x)
interacting with a chemoattractant S(t, x) according to the following system

{ Btn = Vx - (Dn(n, s)Vxn —x(n, s)nVys) + F(n,s),

0:s = Ds(n, s)As + G(n, s), (1.5)

where F and G are the source terms related to interactions [5]. The positive definite nonlinear terms D,(n, s) and Ds(n, s) are
the diffusivity of the chemoattractant and of the cells, respectively. In many applications the cross-diffusion function x(n, s) has
a complicated structure, even if it has a very simple structure, for example, a polynomial x(n,s) = n™, but fails to satisfy a
global Lipschitz condition.

For m =1, (1.1) becomes a fractional drift-diffusion system

Bv+ A = -V - (vV), t>0x€eRY,

Ow + N*w =V - (wVo), t>0x€eRY,

Ap=v—w, t>0,xeR", (1.6)
v(x,0) = w(x), w(x,0) = w(x), x €R",

Zhao-Liu [6] established global well-posedness and asymptotic stability of mild solutions for the Cauchy problem (1.5) with small
initial data in critical Besov spaces, and proved the regularizing-decay rate estimates which imply that mild solutions are analytic
in space variables. Ogawa-Yamamoto [7] considered the global existence and asymptotic behavior of solutions for the Cauchy
problem (1.5), they showed that the time global existence of the solutions with large initial data in Lebesgue space LP(R") and
Sobolev space W“*p(RN) and obtained the asymptotic expansion of the solution up to the second terms as t — +o0.

For o = 2, (1.6) corresponds to the usual drift-diffusion system

Bv — Av = =V - (vV¢), t>0x€eRY,
ow — Aw =V - (wVo), t>0x€eRY, (1.7)
Ap=v—w, t>0,x€eRY, '
v(x,0) = w(x), w(x,0) = w(x), x €R",
it has been studied widely [8, 9, 10, 11, 12, 13, 14].
For w =0, (1.6) corresponds to the generalized Keller-Segel model of chemotaxis
Ov + N = -V - (VV9), t>0,xeR",
Ap = v, t>0x€eRV, (1.8)

v(x,0) = w(x), x € RV,

For 1 < a < 2, Escudero [20] proved that (1.8) admits a one-dimensional global solution (the same result also holds for o = 2),
Biler-Karch [21] studied the Blowup of solutions to generalized Keller-Segel model, and Biler-Wu [22] considered two-dimensional
chemotaxis models with fractional diffusion. For a = 2, Biler-Boritchev-Karch et al. considered the concentration phenomena
[23] and gave sharp Sobolev estimates for concentration of solution [24] to the diffusive aggregation model

Oiv —eAv = -V - (VWK xv)

with the Poisson kernel function K from the equation A¢ = v.
Wu-Zheng [25] considered the parabolic-parabolic system corresponding to the parabolic-elliptic system (1.8), the Keller-Segel
system with fractional diffusion generalizing the Keller-Segel model of chemotaxis

B+ Nu =%V (uVe), t>0x€R",
€0t + N*¢ = u, t>0,x€eR", (1.9)
u(x,0) = ug(x), v(x,0) = w(x), x € R",

for the initial data (uo, vo) in the critical Fourier-Herz spaces B2 2*(R") x B2 *(R") with2 < g < ocofore >0and 1 < o < 2.
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For the fractional evolution equations with higher order nonlinearity, Miao-Yuan-Zhang [15] studied the Cauchy problem for
the semilinear fractional power dissipative equation

{ Ot + N*u = F(u), t>0x€eRV,
N (1.10)
u(x,0) = uo(x), x € RY,
with the nonlinear term F(u) = f(u) or F(u) = Q(D)f(u), where Q(D) is a homogeneous pseudo differential operator
and f(u) = |ulPu or |u/Pu+ |ul®?u with b>0,by >0 and by > 0. For example, the equation in (1.10) contains the
semilinear fractional power dissipative equation 8;u + A*u = :t|u|bu, the generalized convection-diffusion equation 8:u + A%u =
a-V(|ul’u), and so on.

By the fractional heat semigroup S4(t) = e
system of integral equations

~t* and the well-known Duhamel principle, we rewrite the system (1.1) as a

v(t) = Sa(t)vo + B(v, -+, v, w),
{ () = Sa(D)mo - Blw - . v). (1.11)
where
B(v,---,v,w) = /0 Sa(t=T)V - (VVO)(T)dT, ¢ = (—A) " (w — v). (1.12)

m

A solution of (1.11)-(1.12) is called a mild solution of (1.1).

Inspired by the contributions summarized in the above items, we aim to extend the results to the system (1.1) with higher
order nonlinear terms V - (v"V¢) and V - (w"V¢). The goal of this article is to prove the global well-posedness of mild solutions
to the Cauchy problem (1.1) with small initial data in critical Besov spaces. When m = 1 in the higher order nonlinear term
V - (v"V¢), we recover the result proved in [6]. The outline of the rest of the article is as follows. In Section 2 we give the
definition of homogeneous Besov space by the fractional heat semigroup operator and present some useful estimates. In Section
3 we establish the global existence and uniqueness of mild solution. In Section 4 we discuss the asymptotic stability of the mild
solution. In Section 5 we give the regularizing-decay rate estimates of the mild solution. In Section 6 we consider a fractional
drift diffusion system with generalized electric potential equation and we also give the global existence and asymptotic stability
of the mild solution.

2. Preliminaries

Let S(R") be the Schwartz space and S'(R") be its dual. Now, we introduce a definition of the homogeneous Besov space by
the semigroup operator Su(t) = e ™"

Definition 2.1 [6] Let | > 0 and 1 < p < oco. Define
| N /Ny . p L
B, (RY) = {f € S'(RY) : Suf € C((0, +00), LP), sup t ||Saf||Lr < oo} (2.1)
>0
with the norm

A
HfHBil,RN :SuptaHSa(t)fHLD. (22)
poo(RT) t>0

(Bph RY), || - HB;’ ) is a Banach space.
If (v(x, t), w(x, t)) is a solution of the Cauchy problem (1.1), for any XA > 0, denote
Va(x, 1) = AT v(x, A%t), wa(x, t) = A7 w(hx, A*t), (2.3)

then (wva(x, t), wa(x,t)) is also a solution of the Cauchy problem (1.1) with the initial data (wa(x,0), wa(x,0)) =
A7 vo(Ax), Am wo (Ax)).

._a N
We can verify that B,,,gff” (R") is a critical space, which defined in [6], for initial data (vo(x), wo(x)) of the system (1.1).
In order to find a critical space for the solutions of the Cauchy problem (1.1), we define some time-weighted space-time space.
Let X be a Banach space and / be a finite or infinite interval. We define the time-weighted space-time Banach space

CU(I;X):{feC(/;X): stggtinfllx <oo} (2.4)
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with the norm ||f]|c,(1:x) = SUP¢so t%HfHX. The corresponding homogeneous time-weighted space-time Banach space
CU(I;X):{feCo(/;X): im t%|\f||X=o}. (2.5)

We use C,([0, 00); X) denotes the set of bounded maps from [0, co) to X which are continuous for t > 0 and weakly continuously
for t = 0. N

For the initial data (vo(x), wo(x)) in a critical homogeneous Besov space B;£+3(RN) with minimal regularity, we want to
find a mild solution of the Cauchy problem (1.1) and discuss the global existence of mild solution in the following critical space

Loy N
X =C.([0,00), B2 P (RY)) N C_me ([0, 00), LP(RY)) (2.6)
with the norm
1N
lullx =sup|lu(t)l] _a,n A+ suptm as|[u(t)] @) (2.7)
t>0 Bpoo P (®RN) t>0

For the Laplacian operator A and the Calderén-Zygmund operator A =+/—A, we have the following classical Hardy-
Littlewood-Sobolev inequality.

Lemma 2.1 [18, 26] Let 1 < p < N, the nonlocal operator /—A is bounded from LP(R") to LNNfPP(RN), ie, Vf € LP(RY),
IV=BFl] w < C(N, P)IIFllony. (2.8)
LV=P (R

V(=D)L we < CN, P)IIF|ogemy- (2.9)
LN=p (RN)

N)

tA*

For the fractional power operator A* = (—A)% and the semigroup operator So(t) = e ™", we first consider the Cauchy

problem for the homogeneous linear fractional heat equation

Oru+ N*u=0, t>0 xeR",

{ u(x,0) = up(x), x € RV, (2.10)

By the Fourier transform the solution can be written as
u(t, x) = F (e " Fuo(€)) = F e ™) x uo(x) = Ke(x) * to(x) = Sa(t)uo(x), (2.11)

where the fractional heat kernel
_ -4 ix€ =gl g N -1

Ki(x) = (2m) 2 / ee dé =t = K(xt =), (2.12)

RN

the function K(x) € L=(R") N Co(R"), where Co(R") denotes the space of functions f € C(R") satisfying that lim|x o f(x) =
0.
For the semigroup operator S4(t) we have LP — L9 estimates

Lemma 2.2 [9] Let 1 < p< g < oo. Then, Yf € LP(R"),
1Sa(t)Flla < C(N, 0)t™ =G~ 3||F]luo, (2.13)
INSa(8)flles < C(N, @)t 2~ G]|]|us, (2.14)
fora >0 and vy > 0.

Following the work of Kato [16, 17] and Lemarie-Rieusset [18] for the Navier-Stokes problem. Miao-Yuan [19] gave a general
existence and uniqueness result for an abstract operator equation via a contraction argument.

Lemma 2.3 [19] Let X be a Banach space and B : X x X x --- x X — X be a (m+ 1)—linear continuous operator satisfying

[1B(ur, o, -+, tm+1)|Ix < Kllunllx||uz]lx -+« [|tma]|x, (2.15)

Vi, Uz, Umis € X for some constant K > 0. Let € >0 be such that (m+1)(2¢)"K < 1. Then for every y € X with
llvllx < € the equation

u=y+B(uu,---,u) (2.16)

has a unique solution u € X satisfying that ||ul|x < 2e. Moreover, the solution u depends continuously on y in the sense that,
ifllyllx <eandv=y1+B(v,v, -+ ,v), ||v|]|x < 2¢, then

o= vllx < Iy = yillx. (2.17)

1
(m+1)(2e)"K

We will use the Lemma to prove the global-in-time existence and uniqueness of the mild solutions to the Cauchy problem
(1.1) in the mixed time-space Besov space.

Copyright (© 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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3. Global existence and uniqueness in Besov space
In this section we give the global existence and uniqueness of mild solution to the Cauchy problem (1.1).

Theorem 3.1 Let N > 2 be a positive integer, 1 < oo < 2N and

m(m+ 1)N

N
max{1, mT} < p < min{N, o

). (3.1)

o N
If (vo, wp) € prgf” (R"), then there exists € > 0 such that if ||(vo, wo)|| a.n <€, the Cauchy problem (1.1) has a unique
Bpoo P
global mild solution (v, w) € X such that ||(v, w)|lx < 2e. Moreover, the solution depends continuously on initial data in the
following sense: let (7, W) € X be the solution of (1.1) with initial data (Y%, Wo) such that ||(V, Wo)l] e < g, then there
Bpoo 7 (RY)
is a constant C such that

(v =V, w=w)[lx <Cl[(v = W,w—w0o)ll a,n .
Bpoo P (RY)

Now for the integral system (1.11)-(1.12) we first consider the term S (t)vo = e " w.

Loy N
Lemma 3.1 Let w(x) € Bp,£+” (RV) and (3.1) hold true. Then Su(t)vo € X and

[1Sa(t)vollx < C(N, a)|[vol| i (3.2)
7P ()
Proof. According to the definition of the norm || - || e and LP — L9 estimates for the semigroup operator Sq(t) = e~ ™",
Bpoe P (BRV)
we have ’
1N 1N
[1Sa(t)voll e sup s™ 7 [|Sa(5)Sa(t)vollr = sups™ #[|Sa(t)Sa(s)vol|Lr
m R
< C(N, o¢)supsm Cw\|5m(5)vo||Lp =C(N, a)HvoH
ALY
and
sup £77 3 |Sa()voll o = HVoII e
m p(R )
Therefore, we have
Sa()wo € L¥((0,00), By 2 7 (RY)), £57 % Sa(t)wo € L¥((0, 00), L°(RM)).
Moreover, following the method of [18, Proposition 4.4, P33] we obtain that
oy N
Sa(t)vo € Ci([0, 0), Bpo 7 (R™)).
L—a N
On the other hand, from w(x) € Bp,gf" (R") and Definition 2.1, we have
Sa(t)vo € C((0,00), LP(RY)),  tm 88 Sa(t)vo € C((0, 00), L°(RY)).
Hence, we have So(t)vo € X and (3.2) holds true. O
Lemma 3.2 Let (v,w) € X and (3.1) hold true. Then B(v,---,v,w) € X and
1B(v. - v.w)llx < C(N. a, p)lIv][Z|lv — wllx. (3:3)
Proof. According to the definition of the norm || - || ey We have
Bpoo P (RY)
1N
B(v, - v w)(O)]| _a n =supsm @ |[Sa(s)B(v, -, v, w)(t)]cs,
By TP (RN) >0
by the expression (1.12) of B(v,---, v, w)(t), that is,
t
B(v, -, v,w)=— [ Sa(t—7)V-(V"Vo)(T)dT, ¢ = (—A) "(w — V), 3.4
( ) /O ( V- (vIVe)(T)dT, ¢ = (—A) ( ) (3.4)
Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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hence by the Minkowski inequality, we get

t
1_ N m
1B(v,-- v.w)(®)I| o = sups™ “”HSa(S)/ Sa(t = 1)V - (vVV)(T)dT]|r
Bp, ”’ P(RN) s>0
< / supsm aﬁ||5a(s)5a(t —T)V - (V"VO)(T)||edT. (3.5)
0 s>0
For 0 < s < t—, using the LP — L9 estimates (2.13) and (2.14) for the semigroup operator S,(t) = e~*", we have

sup  sT 3 [|Sa(s)Sal(t — TIV - (V'VO)(T)|[r < C(N, @)(t — 7)7 3 ||Sa(t — T)V - (v"V)(7)]|ur

0<s<t—7

= C(N, a)(t — 7) 7 8[|V - Sa(t — T)(V"VP)(T)||r < C(N, , p)(£ — )7 38 (£ — 1) || (V" V)] (7)]]

Np
[ (m+1)N—p

1 _ (m+H)N
S C(N,a, p)(t—T)m™ ev

VIIVOI o
LN=p

the last inequality comes from the Holder inequality for the product v-v---v-(v —w) and % + NN—’;’ = %. Using the
classical Hardy-Littlewood-Sobolev inequality (2.8) and (2.9), we have

sup s [|Sa(8)Salt — TV - V"V (=A) (v = ))(T)][us

0<s<t—1

< C(N o, p)(t—7)7 Loll(v = w)(T)ee- (3.6)

—tA*

For s >t — T, using the LP — L9 estimates (2.13) and (2.14) for the semigroup operator S, (t) = e , we have

sup sm C~P||Sa(s)5a(t—'r)v WV (T)||e = sup. sm aPHSa(t-i-s—T)V (vV"V)(T)I|1r

s>t—T1

< C(N, o) sup. ST (t s — )% |[u” V¢(T)I| < C(N, ) sup STT"(HS—T)’TPHVHTPIIVMT)HLNM
s>t—T -P

1)/\/

m(m+1)N
a

From the condition (3.1): max{1, Z¥} < p < min{N, } and s > t — 7, the function f(s) = 5%7%(1‘—&- s— T)f%g/ has

the maximum

T 1 (o
max f(S)—f(W(t—T)):C(t—T)"’ ap
ap m

where C is a constant, by (2.9) we have

sup. S%_“ﬂpllsa(S)Sa(t =)V VIV (=A) (v = w)l ()]l

< C(N, o p)(t = )75 W (]IT (v — w)(r)]|ee- (3.7)
Together with (3.6) and (3.7) we have

SUp 5799 |a($)Sa(t =TIV - [V"V (=) (v = w)I() |

1 _ (m+HN m
< C(N,a,p)(t—T)m™ o (v = w) (7). (3.8)
Putting (3.8) into (3.5), we have
[[B(v,--- v, W)(t)l\ 5 < C(N,o, P)/ (t—7)m" HV(T)”LP”(V_W)(T)HU’dT
1_N m 1_N
< C(/\/,a,P)Sug(TW % v (7)|]r) Surg(Tm @ ||(v =w)(T)||r)
T> T>
t
></ (t—7)m " e n ldr
0
. t 1_(mEON  (meDN 1
< capIvIFly - wike [ (£ =B S
0
< C(N,a, p)llvlIZllv —
Copyright (© 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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in the last inequality we use the fact that the Beta function

ap T ap m , i)

/(t—T 1_(mron M,i,ldT:B(m;—l _(m+DN (m+1)N 1

converges to a constant, since the condition (3.1) implies that %—%: 2l(p—20) >0 and (m:;)’\’ L
1 m(m+1)N
mip(ia — p) > 0.

Therefore, we have

B(v, -, )(t)l\ -+ < C(N.a, p)lIvlIZllv — wllx. (3.9)
(®Y)

Next, we consider the estimate of ||B(v,---, v, w)(t)||.r. From (1.12) we have

1B(v, - v, w)(t)l|lr = H/O Sa(t =)V - (V"VP)(T)dT]|Lp

t
< C(Nva)/ (t= 1) % V"V (=8)" (v =W _wp_dr
0 L (m+1)N—p
t
CmN _
< C(/\/,Oé)/0 (t=7)" @ |VI[[p][V(=4) I(V_W)](T)HLNL_PPC/T
¢ m (m+1)N
< e IRl = wle [ (e-m) B e
0
m 14N
< C(Na, p)|Iv[xllv — wllxt™m e,
thus,
1_ N m
suptm e ||B(v. -+ v, w)(B)lle < CN, a, p)Iv]lxllv — wilx. (3.10)
>
In order to prove that B(v,---,v,w) € X, it suffices to prove that B(v,---, v, w) is continuous for t > 0 and weakly

ey N
continuous for t =0 in 8,2 ? (RV), and it is continuous for t > 0 in L°(R").
For any 0 < t; < t», due to (3.4) we have

B(v,---,v,w)(t2) = B(v, .-+, v,w)(t1) = /Otl [Sa(ts = 7) = Sa(ts = TV - [V"V(=2) " (v = w)(T)dT

+ /Q&m—ﬂvwwvem*w—wmﬂw

= /(t1,t2)+//(f1,t2). (3.11)
Similar to the estimate of ||B(v,---,v,w)(t)|| _a,n , we have
B ”’ P (RN)
1N
H(t, &)l a,n  =supsm @ |[Se(s)/I(t1, t2)|[re
Bpoo P (RN) s>0

< /Qiggs%f%usaegsa<@-—T>v~[vmv<—A>*<v—-wn<TnhpdT

Jty

(m+HN - (m+1)N 1

t2 1_ (MmN _ 1 _
SCWﬂme%W*MM/(Q*ﬂ” e
t1

m 1, m+1)/v 1 m+1)/\/
< C(N, o, p)IVIIZIIy — wllet, 7 /(b—ﬂm

(m+1)N

+ li(m+1)N
< C(Noo VIR = wllat, ™ (- )7

the condition (3.1) implies that 1 + 1 (mﬂ) > 0, hence

1 N
111(t, )| _a, =supsm @ ||Sy(s)/I(tr, t2)||tr — 0 as to — ti. (3.12)

Bpoo P (RN) 5>0
According to the property of semigroup,

Sa(tg — T) — Sa(ﬁ — ’7') = [Sa(fg — tl) — /]Sa(lﬁ — T), (313)
Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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1N
=supsm @ ||Sa(s)/(t1, t2)]]r
s>0

g/lsuops%_%l\sa(s)[sa(tz— t) = 1Sa(ts = T)V - (V"V)(T)||odT
0o s>

o 1_N
:/ supsm ar||
0o s>0

2 1_N
:/ supsm ar||
0 s>0

=t

N*Sa(p)Sa(s)Sa(t = T)V - (V'VP)(T)dpl|LodT

to—t;

VSa(t)A\*Sa(s)Salts — T)(V'VP)(T)dul|rdT

t th—t;
g/ sups%f%/ [IVSa()A*Sa(5)Sa(ts — T)(VTV @) (T)||LrdudT,
0 0

s>0

by the LP —

L9 estimates (2.13) and (2.14) for the semigroup operator Sq(t) = e~ ™"

, we have

/O VS ()N Sa(5)Salts — T)(VV ) (7)o di

to—t .
<ce) [ W dulinSa ()5
0
mN
= C(N, a)(t2 — 1) @ [[A*Sa(s)Sal(ts — T)(V"VO)(T)I| _wp .
L (m+1)N—p
For 0 < s <t; — T, we have
N
sup ST |\ Sa(5)Sa(ts = (VA
0<s<t;—T N-p
— sup s ||Sa(s)A*Sa(ts — T)(V'V)(T)|
0<s<t;—T L (m+1 )'V
<C(N,a) sup s as(t —7) Y |(v"V)(T)|
0<s<t;—T L (m+1)N-p
1N m
<C(N, a)(tr —T)m = IHVHLPHvd)H e
< C(N, a, p)(ts — )73 | |V|B|lv — wlleo.
For s > t; — T, we have
sup 573 ||A%Sa(s)Salty — T)(v" V¢>)(T)H
s>t —T N*p
— sup s7 3 ||ASa(ty — 7+ 5)(V" V¢)(T)H
s>t —T 1)’\’ P
< C(N,@) sup sm (i — 7+ 5) V"Vl
s>t —T L (m+1)N-p

1_N_4
< C(N,o, p)(ty —T)m a»

Putting (3.15)-(3.17) into (3.14), we have

C(N, «, p)(tQ — t1)17

IVIIZo v — wllee.

C(N, o, p)(t — 1) % / (=) B OB — w)(n)]rdT

mN 1_N m 1_N
@ sup(T™ 2 ||v(7)|[e)" sup(T7 @ [|(v — w)(T)]|Lr)
T7>0 7>0

tl 1N (m+HN _ 1
></ (tp—T)m a lr e mldr
0

1—mN m %2/*1
< CNap)(ta —t1) > |[|vl[x|lv — wllxBt;

I(t1, t o <
11t )| s S
<
N (m+1)N
where the Beta function B = B(+ — r i

I(tr, ©2)|] _a.n
e el gy,

L) converges due to the condition (3.1), thus we have

mN DNy
ap tlap

< ClIVIIRIlY = wilx(t — t1)"

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

E Copyright (© 2021 John Wiley & Sons, Ltd.
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that is,
1N
11(te, )] _a,n =supsm a||Sy(s)I(tr, t2)||rr — 0 as to — ti. (3.20)
By P (RN) >0
Putting (3.12) and (3.20) into (3.11) we have
[1B(v, -, v,w)(t1) = B(v, - ,v,w)(t2)|| _a,n —0ast, — t. (3.21)
Bp P (RM)
- « conti sl
This means that B(v,---, v, w) is continuous for t > 0 in B, % *(R").
o N
Similarly, we can prove that B(v,---, v, w) is weakly continuous for t = 0 in Bp,o”;” (RV) and it is continuous for t > 0 in

LP(R"). Therefore, we have
B(v,---,v,w) € C([0, 20), B;fg*%(RN)) NC_mo ([0, 00), LP(RM)), (3.22)
that is, B(v,---,v,w) € X and (3.3) holds true, i.e.,
1B(v. - v.w)llx < C(N. a, p)lIv][Z]lv — wl|x. (3.23)

This ends the proof of Lemma 3.2. O
The proof of Theorem 3.1. Now for the integral system (1.11)-(1.12) from the Cauchy problem (1.1), we have

(v(t), w(t)) = Sa(t)(vo, wo) + (B(v, - ,v,w), B(w, -+, w,Vv)), (3.24)
in Lemma 3.1 and Lemma 3.2 we deal with the terms Sq(t)(vo, wo) and
B(v,---,v,w) = /tsa(t—T)V~[VmV(—A)_1(V— w)l(T)dT,

B(w, - ,w,v) = /t So(t —T)V - [W"V(=A)"Hw — V)](T)dT,
0

respectively. For the Banach space X and multi-linear operator B(v, -, v, w) which satisfies the estimate (3.23), following
ey N
the Lemma 2.3, for every (v, wp) € Bp,;g” (RV), there exists € > 0 such that (m + 1)(2e)"C(N, a, p) < 1, then(3.24) has a

unique solution (v, w) € X such that ||(v, w)||x < 2e. Therefore, the Cauchy problem (1.1) has a unique global-in-time mild
solution in the mixed time-space Besov space. This completes the proof of Theorem 3.1. O

4. Asymptotic stability analysis

Theorem 4.1 Let N be a positive integer, 1 < o« < 2N and (3.1) hold true and (v, w) and (V, W) be two mild solutions of
the Cauchy problem (1.1) described in Theorem 3.1 corresponding to initial conditions (vo, wo) and (¥, Wo), respectively. If

_ay N
(vo, wo), (Yo, Wo) € B,.2 " # (RV) such that

li — — W a =0, 4.1
Jim {[Sa(8)(vo = o, wo WO)||B;E+%(RN) 0 (4.1)

then we have the following asymptotic stability

. ~ - a_N - -
lim (H(V*V,W*W)H o N +tm p”(V*V,W*W)”Lp(RN)):O. (4.2)

t—00 B;Q*f (RN)

-
Proof. Since (vo,Wo),(Vo,vT/o)eBp,o"f”(RN), by Theorem 3.1, there exists a constant € >0 such that if

[|(vo, wo), (Yo, Wo)]| < g, then the mild solutions (v, w) and (v, w) satisfy that ||(v, w), (¥, W)||x < 2e. From (1.11)
B

and (1.12) we have

v—V=354(t)(vo — ) + mil Be(v—=7,v, 7, v—w)+ Bn(V,(v—7)— (w—w)),
k=0

W = Sa()(Wo — i0) + 5 Be(W — i, w, 0, w — V) + B, (W — ) — (v — 7)),
k=0

Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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where
Be(v—V,v,0l,v—w)=B(v—7,v, -, v,V,--- 7, v—w)
/ Sa(t=T)V - [(v— v)vk m-1= kV(—A)fl(v— w)](T)dT, (4.3)
Bn(V,(v—=0)—(w—w))=B(V,---,V,(v—V)— (w—Ww))
_ /0 Salt = )V - [P"V(=1)" (v = ) — (w — ))](r)dT. (4.4)

Loy N
By the definition of Bp,(;?f ? (RM)—norm, we have

1=l gy SIS0 =g +Z/k+/m (45)

P00
where

(ki Im) = [(Be(v = ¥, v, 7, v = w), B(V, (v = V) = (w — W)))]|

—o N .
Bpoo P (®RNY)

For a constant 6 € (0, 1) determined in later we have
/k—SupS”’ % |Sa (S)/ Sa(t =)V - [(v = 0V V"V (=) (v = w))(T)dT]|1e

g/o supsrwsa(s)sa(t—ﬂv[(vfV)vkvm*“kV(fA)*(vfw)](T)HLudT

s>0

ot -
/ / supsm ap||Su(t+5s—T)V - [(v — W)V TR (=AY (v — w)]||edT
ot

s>0

=l + k2. (4.6)

In the procedure of estimate of (3.5), instead of the product v-v---v-(v—w) with m+1 exponents such that
7+ NN—_[;’ = %, use the Holder inequality for the product (v — 7)vk vm 1=K(yv — w) with m+ 1 exponents such that

1, k_ m-l-k , N-p _ (m+1)N—p
R e Ny We can prove that

ot

1 (m
la < Cf (t=7)7 LTI Nl = wlledT
0
o 1_(miDN 4 1, (miDN 1_N ~
< Csm/(l—n)"’ o e ((em) e ae | |v(En) — P(En)||e)d, (4.7)
0

and

ho < C/(f—T) VI v = wllwdT

(m+1)N (m+1)N
< cem [(toryhe TR A Y LR oy dr
ot
< Ce"[sup T |v(r) = () les]. (4.8)
0t<r<t
Together (4.7) with (4.8) we have
1 (m+1)N _ (m+1)N N -
he < Ce” /(1—77)m o " ((em)™ = ||v(tn) — o(tn)||.»)dn
+ Ce™[ sup TEiD‘T’HV(’T)—\N/(T)HLp], k=1,2,---,m—1. (4.9)
ot<t<t
Similarly we have
L (m+1)/v

I < /( ; G () I((v = P)(en). (w = ) ()oY

+  Ce"[ sup TTT”H((V = )(7), (w = w)(T)l[cr]. (4.10)
ot<t<t
Copyright © 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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We next consider the term ||v — 7| pgny:
m—1
1V = Plluogany < 11Salt) (Vo — )llioy + 3 i+ I, (4.11)
k=0
where

(Jes Im) = [|(Bk(v = 7, v, Vv = w), B(V, (v = V) = (w = W)))[o@m)-

For the first term we have

IN

1_N - 1_ N to1_nN t -
tm e |[Sa(t)(vo — VO)HLP(RN) 2m=ap SUP(*)”" ap Hsa(*)(VO - VO)HLP(]R’V)

IA

20 “"Hsa(t)(vO*vO)H L (4.12)

p m f (]RN)

For the term Jx and ¢ = (—A) "} (w — v), we have
t
Je = |\/ Sa(t —T)V - [(v = D)VT" T VP (T)dT]|e
ot -
<c( [+ [ )= By = sl Vel g dr
ot Lk
/ / (t—T) 5 (v = Dl VIS 1115l — wllodT

1

ot 177+(m+1)/\/
< Ce™ / / (t—T) (mm~ O‘P||V—V||Lp)d‘l’
ot

m+1)N

1 _mN  _q_1_ (miLN 1_N ~
<Cet m+”/ (1—m) S nton ((tm)m e [|v(tn) — v(tn)llee)dn
0
mo_ Ly N 1N .
+Ce"t mTar [ sup Tm ep||v(T) — V(T)||r], k=1,2,--- ,m—1. (4.13)
0t<r<t

Similarly, for the term J,, we have

mN

< CEME / Lom) ™ (em 35 11((v = 9)(em), (w — @) (em)llee)dn

"IH% o
N . 1_N . -
+ Celtm “P[eiugt” @ [|((v = 0)(T), (w = w)(T))l|e]. (4.14)

Together (4.5) with (4.11) we have

v =Vl _a.n + 677 ||v = | pgany < ClISalt)(vo — %)l o5

4+ N

B2 TP RY) TP mN)
( 1 (m+yN
_77 m ap 1_ N - -
+Ce™ / B ((tm)m =2 [|((v = ©)(tn), (w — W)(tn))lle)dn

+Ce / “l ",HN«tn)m % (1((v = 9)(tn). (w — w)(En))le)d
+CEM[ sup T [[(v = () (w = (). (4.15)

For w — w we can get the same estimate similar to (4.15).
For the convenience we denote

o 1_(miDYN (m+1)/v 1 (m+1)/\/
Q@) = [ (- h dn+/ (1 ) i e @
F(t) = |Sa(t)(vo — Vo, wo — W0)|| _a,n
8, P (&N
1_N
G(t)=|[|lv— VIIB,%+g( " + T v — ] o).
P,o0
Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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" N » (m+1)N
Due to the condition (3.1), max{1, 28} < p < min{N, ===} we have

1 1N 1 N 1 1N 1 1N
14 L (mEYN _ mHl, mNy o L DN 1 mm e DNy
m ap mp a m ap mp a
mN 1 mN
1—-—=Z(p——)>0
ap p(p a)>’

then we obtain that Q(8) converges and fI)imO Q(6) =0.
—
Due to the condition (4.1) we have tlir+n F(t) =0 and F(t) € L*[0,+00). Passing the limit in (4.15) we get
—r+00

M =limsup G(t) < C(N, a, p)e™(Q(0) + 1)M, (4.16)
t—+o0

Choosing 6 and € small enough such that Q(6) < 1 and 2C(N, a, p)e™ < 1 respectively, then (4.16) implies that M = 0. That
is, (4.2) holds true. The proof is complete. O

5. Regularizing-decay rate estimates

In this section we consider the regularizing-decay rate estimates of the mild solutions to the system (1.1). Compared to the
case m = 1, the main difficulty is caused by the power-law nonlinearity term v™ as m > 1 in the first two equations of (1.1). To
overcome this difficulty, we will apply multiple Leibniz's rule. For the regularizing-decay rate estimates of mild solutions to the
Navier-Stokes equations, we refer the reader to [6, 28, 29, 30].

In what follows, for x = (x1,-++ ,xy) € RV and 8= (81, -+ ,Bn) € NY', where No = N{J {0} and N = {1,2,---}, we denote
& =08 -85 and |B] =B1+ -+ +Bn.

We first describe the main result on regularizing-decay rate estimates of the mild solutions to the system (1.1).

Loy N
Theorem 5.1 Let N > 2 be a positive integer, 1 < o < 2N. Assume that p satisfies (3.1) and (vo, wo) € Bp,gf” (R"), and

(v, w) is the mild solution to the system (1.1) with initial data (vo, wo). Furthermore, assume that there exist two positive
constants My and M, such that

sup [I(v(t), w(tDIl a,w < M, (5.1)
0<t<T Bpoo P (RN)

1N
sup_ 7% [|(v(t), w(t)) | oy < Mo, (52)
o<t<T

Then, there exist two positive constants K1 and Kz depending only on My, Ma, N, o, m and p, such that

_Bl_1, N
1(82v(t), W (t))l| auny < Ki(KalB)P1t = g (5.3)
forallp<qg<oo, te(0,T)andB cNy.

Remark 5.1 In fact, (5.3) is equivalent to the claim

Bl_1, N
B_iu

[(82v(t), B w(t))l|ie < Ki(Ka|B)PP -0t (5.4)
for some § € (1,2] and sufficiently large constants K1 and Ko.
Let us first prepare the refined LP — L9 estimate for semigroup operator Sy(t).
Lo N
Lemma 5.1 Letl1 < p<qg<oco. Then forany f € prgﬂf" (RM), we have
el Bl 1, N
167 Sac( ) Fll oy < CEIBI @ £ @ “mFaa ||| _a,n (5.5)
Bp mTp (RN)
for all t > 0,8 € NYY, and Cy is a constant depending only on N and o.
Proof. As S,(t) is the convolution operator with fractional heat kernel K:(x) = F~ (e ™I%), by scaling we see that
Ke(x) = (2m) "% / e Ee " gg = 174 K(xt™3),
RN
Copyright © 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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where K(x) = (2m) 2 Jan e e k% d¢ It is clear that [15, Lemma 2.2]
VK(x) € L°(RY), VK:(x) € LP(R"), ¥Vt € (0,00), ¥V p € [1, 0],
thus the Young inequality implies that
18:Sa(t)Fllia < 10Ke() 1[I Fllie < Co(N, @)t = | F[va. (5.6)

By the semigroup property of So(t) and the commutativity between semigroup and differential operators, we get

S, (t)ffl'[(ax,s (zlﬁ‘))ﬁ’s (g)f (5.7)

Combining (5.6) and (5.7), and using Definition 2.1, we obtain

108 Sa(0) Ly < H)ax,s G 5+ (5)7.
< (atma(zm) )G s ().
< Gt S ()25 (1)1,
< Go(N, o‘)‘ﬁ||5|@ 7@7E+aquf“5’7+ﬂ(uw)

where || T||z(r,L0y denotes the norm of linear operator T from LP to L?. This proves the Lemma 5.1. O
Next we recall some useful results.

Lemma 5.2 [31, Lemma 2.1] Let § > % Then there exists a positive constant C depending only on d, such that

> ( o ) 7218 — a0 < C(8)16]°°, v B € NG (5.8)

a<f

N
Here the notation a < B means that a; < B;, Vi € N, ( g > =11 %, and the dependence of C(d) on § is merely of the
l:l 1 1 17

51
form 72,7072,

Lemma 5.3 [25] Let 1o be a measurable and locally bounded function in (0, 00) and {;};2; be a sequence of measurable
functions in (0, 00). Assume that o € R and w,v > 0 satisfying u+ v = 1. Let B, > 0 be a number depending on n € (0, 1)
and By, be non-increasing with respect to . Assume that there is a positive constant o such that

0 < Wo(t) < Byt + a/t (t — 1) B Vapo(T)dT, (5.9)
(1-n)t
t
0 < Pj(t) < Byt * + cr/ (t —7) 17" (T)dT (5.10)
(I-m)t

forallj >0, t>0andn € (0,1). Let no be a unique positive number such that

1 : ! o —ae
I(no) = min{=, 1(1)} with I(n) :/ (1—7)H 7 *"dT.
20 1-n
Then for any 0 < n < mo, we have
P;(t) <2Byt™*, V,j>0,t>0.

We now prove the Theorem 5.1. Following the idea in Giga-Sawada [28], we first prove the Remark 5.1, a variant of Theorem
5.1 under extra regularity assumption.

Proposition 5.1 Under the same assumptions in Theorem 5.1. Assume further that

(afv(t),afw(t)) € c((o, ), Lq(RN)) (5.11)
Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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for all p< q < oo and 3 € N. Then for any § € (1,2, there exist two positive constants K1 and K. depending only on M,
M, N, a, m and p, such that

Bl_1, N

1(BFv(t), BEw(t))lle < Ki(Ka|B)P 0t a " mtaa (5.12)
forallp< qg<oo, tc(0,T)andB cN}.

Proof. We split the proof into the following two steps by an induction |G| = m.

Step 1. We will prove (5.12) for m = 0. (5.2) implies that (5.12) is trivial if ¢ = p, thus it suffices to consider g € (p, >0]. Let
n € (0, 1) be a constant to be determined later, we take LY—norm of the first equation in (1.11) and split the time integral into
two parts as follows

t(1-n) t
ees < sl ([ [ isute= )T WA = il
= E;+ Ex+ Es. (5.13)

We will estimate term by term.
For E1, by Lemma 5.1 and (5.1), one can easily see that

N

Er < N, o)t #Yae uoll 4w < Ci(N, o, My)t e, (5.14)
Bpoo

For E» and Es, by Lemma 2.1, Lemma 2.2 and (5.2), we have

t(1-n)
E, /O 1Sa(t = T)V - V"V (=A) (W — v)(7)][|edT

_(m+N | N

t(1-m)
Cg(N,oc,p)/O (t—=7)" = e |lv(n)I5I(v(T), w(T))lledT

IA

_(mt)N | N (m+1)N

t(1-mn)
CQ(N,a,p)/\/I;H/ (t—T7) o tagrlomt as g
0

IA

IA

Ca(N, cx, p, Ma)n ™ * " mt~mtag, (5.15)

Es = / ||Sa(t—T)V~[vmV(—A)_l(W—v)(’r)]HquT
t(1-n)
Cs(/V,a,p)/ (t =) % (D)ol V(DI (v (T), wT)) o dT

t(1-m)

IN

t
< Gi(N,a, p, M) (t — 1) 7% ||v(7)| LedT. (5.16)

t(1-m)

Combining (5.14)-(5.16), and setting B, = C1(N, a, My) + Co(N, o, p, /\/lg)n’l’%, the inequality (5.13) yields that

= 1N t mN i m
lv(t)|lLa < Byt m "o 4 C3/ (t—T) @1 Ter||v(T)||LadT. (5.17)

t(1-m)
The estimate for w(t) can be done analogously as (5.17). Hence, we have

t
1(v(8), w(D))llea < Byt m* = + Cy / (t—7)" % S (v(r), w(r))l|eadT, (5.18)
t(1-m)

where B, = 2B, and C4 = 2Cs(N, a, p, M2). By applying Lemma 5.3, we get the desired estimate (5.12) for |3] = k = 0 with
K1 = 2By, for some mg = no(N, e, p, m, M1, M>) € (0, 1).
Step 2. Next we prove (5.12) for |3] = k > 1. Due to the appearance of nonlocal function ¢, we use a different argument to
prove (5.12) for p < g < N and N < g < oo, thus we split the proof into the following two cases.
Case 1: p < g < N. In this case, we first differentiate the first equation of (1.11) to obtain the identity

Bv(t) = Sa(t)vo — /t Sy (t —T)V - V'V (=A) H(w — v)(T)]dT. (5.19)

We take the L9—norm of 82v, for some 1 € (0, 1) to be chosen later, we split the time integral into the following two parts:

t(1—n) t
oEv(Olle < oSl +( [+ [ YIeESa(t = IV vTV(=8) W = V(P luedtr
0 t(1-n)
= A+ FR+F. (5.20)
Copyright © 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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We next estimate F;(i = 1,2, 3) term by term.
For F1, Lemma 5.1 implies that

Fi < Chkata "t ai||vl| a5 < MChkat s mtaa, (5.21)
p,oo
For Fp, using Lemma 5.1, Lemma 2.2 and (5.2), we have
t(1-m)
Fo = /O 188 Sa(t = T)V - V"'V (=0) " (w — v)(T)][|cadT
R N t
< ane [ (550) s (S5 mV-8) w - (mldr
0
O N
< oo [ (5FT) T Tese () e
=1
t—T m _
x[1Sa (<5 ) V"V (=2) " (W = )T adT
A t— T ikt — e
< cma [ (5T el G ()
0 2 4k 4
XA W = DI e dr
t(1-n) t— _K_H(Lﬂ_l)
< csuv,a,p)cék%/ (=) IO I (), w(r)eod
0
t(1-n) _ _g_,(Lﬂ_l) m
< G(Na, p)/\/l"’“Ckkg/ (t ") Crnt e gy
0 4
< Cs(N,at, p, Mo)Chksm a1 mt a mtag, (5.22)
where k = ki + ko + -+ ky and ki = |Bi|(i=1,2,..., N).
Using Leibniz's rule, we split 3 into the following three parts:
t
Fs = /( )Hafsa(t—f)V'[vmV(—A)fl(W—V)(T)]Hmd’r
t(1—m
t t—T\ & t—T m _
< Gva) [ (F57) TS (S5 )W TV0) = (e
t(l—n
t t—T\ & t—T
< o _
< Go(N.a) tuin)( ) “lSa (S5 ) (@EVMIV (=) (w = v)(lledT
¢ t—T\ =& t—T s ) G B
+oama) [ (55T Is(U5T) X () @@ vy w - v ledr
t(1-m) 0<v<B
t t—T\ & t—T
+  Gs(N, a) [|Sa V"3V (=) (w — v)(T)]||LadT
o, ) s (55
= Fa1+ Fe2+ Fas. (5.23)

Here, the notation «v < B means that v < 8 and |y| < |8|.
Now we establish the estimates for Fz;(j = 1,2,3). For F31, using Leibniz's rule again, we can split F3; into two parts as
follows:

P = ce) [ (557) s (ST IV-) = lar

= cma [ () 1SS (4 ) (5 ) - (5)
XSV 1) () £ e @ V)V(-8) (W = ) od

= G(Na)ZH( )/tn)(t;T)é|sa(t

D) TP )9(=8) " (w = v)(T)lledr

B i=1
t t—T\ & t—T\ m-1 1
+Co(N, o, m) (557) “Isa (55 ) v @EVV=8) " w = V)lladT
t(1-n)
= Gi1+Gy, (5.24)
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where we denote 3 5 = >0 5 <5,<..<g, 1 <Bm=p
For Gz, using Lemma 2.1, Lemma 2.2 and (5 2), we have

t t—T _(xN
G: < GNoamp) [ (7)) L IVIE IS Vilall(v(r). w(r)) lodT
t(1-m)
t
< cg(/v,a,m,p)Mg’/ (t—7) % 7% |8 v|| adT. (5.25)
t(1-n)

For Gi, using Lemma 2.1, Lemma 2.2, Lemma 5.2, (5.2) and (5.12), we have

G < Co(N.a, p)ZH( )/ (b p)
B i=1 t(1-n)
< [T188 P viiall(v(r), w(r))llodT
i=1
< Go(N,a, p)MQZH( )/( (6 )
B i=1 t(1-
<11 |:K1(K2|61 By |PFil=0)y _M_%J'%]T_#J’Tlvpd'r
i=1
< Co(N, e, p, Mz)ZH( ) 1T [Kl(K2|5, _ﬁi71|2‘ﬁf*5171|*5)}

B i=1 i=1

t
SN N kg mN 1
></ (t—7)" oa “apg a 't wtas dr
t

m— —8em —m —k_1, N
)(C(6))2( 1) g2k 6K1 K;k 6,(,”) a~mTag (5.26)

IA
O
°
=
R
T
S

where

1
(DN Nk ggmN_ LN

I(n) = (L—7) a0 “apg o~ ab T (5.27)

For Fsp, using the same arguments as Gi, we have

O is (S50 (4) e

0<y<B

t
t
F < Clo(/\/,a)/ (
t(1-m)

X (@ V(=8) " (W = )(T))] llLodT

e 5 ()05
X (&Y (=D) N (w = v)(T))||LadT
_ m(w,wggﬁ(g)/ﬂlm(t; ) s (45 )[ZH( o )
xﬁ 8y My ](aﬁ Y (—A) (W — v)(1))[|LadT
< Clo(/\/,a)g;ﬁ( );H( )/t(lin)(t;T)*a
o (157 T2 v ¥ (-8 = V)l
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according to the property of semigroup we get

s ¢ _Nm-1) N
Feo< o) 3 (O)SII( )7 ) [ -nste
0<y<B v v =1 Vi1 t(1-n)

x [T18¥ ™ vilall o (v(r), w(r) e dT
Jj=1

1 i ‘ _Nm=-1) N
¢ canan s (SR ) [ oo
0<y<B v v =1 Yi-1 t(1—m)
m o
X H [K1(K2|’YJ - ’YJ—1|)2Hj—wﬁl\—57__%_%+%]
Jj=1
18—
(Kl — 2o 55 5
< Cuwo(N, «a, P)(C(é))mK{n#—lK22k*(m+1)5k2k—5/(n)t_g_%+%' o

where }__ is defined the same as that in estimating f31 and /(n) is defined in (5.27).
For Fs3, analogously we have

t M) N .
Fsz < Cn(N,a)/ (t—7)" @ @ |v[FIIefV(=2) T (w = V)T we dT

t(1-n) LN=p
t M) N o

< Cn(N,a)/ (t—7)" e @ |v][FIed  (v(T). w(T)I| e dT
t(1-n) LN=p
't _ N(m-1) _ N _14y N,

< Cn(N,a)/ (t—T) O‘q [Kl’T m O‘q]
t(1—m)

- N(N-p)
x[Ka(Ka(k = 1) 4 D07 5 S [ g
< Cu(N, a)KI KGR () e, (5.29)

where /(n) is defined in (5.27).
Combining the above estimates (5.20)—(5.29) and setting B, by

B, = MChka + CsChkan a'"m 1+ Cok® 0 1(n),

and
Cio = CoKTTK3M - Cro KT RZKmIN8 )y it 2008 (5.30)
we obtain
18V (t)lla < Byt ™5 a0 + Cq / ; )(t—ﬂ”ﬂﬁ S |08 v ()| adT. (5.31)
t(1-n

Similarly, we can deal with 82w(t). Hence, we conclude that

t
@8 V(2), B w(t)|ca < Byt~ 7+ + Cu/ (t—7)" % 7% (B v(r), Bw(T)) ] edT, (5.32)
t(1—m)
where B, = 257, and Ci3 = 2Cs(N, o, m, p).
Let nx = 2k It is clear that /(nx) is strictly monotone decreasing in k and /(n«) — 0 as k — oo. Choosing ko sufficiently
large, such that /(2k) < 2c for all k > ko, applying Lemma 5.3, we get

N@Ev(t), BPw(t)|e < 2Bt o« mtad (5.33)
for all t > 0 and |B| = k. Note that from (5.33), we can choose K; and K> sufficiently large such that (5.12) holds for all 8

satisfying |G| < ko. Hence, it suffices to prove that it is possible to choose K; and K> such that QBﬁ < Ki(Kak)?$79 for all
k > ko. Since

1 ! _(m-UN N _k_ g mN_ 1. N 1 _k_q_1 1 1 -1
/7 — 1—71 aq ap T« ag m txpdrr< | — a m < e2a (] — — m<16’
(o) /7< ) <) <eb(1- ) h <
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we can calculate QBﬁ as follows:

2B, =48 A[MyCEk® + CsClk® (2K) a7 4 16C1k2 ]

|~
IN

1
2k 2

x|

N

A[MLCE 4 21 CoCh kM 0 4 16C10] k2.

Obviously, there exists a constant Ci4 > Co such that C + 2 ™+ C kw0 < 2670 Hence,
2B, < 4[(Mi + Cs)CPi™° + 16C1] K, (5.34)

where Ciz is defined in (5.30).

Choosing K1 :=8(Mi + Cs) and Kz := max{Cis, 32(Co + Clo)K1,32C11K1"77}, we obtain (5.12). This completes the proof
of Proposition 5.1 for p < g < N.
Case 2: N < g < co. Now we are in a position to establish the estimate of |82v(t)||.e for N < g < co. For p satisfying (3.1),
using the Gagliardo-Nirenberg inequality [32], we have

N N

182v()llca < C(N, p) IV (D)IIZpllOZ80v()]11n°, 6 =1 — 2 T 2q° (5.35)
Now from (5.35) and the result of Case 1 we see that
JEv(Dllee < CON. PR (Kak) Pt m P a8 P [y (Ka(k +2)) 20 o an e
< C(N, p)Ki(Ka(k +2))% 0t a mtag, (5.36)

It is clear that there exists a constant Cis > 2 such that k* < Cfé"‘s, thus we have
2
(Kz(k + 2))2/{4»4*5 _ K§k4(1 4 E)2k+476(K2k)2k76 S 8164K§(C15K2k)2k76.
Hence, we can choose K; and K> sufficiently large such that (5.12) holds for all p < g < co. This completes the proof of
Proposition 5.1. O
Finally, let us show that under the assumptions of Theorem 5.1, the mild solution (v(t), w(t)) of (1.1) always satisfies the

regularity condition (5.12).
Proposition 5.2 Under the assumptions of Theorem 5.1, the mild solution (v(t), w(t)) satisfies that

Bl,1_n o B

totmaa || v(t), B w(t))ls < Ku(KalBl)?P™° (5.37)
forall p<qg<oo,t€(0,T)andB € NY, where Ky and K are constants depending only on My, Mo, m, N, o, p and §.

Proof. Since the mild solution (v(t), w(t)) is the limit function of the sequence (v;(t), w;(t)) of appropriate Picard iterations
as follows:

(vi(t), wma(t)) = (Sa(t)vo, Sa(t)wo),
vi(t) = Sa(t)wo +/ Sa(t = T)V - [v21V(=8) " (1 — wi-))(T)dT, j > 2,
wj(t) = Sa(t)wo + /t Sa(t = T)V - (W1 V(=A) " (wjo1 — vim)](T)dT, j > 2.
0
Step 1. We first show that

1N
sup sup_tm e [|(v;(t), w;(t))[lr < Mo. (5.38)
j>1 0<t<T

When j =1, following from (5.1) we have

_1. N 1_N
(v, wi)llee = [[(Sa(t)vo, Sa(t)wo)le < t7m 7@ sup tm a5 ||(Sa(t)vo, Sa(t)wo)|ce
0<t<T
1,n IS
< tm O‘pH(Vo,Wo)H 73+% < Myt mTap, (5.39)
By

Hence (5.38) holds for j = 1.

Copyright © 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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When j > 2, using Lemma 2.1 and Lemma 2.2, we have

t
(Ol < [[Sa(t)volle +/O 1Sa(t =)V - [V (=A) " (vjo1 = wi-)]lle (T)dT
_1l, N t _mN m

< Mttt + C(Nyap) | (8 =7)7 2 v (TR ([ (viea (T), Wi (7)) [ler dT

0

m+1

< Mt 4 (N p)| sup 57 (voa(s). woa(s)) ] £ AT B,

<s<T

where B = fol(l - T)f%ﬁ’r*l*%#rnzéw dr =B(1 - ’;—2’, -4 %) is the standard Beta function which is obviously finite.
For w;(t) we have the analogous estimate. Then, for j =2,3,---, we get
14N 14N

(v (1), wi(E)lle < C(N, o, p.m, My, B)t™ 7700 = Myt 7, (5.40)

where the constant C(N, o, p, m, My, B) is always finite. Therefore (5.38) holds true.
Step 2. To apply the Lemma 5.3, we need to show that ||(85vi(t), 8w (t))||La is locally bounded in (0, T). Using Lemma 2.2
and (5.1), we have

1Bl /\/(1 1y

850 (5)Sa (5 )wlr < cva)(3) =

t
v (t) ] "S5 wles

I

Bl _Ne1_1 1., N 1_N
t\~a a9 /t\ " mtap t\ m " ap t
< cwa(3) (5) () ()
< C(No)(5 5 sup ( 5 15 5 ) vollee
- -E+ &
< C(N,a)/\h(E)

Similarly we have a similar estimate on w;(t). Then [|(82vi(t), 82wi(t))||La is locally bounded in (0, T).
Step 3. Similarly to the proof of Proposition 5.1, let 4;(t) = ||82v;(t)]|e, for all j > 1 and t € (0, T), we have

= B 1N t SN
PYir1(t) < Byt~ @ " mTad 4 Cq (t—T1) e 7 Tarqh(T)dT. (5.41)
t(1-n)

Using Lemma 5.3 (the version of sequences), we can choose appropriate constants K1 and K> such that
P _s._Bl_1, N
() < Ka(KalB1)?P 0t o ", (5.42)
For w;(t) we have the similar estimate. Hence we complete the proof of Proposition 5.2. O

The proof of Theorem 5.1. Now Theorem 5.1 follows immediately from Proposition 5.1 and Proposition 5.2. We complete the
proof of Theorem 5.1. O

6. A generalized fractional drift diffusion system

In this section we consider a fractional drift diffusion system with generalized electric potential equation

Otv+N*v =V - (vVTV¢), t>0,xcR",

Ow + N*w =V - (W"V), t>0 xRV, 6.1
¢ =K(v—w)(x)=c fenb(x.y)(v—w)(y)dy, t>0 xRV, (6.1)
v(x,0) = w(x), w(x,0) = wo(x), x € RY,

where ¢ is a constant and b(x, y) is the kernel function of nonlocal linear integral operator K.
For KK = (—A)! which comes from the Poisson equation A¢ = v — w, (6.1) becomes the fractional drift diffusion system
(1.1). For instance,

K@) =c [ (x= )by ™y, (62)

where cis a constant. If ¢ < 0, the equation uy = Au+ V - (uVK(u)) models the Brownian diffusion of charge carriers interacting
via Coulomb forces. If ¢ > 0, the operator K reflects the mutual gravitational attraction of particles. Furthermore, Biler-
Woyczynski [27] considered the equation vz = A*u+ V - (uVK(u)).

We also give the global existence and asymptotic stability of the mild solution to the Cauchy problem (6.1).

Math. Meth. Appl. Sci. 2021, 00 1-22 Copyright © 2021 John Wiley & Sons, Ltd.
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a N
Sty

Theorem 6.1 Let N be a positive integer, 1 < a < 2N and (3.1) hold true. Assume that (vo, wo) € B, 2 ° (RV). If the derivative
of kernel function b(x,y) satisfies

|Db(x, y)| < Clx —y| """, (6.3)

then there exists € > 0 such that if ||(vo, wo)|| ey < g, the Cauchy problem (6.1) has a unique global mild solution (v, w) € X
Bp.oo

such that ||(v, w)||x < 2e. Moreover, the solution depends continuously on initial data in the following sense: let (V, W) € X be
the solution of (6.1) with initial data (¥, Wo) such that ||(V, Wo)|| < g, then there is a constant C such that
)

a N
o N
g,mte

(RN

P

(v =V w—=w)|lx <Cl[(v—To,w—wo)l| a,n . (6.4)
poo | (RN)

Proof. After a few modifications of the proof to Theorem 3.1, we can prove this theorem. Here we just give the main difference
in the proof.
By the fractional heat semigroup Su(t) = e ™, we rewrite the system (6.1) as a system of integral equations

v(t) = Sa(t)vo + B(v, -+, v, w),
{ W(t) = Sa()Wo + B(W, -+, w, V), (6.5)
where
B(v,---,v,w) = /Ot Sa(t—7)V - [V'VK(v — w)](T)dT. (6.6)
Similar to (3.4)-(3.8), we have
1BV, vow)ONl_g.n = sups#-r%nsa(s)/ Sal(t = T)V - [V"VK(v = w)|(T)d]|1r
Bpoo P (RN) s>0 0
< /tsugsifa%llsa(S)Sa(t —T)V - [V'VE(v = w)|(T)||crdT
< C(N,a)/t(t—fr)%*wuvmv;c(v— WO e dT
0 L (m+1)N—p
< e [ (=P VOIBIVEY - W@l g dr. (67)

due to the condition (6.3): |Db(x,y)| < Clx — y|~™, use Hardy-Littlewood-Sobolev inequality for the integral Jan Ix —
y|7V v — w|dy, we have

IVE(v = wll we < C(N. p)llv — wllce. (6.8)

then

_a N
oo | (RN)

1B, - v w)(B)ll

1N . 1N t 1_ (DN (DN 1
< C(Na,p)sup(Tm e [[v(T)|[e)" sup(Tm e [|(v — w)(T)[|p) [ (t—T)m “ev 7 e "m2dT
>0 >0 0
m t 1_ (DN (miON 1 m
< CNa, p)lIviZlv = wllx [ (t—7)m™ er 7 e =m2dT < C(N, a, p)lIv[xllv — wl|x, (6.9)
0

therefore we have

[B(v, v, W)(t)IIB,g ¥ < C(N,a, p)lIvIIZllv — wl|x. (6.10)
p,oo
Similarly we have
1_N m
sup £ @ |[B(v, -, v, w)(D)|ler < C(N, o, p)Iv][x]lv — wl|x. (6.11)

Following the main estimates (6.10) and (6.11) and the proof of Theorem 3.1, the Cauchy problem (6.1) has a unique
global-in-time mild solution in the mixed time-space Besov space. This completes the proof of Theorem 6.1. O

Using the same method we can prove that the mild solution of the Cauchy problem (6.1) has the following asymptotic
stability.

Copyright © 2021 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2021, 00 1-22
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Theorem 6.2 Let N > 2 be a positive integer, 1 < a < 2N, (3.1) and (6.3) hold true. Assume that (v, w) and (V, W) are two
mild solutions of the Cauchy problem (6.1) described in Theorem 6.1 corresponding to initial conditions (vo, wo) and (Vo, Wo),

Lo N
respectively. If (vo, wo), (Vo, Wo) € Bp,;"f” (RM) such that

lim [|Sa(t)(vo — %o, wo — W0)|| o«,n =0, (6.12)
t—o0 Bp,£ P(RN>

then we have the following asymptotic stability
a_N

lim (I =0w =)l _gw A+ 75|V = 7w =)o ) =0. (6.13)

Bk P (RM)

_a N
Theorem 6.3 Let N > 2 be a positive integer, 1 < a < 2N, (3.1) and (6.3) hold true. Assume that (vo, wo) € Bp,£+p (RM),
and (v, w) is the mild solution to the system (6.1) with initial data (vo, wo). Furthermore, assume that there exist two positive
constants My and M» such that

sup [[(v(t) w(t)ll oo <M, (6.14)
0<t<T Bpoo P (®RN)

1_N
sup £ a5 ||(v(t), w(t))l| ogany < Mo. (6.15)
0<t<T

Then, there exist two positive constants K1 and K> depending only on My, M,, N, o, m and p, such that

1(82v (), B w(t))ll Lany < Ku(KalB|)?P e e (6.16)

forallp< g<oo, te(0,T)andB eNY.
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