References:
1. Vazin A, Japoni A, Shahbazi S,
Davarpanah MA. Vancomycin utilization evaluation at hematology-oncology
ward of a teaching hospital in Iran. Iranian journal of pharmaceutical
research: IJPR. 2012;11(1):163.
2. Zhang Y, Wang T, Zhang D, You H,
Dong Y, Liu Y, et al. Therapeutic Drug Monitoring Coupled With Bayesian
Forecasting Could Prevent Vancomycin-Associated Nephrotoxicity in Renal
Insufficiency Patients: A Prospective Study and Pharmacoeconomic
Analysis. Therapeutic drug monitoring. 2020;42(4):600-9.
3. Elbarbry F. Vancomycin dosing and
monitoring: critical evaluation of the current practice. European
journal of drug metabolism and pharmacokinetics. 2018;43(3):259-68.
4. Tobin C, Darville J, Thomson A,
Sweeney G, Wilson J, MacGowan A, et al. Vancomycin therapeutic drug
monitoring: is there a consensus view? The results of a UK National
External Quality Assessment Scheme (UK NEQAS) for Antibiotic Assays
questionnaire. Journal of Antimicrobial Chemotherapy. 2002;50(5):713-8.
5. Vandecasteele SJ, De Vriese AS.
Recent changes in vancomycin use in renal failure. Kidney international.
2010;77(9):760-4.
6. Ghasemiyeh P, Vazin A, Zand F,
Azadi A, Karimzadeh I, Mohammadi-Samani S. A simple and validated HPLC
method for vancomycin assay in plasma samples: the necessity of TDM
center development in Southern Iran. Research in Pharmaceutical
Sciences. 2020;15(6):529-40.
7. Murphy JE, Gillespie DE, Bateman
CV. Predictability of vancomycin trough concentrations using seven
approaches for estimating pharmacokinetic parameters. American journal
of health-system pharmacy. 2006;63(23):2365-70.
8. Estes KS, Derendorf H. Comparison
of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin,
and daptomycin. European journal of medical research.
2010;15(12):533-43.
9. Vancomycin: Drug information.
UpToDateMarch 2021.
10. Olson J, Hersh AL, Sorensen J,
Zobell J, Anderson C, Thorell EA. Intravenous vancomycin therapeutic
drug monitoring in children: evaluation of a pharmacy-driven protocol
and collaborative practice agreement. Journal of the Pediatric
Infectious Diseases Society. 2020;9(3):334-41.
11. Kim S-H, Kang C-I, Lee S-H, Choi
J-S, Huh K, Cho SY, et al. Weight-based vancomycin loading strategy may
not improve achievement of optimal vancomycin concentration in patients
with preserved renal function. Journal of Chemotherapy. 2020:1-6.
12. Rybak MJ, Le J, Lodise TP, Levine
DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for
serious methicillin-resistant Staphylococcus aureus infections: A
revised consensus guideline and review by the American Society of
Health-System Pharmacists, the Infectious Diseases Society of America,
the Pediatric Infectious Diseases Society, and the Society of Infectious
Diseases Pharmacists. American Journal of Health-System Pharmacy.
2020;77(11):835-64.
13. Abdul-Aziz MH, Alffenaar J-WC,
Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial
therapeutic drug monitoring in critically ill adult patients: a Position
Paper#. Intensive care medicine. 2020;46:1127-53.
14. Neely MN, Youn G, Jones B,
Jelliffe RW, Drusano GL, Rodvold KA, et al. Are vancomycin trough
concentrations adequate for optimal dosing? Antimicrobial agents and
chemotherapy. 2014;58(1):309-16.
15. Patel N, Pai MP, Rodvold KA,
Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from
here. Clinical infectious diseases. 2011;52(8):969-74.
16. Hao J-J, Chen H, Zhou J-X.
Continuous versus intermittent infusion of vancomycin in adult patients:
a systematic review and meta-analysis. International journal of
antimicrobial agents. 2016;47(1):28-35.
17. Ampe E, Delaere B, Hecq J-D,
Tulkens PM, Glupczynski Y. Implementation of a protocol for
administration of vancomycin by continuous infusion: pharmacokinetic,
pharmacodynamic and toxicological aspects. International journal of
antimicrobial agents. 2013;41(5):439-46.
18. Han HK, An H, Shin K-H, Shin D,
Lee SH, Kim JH, et al. Trough concentration over 12.1 mg/l is a major
risk factor of vancomycin-related nephrotoxicity in patients with
therapeutic drug monitoring. Therapeutic drug monitoring.
2014;36(5):606-11.
19. Burns AN, Goldman JL. A Moving
Target—Vancomycin Therapeutic Monitoring. Journal of the Pediatric
Infectious Diseases Society. 2020;9(4):474-8.
20. Aljefri DM, Avedissian SN, Rhodes
NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve
and acute kidney injury: a meta-analysis. Clinical Infectious Diseases.
2019;69(11):1881-7.
21. Neely MN, Kato L, Youn G, Kraler
L, Bayard D, van Guilder M, et al. Prospective trial on the use of
trough concentration versus area under the curve to determine
therapeutic vancomycin dosing. Antimicrobial agents and chemotherapy.
2018;62(2).
22. Lines J, Burchette J, Kullab SM,
Lewis P. Evaluation of a trough-only extrapolated area under the curve
vancomycin dosing method on clinical outcomes. International Journal of
Clinical Pharmacy. 2020:1-7.
23. Al-Sulaiti FK, Nader AM, Saad MO,
Shaukat A, Parakadavathu R, Elzubair A, et al. Clinical and
Pharmacokinetic Outcomes of Peak–Trough-Based Versus Trough-Based
Vancomycin Therapeutic Drug Monitoring Approaches: A Pragmatic
Randomized Controlled Trial. European journal of drug metabolism and
pharmacokinetics. 2019;44(5):639-52.
24. Drennan PG, Begg EJ, Gardiner SJ,
Kirkpatrick CM, Chambers ST. The dosing and monitoring of vancomycin:
what is the best way forward? International journal of antimicrobial
agents. 2019;53(4):401-7.
25. Suzuki Y, Kawasaki K, Sato Y,
Tokimatsu I, Itoh H, Hiramatsu K, et al. Is peak concentration needed in
therapeutic drug monitoring of vancomycin? A
pharmacokinetic-pharmacodynamic analysis in patients with
methicillin-resistant Staphylococcus aureus pneumonia. Chemotherapy.
2012;58(4):308-12.
26. Pai MP, Hong J, Krop L. Peak
measurement for vancomycin AUC estimation in obese adults improves
precision and lowers bias. Antimicrobial agents and chemotherapy.
2017;61(4).
27. Holmes N. Using AUC/MIC to guide
vancomycin dosing: ready for prime time? Clinical Microbiology and
Infection. 2020;26(4):406-8.
28. Fuchs A, Csajka C, Thoma Y,
Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a
review of available computer tools. Clinical pharmacokinetics.
2013;52(1):9-22.
29. Turner RB, Kojiro K, Shephard EA,
Won R, Chang E, Chan D, et al. Review and validation of Bayesian
dose‐optimizing software and equations for calculation of the vancomycin
area under the curve in critically ill patients. Pharmacotherapy: The
Journal of Human Pharmacology and Drug Therapy. 2018;38(12):1174-83.
30. Guo T, van Hest RM, Fleuren LM,
Roggeveen LF, Bosman RJ, van der Voort PH, et al. Why we should sample
sparsely and aim for a higher target: Lessons from model‐based
therapeutic drug monitoring of vancomycin in intensive care patients.
British Journal of Clinical Pharmacology. 2020.
31. Mogle BT, Steele JM, Seabury RW,
Dang UJ, Kufel WD. Implementation of a two-point pharmacokinetic
AUC-based vancomycin therapeutic drug monitoring approach in patients
with methicillin-resistant Staphylococcus aureus bacteraemia.
International journal of antimicrobial agents. 2018;52(6):805-10.
32. Oda K, Jono H, Nosaka K, Saito H.
Reduced nephrotoxicity with vancomycin therapeutic drug monitoring
guided by area under the concentration–time curve against a trough
15–20 μg/mL concentration. International Journal of Antimicrobial
Agents. 2020;56(4):106109.
33. Heil EL, Claeys KC, Mynatt RP,
Hopkins TL, Brade K, Watt I, et al. Making the change to area under the
curve–based vancomycin dosing. American Journal of Health-System
Pharmacy. 2018;75(24):1986-95.
34. Biagi MJ, Butler DA, Wenzler E.
AUC-based monitoring of vancomycin: closing the therapeutic window. The
journal of applied laboratory medicine. 2019;3(4):743-6.
35. Haeseker M, Croes S, Neef C,
Bruggeman C, Stolk L, Verbon A. Evaluation of vancomycin prediction
methods based on estimated creatinine clearance or trough levels.
Therapeutic drug monitoring. 2016;38(1):120-6.
36. Tan C, Lee H, Ti T, Lee E.
Pharmacokinetics of intravenous vancomycin in patients with end-stage
renal failure. Therapeutic drug monitoring. 1990;12(1):29-34.
37. Matzke GR, Mcgory RW, Halstenson
CE, Keane WF. Pharmacokinetics of vancomycin in patients with various
degrees of renal function. Antimicrobial agents and chemotherapy.
1984;25(4):433-7.
38. Macias WL, Mueller BA, Scarim SK.
Vancomycin pharmacokinetics in acute renal failure: preservation of
nonrenal clearance. Clinical Pharmacology & Therapeutics.
1991;50(6):688-94.
39. Goti V, Chaturvedula A, Fossler
M. Hospitalized Patients With and Without Hemodialysis Have Markedly
Different Vancomycin Pharmacokinetics: A Population Pharmacokinetic
Model-Based Analysis (vol 40, pg 212, 2018). THERAPEUTIC DRUG
MONITORING. 2019;41(4):549-.
40. Charoensareerat T, Chaijamorn W,
Boonpeng A, Srisawat N, Pummangura C, Pattharachayakul S. Optimal
vancomycin dosing regimens for critically ill patients with acute kidney
injury during continuous renal replacement therapy: A Monte Carlo
simulation study. Journal of Critical Care. 2019;54:77-82.
41. Khoei A, Soltani R, Emami J,
Badri S, Taheri S. Therapeutic drug monitoring of vancomycin by AUCτ-MIC
ratio in patients with chronic kidney disease. Research in
Pharmaceutical Sciences. 2019;14(1):84.
42. Marti R, Rosell M, Pou L, García
L, Pascual C. Influence of biochemical parameters of liver function on
vancomycin pharmacokinetics. Pharmacology & toxicology.
1996;79(2):55-9.
43. Westphal J-F, Brogard J-M.
Clinical pharmacokinetics of newer antibacterial agents in liver
disease. Clinical pharmacokinetics. 1993;24(1):46-58.
44. Brunetti L, Song JH, Suh D, Kim
HJ, Seong YH, Lee DS, et al. The risk of vancomycin toxicity in patients
with liver impairment. Annals of Clinical Microbiology and
Antimicrobials. 2020;19:1-9.
45. Ghasemiyeh P, Mohammadi-Samani S,
Firouzabadi N, Vazin A, Zand F. A Brief ICU Residents’ Guide:
Pharmacotherapy, Pharmacokinetic Aspects and Dose Adjustments in
Critically Ill Adult Patients Admitted to ICU. Trends in Anaesthesia and
Critical Care. 2021.
46. Turner RB, Kojiro K, Won R, Chang
E, Chan D, Elbarbry F. Prospective evaluation of vancomycin
pharmacokinetics in a heterogeneous critically ill population.
Diagnostic Microbiology and Infectious Disease. 2018;92(4):346-51.
47. Radke C, Horn D, Lanckohr C,
Ellger B, Meyer M, Eissing T, et al. Development of a physiologically
based pharmacokinetic modelling approach to predict the pharmacokinetics
of vancomycin in critically ill septic patients. Clinical
pharmacokinetics. 2017;56(7):759-79.
48. Roberts JA, Lipman J.
Antibacterial dosing in intensive care. Clinical pharmacokinetics.
2006;45(8):755-73.
49. Garaud J-J, Regnier B, Inglebert
F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in
critically ill patients. Journal of Antimicrobial Chemotherapy.
1984;14(suppl_D):53-7.
50. Honore PM, De Bels D, Kugener L,
Redant S, Attou R, Gallerani A, et al. Vancomycin pharmacokinetics in
critically ill obese patients: can the clinician sit back and relax?
Critical Care. 2019;23(1):15.
51. Dolton M, Xu H, Cheong E, Maitz
P, Kennedy P, Gottlieb T, et al. Vancomycin pharmacokinetics in patients
with severe burn injuries. Burns. 2010;36(4):469-76.
52. Rybak MJ, Albrecht L, Berman J,
Warbasse L, Svensson C. Vancomycin pharmacokinetics in burn patients and
intravenous drug abusers. Antimicrobial agents and chemotherapy.
1990;34(5):792-5.
53. Hill DM, Velamuri SR, Lanfranco
J, Legro IR, Sinclair SE, Hickerson WL. Optimization of an empiric
vancomycin dosing algorithm for improved target concentration attainment
in patients with thermal injury. Burns. 2019;45(2):423-32.
54. Small PM, Chambers HF. Vancomycin
for Staphylococcus aureus endocarditis in intravenous drug users.
Antimicrobial Agents and Chemotherapy. 1990;34(6):1227-31.
55. Laiprasert J, Klein K, Mueller
BA, Pearlman MD. Transplacental passage of vancomycin in noninfected
term pregnant women. Obstetrics & Gynecology. 2007;109(5):1105-10.
56. Reyes MP, Ostrea Jr EM, Cabinian
AE, Schmitt C, Rintelmann W. Vancomycin during pregnancy: does it cause
hearing loss or nephrotoxicity in the infant? American journal of
obstetrics and gynecology. 1989;161(4):977-81.
57. Heble Jr DE, McPherson C, Nelson
MP, Hunstad DA. Vancomycin trough concentrations in overweight or obese
pediatric patients. Pharmacotherapy: The Journal of Human Pharmacology
and Drug Therapy. 2013;33(12):1273-7.
58. Chin KG, Mactal-Haaf C, McPherson
III CE. Use of anti-infective agents during lactation: part
1—beta-lactam antibiotics, vancomycin, quinupristin-dalfopristin, and
linezolid. Journal of Human Lactation. 2000;16(4):351-8.
59. White S, Sakon C, Fitzgerald L,
Kam C, McDade E, Wong A. Comparison of Vancomycin Pharmacokinetics in
Cystic Fibrosis Patients Pre and Post-lung Transplant. Clinical Medicine
Insights: Circulatory, Respiratory and Pulmonary Medicine.
2020;14:1179548420930925.
60. Tsang M. A Practice of Anesthesia
for Infants and Children. Canadian Journal of Anesthesia/Journal
canadien d’anesthésie. 2018;65(12):1392-3.
61. Pan Y, He X, Yao X, Yang X, Wang
F, Ding X, et al. The effect of body mass index and creatinine clearance
on serum trough concentration of vancomycin in adult patients. BMC
Infectious Diseases. 2020;20(1):1-7.
62. Vance-Bryan K, Guay D, Gilliland
S, Rodvold K, Rotschafer JC. Effect of obesity on vancomycin
pharmacokinetic parameters as determined by using a Bayesian forecasting
technique. Antimicrobial agents and chemotherapy. 1993;37(3):436-40.
63. Smit C, Wasmann RE, Goulooze SC,
Wiezer MJ, van Dongen EP, Mouton JW, et al. Population pharmacokinetics
of vancomycin in obesity: Finding the optimal dose for (morbidly) obese
individuals. British Journal of Clinical Pharmacology.
2020;86(2):303-17.
64. Grace E. Altered vancomycin
pharmacokinetics in obese and morbidly obese patients: what we have
learned over the past 30 years. Journal of antimicrobial chemotherapy.
2012;67(6):1305-10.
65. Masich AM, Kalaria SN, Gonzales
JP, Heil EL, Tata AL, Claeys KC, et al. Vancomycin Pharmacokinetics in
Obese Patients with Sepsis or Septic Shock. Pharmacotherapy: The Journal
of Human Pharmacology and Drug Therapy. 2020;40(3):211-20.
66. Omote S, Yano Y, Hashida T,
Masuda S, Yano I, Katsura T, et al. A retrospective analysis of
vancomycin pharmacokinetics in Japanese cancer and non-cancer patients
based on routine trough monitoring data. Biological and Pharmaceutical
Bulletin. 2009;32(1):99-104.
67. Al-Kofide H, Zaghloul I, Al-Naim
L. Pharmacokinetics of vancomycin in adult cancer patients. Journal of
Oncology Pharmacy Practice. 2010;16(4):245-50.
68. Zhang X, Wang D. The
characteristics and impact indicator of vancomycin pharmacokinetics in
cancer patients complicated with severe pneumonia. Journal of Infection
and Chemotherapy. 2020.
69. Izumisawa T, Wakui N, Kaneko T,
Soma M, Imai M, Saito D, et al. Increased Vancomycin Clearance in
Patients with Solid Malignancies. Biological and Pharmaceutical
Bulletin. 2020:b20-00083.
70. Nakayama H, Suzuki M, Kato T,
Echizen H. Vancomycin pharmacokinetics in patients with advanced cancer
near end of life. European Journal of Drug Metabolism and
Pharmacokinetics. 2019;44(6):837-43.
71. Cardile AP, Tan C, Lustik MB,
Stratton AN, Madar CS, Elegino J, et al. Optimization of time to initial
vancomycin target trough improves clinical outcomes. Springerplus.
2015;4(1):364.
72. Ghasemiyeh P, Borhani-Haghighi A,
Karimzadeh I, Mohammadi-Samani S, Vazin A, Safari A, et al. Major
Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and
Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke:
A Narrative Review. Therapeutics and clinical risk management.
2020;16:595-605.
73. Ghasemiyeh P, Mohammadi-Samani S.
Iron Chelating Agents: Promising Supportive Therapies in Severe Cases of
COVID-19? Trends in Pharmaceutical Sciences. 2020;6(2):65-6.
74. Ghasemiyeh P, Mohammadi-Samani S.
COVID-19 Outbreak: Challenges in Pharmacotherapy Based on
Pharmacokinetic and Pharmacodynamic Aspects of Drug Therapy in Patients
with Moderate to Severe Infection. Heart & Lung. 2020.
75. Ghasemiyeh P, Mohammadi-Samani S.
The necessity of early anti-inflammatory therapy initiation in cases
with mild-to-moderate COVID-19: A personal experience from an attending
pharmacist and his resident. Acta Biomed. 2021;92(3).