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Abstract

Metal-Organic Networks (MON’s) is the central bone for the chem-
ical compounds of the latest study for the energy department. The
study of MON’s structure provides us numerous bene�ts in di�er-
ent �elds related to chemical sciences, electrical and civil sectors.
The MON’s structure is also used to restore di�erent chemical com-
pounds, especially those elements which can be used for the energy
purpose such as hydrogen and carbon. Topological indices of the
MON’s structure provide relationships between physical and chemical
characteristics of the this compound such as melting points, boiling
points, chemically stability, pressure, chemical reaction factors and
many other basic properties.

In this paper we calculate di�erent topological indices based on
�rst, second and third distances for two di�erent metal-organic net-
works with expanding number of layers consisting on both organic
ligands and metal vertices. A comparison between the calculated dif-
ferent kinds of the Topological Indices with the help of the numerical
values and their graphical representation is also included.

*Corresponding author: M.A. Malik, Email address: alies.camp@gmail.com
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1 Introduction

According to the Chemistry, every substance is made up of di�erent chem-
ical element and every element has its own properties. Every element
change the chemical, physical properties of that substance with respect to
the its properties as well as its appearance too. Besides this, in the world
of the chemistry some element are found in every substance in form of
some order or bond and these element are are hydrogen, carbon oxygen
and nitrogen. Almost every substance is made of these elements combi-
nation. As we know that hydrogen is the �ame catching element and it
help in combustion. Hydrogen is one of the next-source supply of energy
[32, 34]. Hydrogen is such gas which is odourless and colourless and as
a gas, it cannot be detected by ordinary means. So, it is the focus of the
energy sector that low percentage of hydrogen can be detected by some
sort of tool in less than a minute [25, 27, 31, 43].

Many scientist are working on the some method or device that can
detect hydrogen as fast as it can. So, a group of scientist are give some
progress in this regard. Won-Tea et al. [41] are successful in formation
of a device that consist of Metal Organic Network (MON) in the palladium
nano-wires which told the presence of molecular hydrogen(H2) in less than
seven seconds. Moreover, besides recognization and sensing, the MONs
possess a large number of chemical and physical properties that are de�ne
in impregnating suitable active materials [2, 3, 5], ion exchange and post
synthetic ligand [28], changing organic ligands [30], gra�ing active groups
[18] and formation of composites with useful substance [11, 28]. The relation
between solvents, molar ration, pH, temperature and architectures of MON’s
are proposed by the Seetharaj et al.[32]. MON’s are very helpful and useful
for the puri�cation, storage and separation of molecules [17, 38]and gate
path for the construction of nano-structures[29].

Now a days, a lot of important computational tools are used to compare
certain type of chemical compounds in modern chemistry that come from
graph theory. These tools are used to investigate several structural prop-
erties including physical and chemical properties of these compounds. A
topological invariant (or simply denoted by TI) is one of the most important
and basic tool which is used for the calculation of several types of proper-
ties of the organic materials such as heat of formation, heat of evaporation,

2



melting point, temperature, tension, �ash point,retention times in density
and chromatography, boiling point, density, pressure, partition coe�cient
[9, 14, 24, 26, 37]. For the evaluation of para�n’s boiling point Wiener (1947)
used a distance-based formula [42, 36]. Gutman and Trinajsti [12] (1972)
de�ned some topological indices to evaluate a conjugated molecules’ total
energy of the π-electrons.

Furthermore, TI’s show a fantastic results within the QSAR/QSPR re-
search to narrate the systems with some chemical and biological property.
This relation is mathematically expressed. Wasson [27] (2019) delivered
the idea of linker opposition with a Metal Organic Network (MON) for
topological invariants. The TI’s of numerous networks which incorpo-
rates honeycomb structures, oxide networks consisting of C6 and C8 cy-
cles, icosahedral, futtball like chemical structures called fullerene and large
cylindrical type nanostructures known as carbon nanotubes are studied in
[4, 6, 7, 8, 15, 16, 19, 21, 35, 39, 40, 20, 22]. The degree based indices for
Eulerian graph [52, 54] for Zagreb indices, Sierpinski networks [53, 56] for
topological descriptors and structural property and for lattices [55] have
also been studied.

In the current study, we have investigated various topological indices
that can be expressed in terms of the degrees of vertices of graphs with
focus on parameters that describe the number of vertices lying at short
distances from a given vertex in a graph. We have considered �rst second
and third degrees of every vertex in this work. We consider metal organic
networks of two kinds denoted by MON1(t) and MON2(t), where t ≥ 2
represent the growth stage of these networks. When t increases, tehse
networks grow in the outwards direction. Interestingly, both of these
metal organic networks are structurally di�erent but the order and size of
these networks remains same for at all growth stages. We consider both
organic ligands and metal nodes as well. The rest of the sections discuss
the computation of the leap Zagreb indices and Wiener polarity indices for
these graphs.

2 PRELIMINARIES

We consider a graph G to be a graph G = (V (G), E(G)), where the set
V (G) represents the vertex set of G and de�ned as V (G) = {v1, v2, ..., vn}
and similarly the set E(G) denotes the edge set of G respectively. The
|V (G)| = n is the order of the graph and |E(G)| = m is the size of graph
G. When there exists a path between every pair of vertices in G, we
say that the graph G is connected graph. The distance d(u, v) between
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two vertices u, v of graph G is de�ned as the length of the shortest path
between u and v.

The �rst, second and third leap Zagreb indices of a graph have been
introduced by Naji et al. and these are de�ne as " the sum of squares of
second degrees of vertices of G" is called �rst degree, "the sum of products
of second degrees of pairs of adjacent vertices in G" is de�ne as second
degree and "the sum of products of �rst and second degrees of vertices of
G" is called third leap Zagreb indices, respectively. For a MON graph, the
�rst kind (LM1), second kind (LM2) and third kind (LM3) leap Zagreb indices
are de�ned as:

LM1 =
n∑

vi=1

d2(vi) (1)

LM2 =
n∑
i=1

d2(vi)d2(vj) (2)

LM3 =
n∑
i=1

d1(vi)d2(vi) (3)

The concept of co-indices was invented by Doslic in 2008 and was �rst
applied to the two Zagreb indices. Thus, in the co-induce of leap zagreb,
we take those edges who found in the complement of any graph. we have
to take a vertex and then take all the edges that are in the complement of
that graph. Then repeat for every vertex and take sum of all the vertices.
De�nition: For any MON graph, second (LM2) and third (LM3) version of
leap Zagreb Co-indices are

LM2 =
∑

(u,v)/∈E(G)

d2(u)d2(v) (4)

LM3 =
∑

(u,v)/∈E(G)

d2(u) + d2(v) (5)

As earlier we discussed about the structure of the leap Zagreb Co-indices,
that it is an edge-based formula that take those edges which are in the
complement of the graph. So, in rebuttal of above mention formula, we
drive a formula that gave same result and work in the same manner but it
is a vertex based formula and de�ne on the neighborhood of that vertex.
It is very useful for those graph which are symmetry on some point in
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any direction. As follow:

LM2 =
∑
vεV (G)

fvd2(vi)

{ n∑
i=1

d2(vi)− d2
(
N(vi)

)}

LM3 =
∑
vεV (G)

fv

[{ n∑
i=1

d2(vi)− d[N(vi)]

}

+

{
d2(vi)

(
|V | − |N(vi)|

)}]
The Wiener polarity index WP (G) of a graph G is de�ne as, the sum of

the number of unordered pairs of vertices u, v of G such that the distance
of u and v is equal to 3."
“The Harold Wiener introduced Wiener Polarity Index in 1947 for quantity.
To calculate boiling points (BF) tB of the para�n, Wiener used a linear
formula of W(G) and WP (G). The Wiener Polarity index formula is de�ne
as:

W (G) =
n∑
i=1

1

2
d3(vi) (6)

3 Metal Organic Network (MON)

In this section, we study about structure of the metal-organic network
(MON) that is made up of metals and organic molecules due to chemical
bonding as shown in Figure 1 and Figure 2. The metal is zeolite imidazole
which is shown as bigger vertex and organic element is shown as smaller
vertex [41]. The networks (MON1) and (MON2) is formed by the combination
of the basic Metal Organic structure. In the (MON1), the bigger vertex which
are zeolite imidazole are joined with each other. Similarly, In the (MON2),
the smaller vertex which are organic metal are joined with each other.
In this way, the metal organic structure are increasing. Both (MON1) and
(MON2) are the primary structure with di�erent physical, chemical and
all other properties. For these networks we have |V (MON1(t))| = 48t =
|V (MON2(t))| and |E(MON1(t))| = 72t−12 = |E(MON2(t))|, where t ≥ 2.
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Figure 1: MON1(t) for t=2 Figure 2: MON2(t) for t=2

4 Basic Results on MON1 and MON2

First we discussed some basic results for both of the MON’s structure, that
is, the order and size of both MON’s, in the previous section. Now we
discuss some properties of the MON1(t) graphs in details. The number of
distinct types of vertices in MON1(t) can be identi�ed as four, and they
belong to the set {2, 3, 4, 6}. So we have the following vertex partitioning
with respect to these types.

V1 = [vεV (MON1(t))|V (v) = 2]

V2 = [vεV (MON1(t))|V (v) = 3]

V3 = [vεV (MON1(t))|V (v) = 4]

V4 = [vεV (MON1(t))|V (v) = 6]

On the same lines, we have four di�erent types of edge partition depend-
ing upon the degrees on end-vertices of all edges in MON1(t) that belong
to the set {(2, 3), (2, 4), (2, 6), (4, 6)}. Thus, we have Table 1 and Table 2.

Table 1: Partition of edges with respect degree of end-vertices
d(u), d(v) Frequency

(2, 3) 36

(2, 4) 12(3t− 1)

(2, 6) 24(t− 1)

(4, 6) 12(t− 1)
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Now, we de�ne the vertex/edge partitions of MON2(t). The number of
distinct types of vertices in MON2(t) can be identi�ed as three, which are
in the set {2, 3, 4}. So, we have

V1 = [vεV (MON1(t))|V (v) = 2]

V2 = [vεV (MON1(t))|V (v) = 3]

V3 = [vεV (MON1(t))|V (v) = 4]

We have �ve di�erent types of edges that are based on the degrees of end
vertices in MON2(t) that are de�ne as (2, 3), (2, 4), (3, 3), (3, 4) and (4, 4).
Thus, we have

Table 2: Partition of edges with respect degree of end-vertices
d(u), d(v) Frequency

(2, 3) 12(t+ 2)

(2, 4) 12(t+ 1)

(3, 3) 24(t− 1)

(3, 4) 12(t− 1)

(4, 4) 12(t− 1)

5 Tables Of First,Second and Third Degree Of
MON’s(t)

Before going on toward to the main results of our paper, we have to discuss
the �rst, second and third degree of the MON’s because we are using in the
above mentioned result. Similarly, in this section we study the partition of
the vertices and edges with respect to the �rst, second and third degrees.

5.1 Tables Of MON1

“In this section, tables of MON1 are discussed with respect to the vertex
and edge partition. We discuss the vertex and edge partition of MON1 with
respect to the �rst, second and third degrees in Tables 3−7 which are used
in the main results that provide us application in many �elds.".
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Table 3: Partition of Vertex with
respect to the 1st distance of Ver-
tices
d1(v) Frequency

2 30n

3 12

4 12n− 6

6 6n− 6

Table 4: Partition of Vertices with
respect 2nd distance of Vertices

d2(v) Frequency

3 12

4 18

6 12n− 6

7 12

8 24n− 36

10 12n− 12

Table 5: Partition of Vertex with
respect to the 3rd distance of Ver-
tices

d3(v) Frequency

4 12

6 6

9 12

10 12

11 12

12 6

14 12n− 12

16 12n− 12

18 18n− 30

20 6

22 6n− 12

Table 6: Partition of Edges with
respect to 2nd distance of degrees
of end Vertices

d2(u, v) Frequency

(3, 4) 24

(3, 7) 12

(4, 6) 24

(6, 8) 24n− 12

(7, 10) 12

(8, 10) 24n− 36

(8, 8) 12n− 24

(10, 10) 12n− 12

8



Table 7: Partition of Vertices with respect to sum of the degrees of Neigh-
bourhood

d2(v) Sv Frequency

3 18 12

4 10 12

4 28 6

6 14 6

6 18 12

6 22 12n− 12

7 20 12

8 26 12n− 24

8 36 12

8 38 12n− 24

10 30 6n− 6

10 38 6n− 12

10 60 6

5.2 Tables Of MON2

This section is giving us the edge and vertex partition of the MON2 with
respect to the �rst, second and third degree partition in Tables 8−12.
It is also important for our main results for Metal organic Network like
structures, so head toward our tables.

Table 8: Partition of Vertex with
respect to the 1st distance of Ver-
tices

d1(v) Frequency

2 12n+ 18

3 24n− 12

4 12n− 6

Table 9: Partition of Vertices with
respect 2nd distance of Vertices

d2(v) Frequency

3 12

4 18

5 24n− 12

6 6

7 12n− 12

8 6n− 6

10 6n− 6
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Table 10: Partition of Vertex with
respect to the 3rd distance of Ver-
tices

d3(v) Frequency

4 12

6 6

7 24

9 12

10 6

11 12n− 24

13 12n− 12

14 12n− 12

18 12n− 12

Table 11: Partition of Edges with
respect to 2nd distance of degrees
of end Vertices

d2(u, v) Frequency

(3, 4) 24

(3, 5) 12

(4, 5) 12

(4, 6) 12

(5, 5) 12n− 12

(5, 7) 24n− 24

(5, 8) 12n− 12

(7, 10) 12n− 12

(8, 10) 12n− 12

Table 12: Partition of Vertices with respect to sum of the degrees of Neigh-
bourhood

d2(v) Sv Frequency

3 16 12

4 10 12

4 26 6

5 14 12

5 16 12

5 18 12n− 24

6 14 6

7 27 12n− 12

8 38 6n− 6

10 40 6n− 6

6 Results for the Metal Organic Networks

In this section, we are going towards our main result. This section contains
the results on leap Zagreb Indices of �rst, second and third kind and their
respective co-indices of 2nd and 3rd kind for both of the MON’s. Moreover,
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in this section we also �nd results on the Wiener polarity index for both
MON’s structures.

6.1 Leap Zagreb Indices Of MON1(t)

First we discuss the Leap Zagreb indices of �rst kind of MON structure
with the help of tables that are presented in previous section.

Theorem 6.1. Let G be a graph of 48n vertices and 72m-12 edges then the
1st Leap Zegreb Index of graph is

LM1 = 3168n− 2304.

Proof: 1st Leap Zegreb is the vertex based index whose formula is

LM1 =
n∑

vi=1

d2(vi)

LM1 = d2(v1) + d2(v2) + .....+ d2(vn)

By using values from Table 4, we get

LM1 = 32(12) + 42(18) + 62(12n− 6)

+72(12) + 82(24n− 36)

+102(12n− 12)

.LM1 = 3168n− 2304

Theorem 6.2. Let G be a graph of 48n vertices and 72m-12 edges then the
2nd Leap Zegreb Index of graph is

LM2 = 5040n− 4236.

Proof: 2nd Leap Zegreb is the edge based index whose formula is

LM2 =
n∑
i=1

d2(ui)d2(vi)

LM2 = d2(u1)d2(v1) + d2(u2)d2(v2)...+ d2(un)d2(vn)

By using values from Table 6, we get

LM2 = (3.4)(24) + (3.7)(12) + (4.6)(24) + (6.8)(24n− 12)

+(7.10)(12) + (8.10)(24n− 36) + (8.8)(12n− 24)

+(10.10)(12n− 12)

LM2 = 5040n− 4236
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Theorem 6.3. Let G be a graph of 48n vertices and 72m-12 edges then the
3rd Leap Zegreb Index of graph is

LM3 = 1200n− 708.

Proof: 3rd Leap Zegreb is the vertex based index whose formula is

LM3 =
n∑
i=1

d1(vi)d2(vi)

LM3 = d1(v1)d2(v1) + d1(v2)d2(v2) + .....+ d1(vn)d2(vn)

By using values from Table 3and Table 4, we get

LM3 = (2.4)(12) + (2.6)(12n+ 6) + (2.7)(12)

+(2.8)(12n− 24) + (2.10)(6n− 6) + (3.3)(12)

+(4.4)(6) + (4.8)(12n− 12) + (6.10)(6n− 6)

LM3 = 1200n− 708

6.2 Leap Zagreb Indices Of MON2(t)

Now, we discuss the Leap Zagreb indices of second kind of MON structure
with the help of tables that are presented in previous section.

Theorem 6.4. Let G be a graph of 48n vertices and 72m-12 edges then the
1st Leap Zegreb Index of graph is

LM1 = 2172n− 1260.

Proof: 1st Leap Zegreb is the vertex based index whose formula is

LM1 =
n∑

vi=1

d2(vi)

LM1 = d2(v1) + d2(v2) + ........+ d2(vn)

By using values from Table 9, we get

LM1 = 32(12) + 42(18) + 52(24n− 12) + 62(6) + 72(12n

−12) + 82(6n− 6) + 102(6n− 6)

LM1 = 2172n− 1260.
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Theorem 6.5. Let G be a graph of 48n vertices and 72m-12 edges then the
2nd Leap Zegreb Index of graph is

LM2 = 3420n− 2424.

Proof: 2nd Leap Zegreb is the edge based index whose formula is

LM2 =
n∑
i=1

d2(ui)d2(vi)

LM2 = d2(u1)d2(v1) + d2(u2)d2(v2).......+ d2(un)d2(vn)

By using values from Table 10, we get

LM2 = (3.4)(24) + (3.5)(12) + (4.5)(12) + (4.6)(12)

+(5.5)(12n− 12) + (5.7)(24n− 24)

+(5.8)(12n− 12) + (7.10)(12n− 12)

+(8.10)(12n− 12)

LM2 = 3420n− 2424.

Theorem 6.6. Let G be a graph of 48n vertices and 72m-12 edges then the
3rd Leap Zegreb Index of graph is

LM3 = 982n− 492.

Proof: 3rd Leap Zegreb is the vertex based index whose formula is

LM3 =
n∑
i=1

d1(vi)d2(vi)

LM3 = d1(v1)d2(v1) + d1(v2)d2(v2) + .....+ d1(vn)d2(vn)

By using values of �rst and second degree values from Table 8 and Table
9 to obtain the Leap Zagreb of third kind as follows, so we get

LM3 = (2.4)(12) + (2.5)(12n) + (2.6)(6) + (3.3)(12)

+(3.5)(12n− 12) + (3.7)(12n− 12) + (4.4)(6)

+(4.8)(6n− 6) + (10.12)(6n− 6)

LM3 = 982n− 492.
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7 Co-Indices of Leap Zagreb

The graph have the following co-indice of leap Zagreb index. The formula
for co-indices of leap Zagreb are edge based which are following

LM2 =
∑

(u,v)/∈E(G)

d2(u)d2(v)

LM3 =
∑

(u,v)/∈E(G)

d2(u) + d2(v)

Now we suggest a vertex based formula that gives the same results.

LM2 =
∑
vεV (G)

fv × d2(vi)
{ n∑
i=1

d2(vi)− d2
(
N(vi)

)}

LM3 =
∑
vεV (G)

fv

[{ n∑
i=1

d2(vi)− d[N(vi)]

}

+

{
d2(vi)

(
|V | − |N(vi)|

)}]

7.1 Co-Indices Of Leap Zegreb Of MON1(t)

In this section, we are deriving Co-indices of Leap Zagreb of MON1 by
using the new formula’s which are we derive. So,

Theorem 7.1. Let G be a graph of 48n vertices and 72m-12 edges then the
co-indice of the Leap Zegreb is

LM2 = 120147456n2 − 151488n+ 43176.

Proof: As we Know that, Co-indice of Leap Zagreb is edge based and we
are now using the edge based formula which we de�ne in the above lines.
So, we have

LM2 =
∑
vεV (G)

fv × d2(vi)
{ n∑
i=1

d2(vi)− d2
(
N(vi)

)}
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From the Fig 1, we have sum of degree of vertices as
∑
d(vi) = 384n−

180. Now put the values from the Table 7 we get

LM2 = 12.3
(
384n− 198

)
+ 12.4

(
384n− 190

)
+6.4

(
384n− 208

)
+ 6.(12n− 12)

(
384n− 202

)
+6.12

(
384n− 198

)
+ 6.6

(
384n− 194

)
+7.12

(
384n− 200

)
+ 8.12

(
384n− 216

)
+8(12n− 24)

(
384n− 218

)
+ 8(12n− 24)

(
384n

−206
)
+ 10.6

(
384n− 240

)
+ 10.6

(
384n− 210

)
+10.(6n− 12)

(
384n− 218

)
LM2 = 147456n2 − 151488n+ 43176.

Theorem 7.2. Let G be a graph of 48n vertices and 72m-12 edges then the
co-indice of the Leap Zegreb is

LM3 = 36864n2 − 20448n+ 1776.

Proof: As we Know that, Co-indice of Leap Zagreb is edge based and we
are now using the edge based formula which we de�ne in the above lines.
So, we have

LM3 =
∑
vεV (G)

fv

[{ n∑
i=1

d2(vi)− d[N(vi)]

}

+

{
d2(vi)

(
|V | − |N(vi)|

)}]

From the Fig 1 we have sum of degree of vertices=
∑n

i=1d(vi) = 384n−180.
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Now put the values from the Table 7 we obtain

LM3 = 12[(384n− 180− 18) + 3.(48n− 4)]

+12[(384n− 180− 10) + 4.(48n− 3)]

+6[(384n− 180− 28) + 4(48n− 5)]

+12n− 12[(384n− 180− 28) + 6(48n− 3)]

+12[(384n− 180− 18) + 6(48n− 3)]

+6[(384n− 180− 14) + 6(48n− 3)]

+12[(384n− 180− 20) + 7(48n− 3)]

+12[(384n− 180− 36) + 8(48n− 5)]

+12n− 24[(384n− 180− 38) + 8(48n− 5)]

+12n− 24[(384n− 180− 26) + 8(48n− 3)]

+6[(384n− 180− 60) + 10(48n− 7)]

+6n− 6[(384n− 180− 30) + 10(48n− 3)]

+6n− 12[(384n− 180− 38) + 10(48n− 7)].

LM3 = 36864n2 − 20448n+ 1776.

7.2 Co-Indices Of Leap Zegreb Of MON2(t)

In this section, we are deriving Co-indices of Leap Zagreb of MON2 by
using the new formula’s which are derive from the following theorems.

Theorem 7.3. Let G be a graph of 48n vertices and 72m-12 edges then the
co-indice of the Leap Zegreb is

LM2 = 97344n2 − 76404n+ 17772.

Proof: As we Know that, Co-indice of Leap Zagreb is edge based and we
are now using the edge based formula which we de�ne in the above lines.
So, we have

LM2 =
∑
vεV (G)

fv × d2(vi)
{ n∑
i=1

d2(vi)− d2
(
N(vi)

)}
.
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From the Fig 2 we have sum of degree of vertices=
∑n

i=1d(vi) = 312n−108.
Now put the values from the Table12, we get

LM2 = 12.3(312n− 108− 16) + 12.4(312n− 108

−10) + 6.4(312n− 108− 26) + 12.5(312n

−108− 14) + 12.5(312n− 124) + 5(12n

−24)(312n− 108− 18) + (12n− 12)5(312n

−132) + 66(312n− 108− 14) + 7(12n

−12)(312n− 135) + (6n− 6)8(312n− 146)

+(6n− 6)10(312n− 108− 40)

LM2 = 97344n2 − 76404n+ 17772.

Theorem 7.4. Let G be a graph of MON2 with 48n vertices and 72m-12
edges then the co-indice of the Leap Zegreb is

LM3(G) = 29952n2 − 12960n+ 1200.

Proof: As we Know that, Co-indice of Leap Zagreb is edge based and we
are now using the edge based formula which we de�ne in the above lines.
So, we have

LM3 =
∑
vεV (G)

fv

[{ n∑
i=1

d2(vi)− d[N(vi)]

}

+

{
d2(vi)

(
|V | − |N(vi)|

)}]
From the Fig 2, we have sum of degree of vertices=

∑n
i=1d(vi) = 312n−108.

Now putting the values from the Table 12 and we get

LM3 = 12[(312n− 124) + 3(48n− 4)]

+12[(312n− 128) + 4(48n− 3)]

+6[(312n− 108− 26) + 4(48n− 5)]

+12[(312n− 108− 14) + 5(48n− 3)]

+12[(312n− 108− 16) + 5(48n− 3)]

+(12n− 24)[(312n− 108− 18) + 5(48n− 3)]

+(12n− 12)[(312n− 108− 24) + 5(48n− 4)]

+6[(312n− 108− 14) + 6(48n− 3)]

+(12n− 12)[(312n− 108− 27) + 7(48n− 4)]

+(6n− 6)[(312n− 108− 38) + 8(48n− 5)]

+(6n− 6)[(312n− 108− 40) + 10(48n− 5)]

LM3 = 29952n2 − 12960n+ 1200.
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8 Wiener Polarity Index of MON Networks

“To �nd Wiener polarity, we study the vertices at distance 3. In this
section, we �nd the Wiener polarity index of MON’s by using the above
tables."

8.1 Wiener Polarity Index of MON1

First, we are acknowledge the MON1 and �nd the Wiener polarity index of
MON1.

Theorem 8.1. Let G=MON1 be a graph of 48n vertices and 72m-12 edges
then the Wiener Polarity Index of graph is

W (G) = 408n− 264.

Proof: Wiener Polarity is the vertex based index whose formula is

W (G) =
n∑
i=1

1

2
d3(vi)

W (G) =
1

2
d3(v1) +

1

2
d3(v2) + ...........+

1

2
d3(vn)

By using values from Table 6, we get

W (G) =
1

2
(4.12) +

1

2
(6.6) +

1

2
(9.12) +

1

2
(10.12)

+
1

2
(11.12) +

1

2
(12.6) +

1

2
(14.12n− 12)

+
1

2
(16.12n− 12) +

1

2
(18.18n− 30) +

1

2
(20.6)

+
1

2
(22.6n− 12)

W (G) = 408n− 264.

8.2 Wiener Polarity Index of MON2

First, we are acknowledge the MON2 and �nd the wiener polarity index to
MON2.

Theorem 8.2. Let G=MON1 be a graph of 48n vertices and 72m-12 edges
then the wiener Polarity Index of graph is
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W (G) = 336n− 192.

Proof: Wiener Polarity is the vertex based index whose formula is

W (G) =
n∑
i=1

1

2
d3(vi)

W (G) =
1

2
d3(v1) +

1

2
d3(v2) + . . .+

1

2
d3(vn)

By using values from Table 10, we get

W (G) =
1

2
(4.12) +

1

2
(6.6) +

1

2
(7.24) +

1

2
(9.12)

+
1

2
(10.6) +

1

2
(11.12n− 24) +

1

2
(13.12n− 12)

+
1

2
(14.12n− 12) +

1

2
(18.12n− 12)

W (G) = 336n− 192.

9 Graphical Representation and Comparison

In this section, we are di�erentiate the outcomes of the topological invari-
ants for the MON’s through the graphical representation that clearly shows
that how the invariants are increasing monotonically.

Figure 3: Comparison of leap Zagreb indices.

To make di�erentiation between the values of Leap Zagreb indices nu-
merically for MON1, for di�erent values of n. Now, through graphical rep-
resentation, we can easily con�gure that all values of Leap Zagreb indices
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escalate as the values of n increase. Moreover, the values of leap Zagreb
index of second type increase more rapidly than the values of the leap Za-
greb index of �rst kind. Similarly, the values of leap Zagreb index of third
kind can be observed to grow with the least pace. For di�erent values of
n, the graphs of these indices are shown in Figure 3.

Figure 4: Comparison of leap Zagreb and Wiener polarity Indices.

Now, consider the comparison of leap Zagreb index of third kind and
Wiener polarity indices numerically for MON1, for di�erent values of n.
Now, we can easily observe that all values of leap Zagreb index of third
kind and Wiener polarity indices increase monotonically with the values
of n but the leap Zagreb index (third kind) increases with a quite higher
slope. As the values of n increase, the graphic comparison pf these indices
is presented in Figure 4.

Figure 5: Comparison of co-Indices of leap Zagreb indices.
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For the comparison of co-Indices of leap Zagreb numerically for MON1,
for di�erent values of n. Now, we can easily see that all values of co-Indices
of Leap Zagreb indices increase monotonically with the values of n. It can
be observed that the graph of the second leap Zagreb coindex increases
quadraticly but the graph of third leap Zagreb coindex increase linearly.
As the values of n increase, the graphic comparison pf these indices is
presented in Figure 5.

For the comparison of Leap Zagreb Indices numerically for MON2, for
di�erent values of n. Now, through graphical representation, we can easily
con�gure that all values of Leap Zagreb indices increase monotonically
with values of n. For di�erent values of n, the graphs of these topological
indices are drawn in the same plot for comparison and shown in Figure 6.

Figure 6: Comparison of leap Zagreb and Wiener polarity indices.

For the comparison of Leap Zagreb of third kind and Wiener Polarity
Indices numerically for MON2, for di�erent values of n. Through Graphical
representations, we can easily con�gure that all the values of n, Leap
Zagreb of third kind and Wiener polarity indices increase monotonically as
the values of n increase. The graphs of these indices are drawn in Figure
7 for detailed comparison.
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Figure 7: Comparison of co-indices of leap Zagreb indices.

Now we discuss the graphical misrepresentation of the paper of Hong
et al [1]. Figure 6 in [1] depict the graphical comparison of AZI(N), S(N)
and AZIM(N) which is not similar to the values of Table 9 of MON1. The
values of the graph presented in [1] are decreasing which is totally against
the numerical values of the Table 9 in [1].

10 Conclusion

In this paper, we calculate Leap Zagreb Indices, Wiener Polarity Indices
and Co-indices of Leap Zagreb Indices for MON1 and MON2. Also, we
give a comparison by graphical representation for the di�erent kind of the
topological invariants by using numerical values in the above de�ne Tables.
We are also suggested a new formula’s for the calculation of the Co-indices
of Leap Zagreb which is vertex based and also provide the same results.
Moreover, in this paper, we also point out the graphical misrepresentation
in [1] by de�ning that topological invariants are monotone increasing when
compared with the values of n.
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