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Abstract

Conjugated open ended cones in which the configured pentagons are consistent, lies in the circle
of Fries Kekule structure [8]. This non-adjacent tightest configuration of pentagons as shown in the
Fig. 1 is consistent with a Fries Kekule structure and thus provides the most stable cone. In the
study, various topological indices of the same structure in regard of physico-concoction resources and
bioactivity of substance mixtures are studied which further helps to study the behavior of chemical
compounds. In this regard, Zagreb indices M∗1 (G) and M∗2 (G) of a molecular graph G are used to
evaluate the complexity in chemical systems and biological organisms. In this manuscript, we consider
two complex families of stable carbon nanocones and compute their ECI, TEI and eccentricity-based
Zagreb indices.
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1 Introduction and preliminary results

Carbon nanocones are funnel shaped structures made up with dominatingly from carbon with at least
one dimension having micrometer or smaller scale. Nanocones are structures which have height and base
of same magnitudes, this distinguish them from tipped nanowires which have longer than their diameter.
Nanocones lye on the graphite surface having many applications in different fields of chemistry, especially
in Electron microscopy, in developing solar cells and plasma torch.
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(Hani Shaker).
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Graph theory has given researchers in the field of chemistry a most beneficial apparatuses in terms of
topological indices. Atoms as well as molecular compounds can be represented with ease using a molecular
graphs. An atomic graph is a delineation of the basic equation of a synthetic compound as far as graph
hypothesis whose vertices deliver a connection between the molecules of a chemical mixture and its edges
relate to synthetic bonds.
Chem-informatics is another subject that is a blend of science, arithmetic, and data science. It thinks
about QSAR and QSPR property which can be utilized to foresee natural exercises and to get important
results of synthetic mixes. In the QSAR/QSPR contemplate, topological invariants are utilized to an-

Figure 1: Chemical structures of nanocones originated from a single pentagon, and the structure is viewed from
the concave side.

ticipate physico-concoction properties and bioactivity of the substance mixes. A topological invariant is
a numeric amount relating to a graph which portrays structure and topology of the diagram exhibiting
invariasim if automorphism exists in graph. Among certain real classes of topological invariants such as
eccentricity-based, degree-based, counting related polynomials and invariants of graphs, distance-based
topological records are of incredible significance and assume an essential part in concoction graphs hy-
pothesis and especially in hypothetical science. Wiener [1] discovered these indices while performing his
deliberate efforts on the boiling point of paraffin (a member of the alkaline family) and named it the path
number. After that this number was retitled as Wiener index [4] and story of topological indices began.

Let G be a molecular graph of n-vertices having set of vertices {v1, v2, . . . , vn} ∈ V (G) and an edge
set E(G). Length of the shortest (u, v)-path in G is a distance d(u, v) between two vertices u, v ∈ V (G).
For a given vertex u ∈ V (G), the largest distance between two vertices u, v ∈ G are defined as eccentricity
ε(u). Madan et al. [5, 6] introduced the distance-based topological index of G and named it eccentric-
connectivity index (ECI), ξ(G) defined as

ξ(G) =
∑

u∈V (G)

d(u)ε(u). (1.1)

When degrees of vertices are not counted, we obtain the total-eccentricity index of the graph G which is
defined as

ς(G) =
∑

u∈V (G)

ε(u). (1.2)

Ghorbani [10] presented new descriptions of Zagreb indices which were expressed in terms of eccen-
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tricity of a molecular graph G given by

M∗1 (G) =
∑

v∈V (G)

(ε(v))2, (1.3)

M∗2 (G) =
∑

uv∈E(G)

ε(u)ε(v). (1.4)

Recently, Farahani et al. [9] studied the reverse ECI for a family of nanocones and fullerene structures.
Rostami et al [13] found important topological indices for theoretical study of two types of nanostar
dendrimers which helps in drug delivery problems. Zobair et al. [2] has studied the eccentricity based
topological invariants of triangulane dendrimers and computed eccentricity based ECI, MECI, TE and
Zagreb indices which are used to predict the bioactivity of chemical compounds. Zobair et al in [3] studied
the eccentricity based toplogical invariants of dendrimers and also calculated the Polynomial structure
of Benzene ring embedded in periodic-type surface in 2-dimension. Madanshekaf and Ghaneei found the
second-order connectivity index of dendrimer nanostars which are important in supra-molecular chemistry,
particularly in host guest reactions and self-assembly processes. Khaksar et al in [15] studied the ABC
and GA indices of two types of nanocones. Motivation of subject paper comes from the fact that now it is
conceivable to make consummate conical carbon nanostructures in a general sense extraordinary from the
other nanocarbon structures, remarkably buckyballs and nanotubes [8]. Carbonic cones are acknowledged
in distinct five extraordinary structures.

Saheli et al [7] found the eccentricity of a class of nanocone with one pentagon at the centre of cone.
In this paper, we discussed the next complicated families of cones based on second and third generation of
stable pentagonal cones. THe subject study is a family of five different tightest non-adjacent configuration
of the stable pentagons comprising of bended graphite sheets framed as open cones in which one to five
carbon pentagons are located at the tip with progressively smaller cone edges, respectively. The nucleation
and material science of nanocones has been investigated a little up till now. Furthermore, the motivation
of manuscript is from the fact that if the distance increasing between the pentagons then it leads to larger
and more localized bond stress at the resulting cusps of cones [8]. More pentagons at the tip of cone
gives more stable structures of chemical bonding. In this paper we show the key actualities and results
on second and third type of carbon.

In this manuscript, we have formulated and derive closed analytical formulas for the distance-based
topological invariants such as eccentric-connectivity index, total-eccentricity index and eccentricity-based
Zagreb indices of some families of nanocones discussed in the next section.

2 Some families of nanocones

The first molecular graph of the nanocones studied in this section is represented by SC1[n], where n
denotes stage of the growth. The graph of SC1[n] for n = 0 is the core of SC1[n]. The graph of SC1[n]

with three growth stages (n = 0, 1, 2) is shown in Fig. 2. It is to be noted that SC1[n] is constructed by
4(n+1) hexagon at each layer. We have |V (SC1[n])| = 4n2+16n+14 and |E(SC1[n])| = 6n2+22n+17.
The molecular graph of second type of nanocones is represented by SC2[n], where n denotes the growth
stage. For n = 0, the nanocone SC2[0] represent the core of SC2[n]. The graph of SC2[n] with three
growth stages (n = 0, 1, 2) is shown in Fig. 4. The graph of SC2[n] contains 3n2 + 18n+ 21 vertices and
3
2(3n+ 14)(n+ 1) + 6 edges.

Next, we find the eccentricity based topological indices of the nanocones discussed in the previous
section.
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Figure 2: Representation of nanocone SC1[n] type with two growth stages.

3 Eccentric-connectivity (EC) and total-eccentricity (TE) indices of SC1[n]

In this section, we calculate the ECI and TEI of the first type nanocone SC1[n], introduced in the
previous section. The requisite information required to find the invariants of SC1[n] are given in Table 1.

v ∈ V (G) d(v) ε(v) f

w 3 2n+ 3 2

x 3 2n+ 5 4

y 3 2n+ 4 4

z 3 2n+ 5 4

vj1 (1 ≤ j ≤ n− 1) 3 2n+ 2j + 5 8

vj1 (j = n) 2 2n+ 2j + 5 8

vj2 (1 ≤ j ≤ n) 3 2n+ 2j + 4 8

vji (3 ≤ i ≤ j + 1, 2 ≤ j ≤ n− 1) 3 2n+ 2j − i+ 7 8

vji (2 ≤ i ≤
n+ 2

2
, j = n and n even) 2 2n+ 2j − 2i+ 8 8

vji (2 ≤ i ≤
n

2
, j = n and n even) 3 2n+ 2j − 2i+ 7 8

vji (2 ≤ i ≤
n+ 3

2
− 1, j = n and n odd) 2 2n+ 2j − 2i+ 8 8

vji (2 ≤ i ≤
n+ 3

2
− 1, j = n and n odd) 3 2n+ 2j − 2i+ 7 8

vjj+2 (1 ≤ j ≤ n and n even) 3 2n+ j + 5 4

vjj+2 (1 ≤ j ≤ n− 1 and n odd) 3 2n+ j + 5 4

vnn+2 (j = n and n odd) 2 3n+ 5 4

Table 1: Vertices of SC1[n] with their degrees, eccentricities and frequencies of occurrence, for 1 ≤ i ≤ n.

Theorem 3.1. The ECI for the core of nanocone SC1[n] is given by

ξ(SC1[0]) = 146.

Proof. For the nanocone SC1[n] we use only one quadrant of SC1[n] by using the concept of symmetry,
labeled in Figure 3. One representative from a set of vertices have taken having same size and distance
and are labeled by w, x, y, z for 1 ≤ i ≤ n, and their requisite information is given in Table 1.
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Figure 3: The nanocones SC1[n] with vertex labeling of a single quadrant.

Using Table 1, ECI of SC1[n] for n = 0 is given by.

ξ(SC1[n]) =
∑

u∈V (SC1[n])

d(u)ε(u)

= 2× 3× (2n+ 3) + 4× 3× (2n+ 4) + 4× 2× (2× (2n+ 5)).

By simplifying above expression, ξ(SC1[n]) for core of nanocone, i.e. for n = 0, can be written as

ξ(SC1[0]) = 68n+ 146 = 146.

This completes the proof.

Theorem 3.2. The eccentric-connectivity index of nanocone SC1[n] for n ≥ 1 and n even is given by

ξ(SC1[n]) = 36n3 + 196n2 + 290n+ 146.

Proof. For the nanocone SC1[n] we use only one quadrant of SC1[n] by using the concept of symmetry,
labeled in Figure 3. One representative from a set of vertices have taken having same size and distance
and are labeled by w, x, y, z, vj1, v

j
2, v

j
i , v

j
j+2 for 1 ≤ i ≤ n, and their requisite information is given in

Table 1.
Using Table 1, ECI of SC1[n] for n ≥ 1, is given by

ξ(SC1[n]) =
∑

u∈V (SC1[n])

d(u)ε(u)

= 2× 3× (2n+ 3) + 4× 3× [(2n+ 5) + (2n+ 4) + (2n+ 5)] +

+4× 3× 2×
n−1∑
j=1

(
2n+ 2j + 5) + 4× 2× 2× (2n+ 2j + 5)

+4× 3× 2×
n∑
j=1

(
2n+ 2j + 4) + +4× 3× 2×

n−1∑
j=2

j+1∑
i=3

(
2n+ 2j − i+ 7)

+4× 2× 2×

n+2
2∑
i=2

(
2n+ 2j − 2i+ 8) + 4× 3× 2×

n
2∑
i=2

(
2n+ 2j − 2i+ 7)

+4× 3×
n∑
j=1

(
2n+ j + 5).
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By simplifying above expression, ξ(SC1[n]) for n even can be written as

ξ(SC1[n]) = 36n3 + 196n2 + 290n+ 146.

This completes the proof.

Corollary 3.3. The total-eccentricity index of SC1[n] nanocone for n even is given by

ς(SC1[n]) = 12n3 + 60n2 + 2n(5n+11) + 92n+ 62.

Corollary 3.4. The first Zagreb-eccentricity index of SC1[n] nanocone for n even is given by

M∗1 (SC1[n]) = 18n6 − 48n5 + 142n4 + 752n3 + 217n2 + 128n+ 1082.

Theorem 3.5. The eccentric-connectivity index of nanocone SC1[n] for n odd is given by

ξ(SC1[n]) = 36n3 + 196n2 + 290n+ 148.

Proof. Using same technique of symmetry and by using Table 1, ECI of SC1[n] for n ≥ 1, can be written
as.

ξ(SC1[n]) =
∑

u∈V (SC1[n])

d(u)ε(u)

= 2× 3× (2n+ 3) + 4× 3× (2n+ 5) + (2n+ 4) + (2n+ 5) +

+4× 3× 2×
n−1∑
j=1

(
2n+ 2j + 5) + 4× 2× 2× (2n+ 2j + 5)

+4× 3× 2×
n∑
j=1

(
2n+ 2j + 4) + 4× 3× 2×

n−1∑
j=2

j+1∑
i=3

(
2n+ 2j − i+ 7)

+4× 2× 2×

n+3
2
−1∑

i=2

(
2n+ 2j − 2i+ 8) + 4× 3× 2×

n+3
2
−1∑

i=2

(
2n+ 2j − 2i+ 7)

+4× 2×
n−1∑
j=1

(
2n+ j + 5) + 4× 2× (3n+ 5).

After simplification, ξ(SC1[n]) for n odd can be written as

ξ(SC1[n]) = 36n3 + 196n2 + 290n+ 148.

which completes the proof.

Corollary 3.6. The total-eccentricity index of SC1[n] nanocone for n odd is given by

ς(SC1[n]) = 12n3 + 70n2 + 114n+ 62.

Corollary 3.7. The first Zagreb-eccentricity index of SC1[n] nanocone for n odd is given by

M∗1 (SC1[n]) = 18n6 − 48n5 + 142n4 + 692n3 + 9n2n+ 6n+ 1183.
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Figure 4: Representation of nanocone SC2[n] type with two growth stages.

4 Eccentric-connectivity (EC), total-eccentricity (TE) indices of nanocone
SC2[n]

In this section, we compute the EC and TE indices of the second type of nanocone SC2[n]. The degrees
and eccentricities of the core vertices of SC2[n] are shown in Table 2. The degrees and eccentricities of
the vertices of SC2[n], n ≥ 1, are given in Table 3 and Table 4.

v ∈ V (G) d(v) ε(v) f

a, b 3 2n+ 5 3

c, e, g 2 2n+ 6 3

d, f 3 2n+ 6 3

Table 2: The representatives of vertices of SC2[0] with their degrees, eccentricities and frequencies of occurrence.

Theorem 4.1. The ECI of nanocone SC2[0] is given by

ξ(SC2[0]) = 306.

Proof. For the nanocone SC2[n] we use only one quadrant of SC2[n] by using the concept of symmetry,
labeled in Figure 5. One representative from a set of vertices have been taken having same size and
distance and are labeled by a, b, c, d, e, f, g for 1 ≤ i ≤ n, also their requisite information is given in
Table 2. Using Table 2, ECI of SC2[n] for n ≥ 1, is given by

ξ(SC2[n]) =
∑

u∈V (SC2[n])

d(u)ε(u)

= 3× 3× (2n+ 5) + 3× 3× (2n+ 6) + 3× 2× (2n+ 6).

After simplification, the eccentric-connectivity index ξ(SC2[0]) can be written as:

ξ(SC2[0]) = 108n+ 306 = 306,

This completes the proof.

Corollary 4.2. The total-eccentricity and first Zagreb index of SC2[0] is given by

ς(SC2[n]) = 42n+ 120.

M∗1 (SC2[n]) = 84n2 + 480n+ 690.
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Figure 5: The nanocones SC2[5] with vertex labeling of a single quadrant. The vertices v′is in one quadrant are
separated by a dashed line.

v ∈ V (G) d(v) ε(v) f

a, b 3 2n+ 5 3

c, d, e, f, g 3 2n+ 6 3

vj1 (1 ≤ j ≤ r − 1) 3 2n+ 6 6

vj1 (0 ≤ j ≤ n− r − 1) 3 2n+ 2j + 8 6

vj1 (j = n− r) 2 2n+ 2j + 8 6

vj2 (1 ≤ j ≤ r) 3 2n+ 7 6

vj2 (1 ≤ j ≤ n− r) 3 2n+ 2j + 7 6

vj3 (1 ≤ j ≤ r) 3 2n+ 8 6

v′4 3 2n+ 9 3

vi (1 ≤ i ≤ n−1
2

) 3 3n− i+ 8 3× (2i+ 1)

vi (n+1
2
≤ i ≤ n− 1 and n ∼= 1(mod4)) 3 3n− i+ 8 3× (n+9

2
)

vi (n+1
2
≤ i ≤ n− 1 and n ∼= 3(mod4)) 3 3n− i+ 8 3× (n+11

2
)

vi (1 ≤ i ≤ n−1
4

and n ∼= 1(mod4)) 2 7n+9
2
− 2i 3

vi (1 ≤ i ≤ n+1
4

and n ∼= 3(mod4)) 2 7n+9
2
− 2i 3

vkl (1 ≤ k ≤ n−5
2

and 1 ≤ l ≤ n− 2k − 1) 3 2n+ l + k + 7 6

vkl (1 ≤ k ≤ n−5
2

and l = n− 2k) 2 3n− k + 7 6

vkl (k = n−3
2

and l = 1) 2 5n
2

+ 17
2

6

Table 3: The representatives of vertices of SC2[n] for n odd with their degrees, eccentricities and frequencies of
occurrence, for 1 ≤ i ≤ n.

Theorem 4.3. The eccentric-connectivity index of nanocone SC2[n] for n odd is given by

ξ(SC2[n]) =


6375
16 n−

375
16 + 375

16 n
3 + 2985

16 n
2, when n ∼= 1(mod4)

6663
16 n−

1119
16 + 375

16 n
3 + 3147

16 n
2, when n ∼= 3(mod4).

Proof. Using same concept of symmetry for nanocone SC2[n], only one branch of SC2[n] is used as
labelled in Figure 4. One representative from a set of vertices have been taken which have same size and
distances and are labelled by a, b, c, d, e, f, g and vji for 1 ≤ i ≤ n as shown in Table 3. Using Table 3,
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v ∈ V (G) d(v) ε(v) f

a, b 3 2n+ 5 1

c, d, e, f, g 3 2n+ 6 1

vj1 (1 ≤ j ≤ r − 1) 3 2n+ 6 6

vj1 (r ≤ j ≤ n− 1) 3 2n+ 2j − 2r + 7 6

vj1 (j = n) 2 2n+ 2j − 2r + 7 6

vj2 (1 ≤ j ≤ r) 3 2n+ 7 6

vj2 (r + 1 ≤ j ≤ n) 3 2n+ 2j − 2r + 6 6

vj3 (1 ≤ j ≤ r + 1) 3 2n+ 8 6

vi (1 ≤ i ≤ n
2
− 1) 3 3n− i+ 8 3× (2i+ 1)

vi (n
2
≤ i ≤ n) 3 3n− i+ 8 3× (n+ 1)

vi (2 ≤ i ≤ n
4

and n ∼= 0(mod4)) 2 7n+9
2
− 2i 3

vi (2 ≤ i ≤ n−2
4

and n ∼= 2(mod4)) 2 7n+9
2
− 2i 3

vkl (2 ≤ k ≤ n+2
4

and 1 ≤ l ≤ n− 4k + 2) 3 2n+ l + 2k + 6 6

vkl (2 ≤ k ≤ n+2
4

and l = n− 4k + 3) 2 3n− 2k + 9 6

vkl (1 ≤ l ≤ n− 3 and k = 1) 3 2n+ l + 8 6

vkl (l = n− 2 and k = 1) 2 3n+ 6 6

Table 4: The representatives of vertices of SC2[n] for n even with their degrees, eccentricities and frequencies of
occurrence, for 1 ≤ i ≤ n.

the eccentric-connectivity index of SC2[n] for n ≥ 1, are computed in two cases. The eccentricities of vi’s
with respective frequencies are presented in Table 3. It must be observed from Figure 5 that, when n = 5,
the frequency of v1 is 3, the frequency of v2 is 5, and the frequency of v3 and v4 is 7. The eccentricities
of these v′is are presented in Table 3 and Table 4.
Case 1. When n ∼= 1(mod4).

ξ(SC2[n]) =
∑

u∈V (SC2[n])

d(u)ε(u)

= 3× 3× [(2n+ 5) + (2n+ 5) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6)]

+3× 3× 2×
r−1∑
j=1

(2n+ 6) + 3× 3× 2×
n−r−1∑
j=0

(2n+ 2j + 8) + 3× 2× 2×
n−r∑
j=n−r

(2n+ 2j + 8)

+3× 3× 2×
r∑
j=1

(2n+ 7) + 3× 3× 2×
n−r∑
j=1

(2n+ 2j + 7) + 3× 3× 2×
r∑
j=1

(2n+ 8)

+3× 3× (2n+ 9) + 3× 3× [

n−1
2∑
i=1

(3n− i+ 8)(2i+ 1) +
n−1∑
i=n+1

2

(3n− i+ 8)(
n+ 9

2
)]

−3× [2×

n−1
4∑
i=1

(
7n+ 9

2
− 2i)] + 3× 3× 2×

n−5
2∑

k=1

n−2k−1∑
l=1

(2n+ l + k + 7)

+3× 2× 2×

n−5
2∑

k=1

(3n− k + 7) + 3× 2× 2× [
5

2
(n− 1) + 11].
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After simplification, the eccentric-connectivity index ξ(SC2[n]) can be written as:

ξ(SC2[n]) =
6375

16
n− 375

16
+

375

16
n3 +

2985

16
n2.

Case 2. When n ∼= 3(mod4).

ξ(SC2[n]) =
∑

u∈V (SC2[n])

d(u)ε(u)

= 3× 3× [(2n+ 5) + (2n+ 5) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6)]

+3× 3× 2×
r−1∑
j=1

(2n+ 6) + 3× 3× 2×
n−r−1∑
j=0

(2n+ 2j + 8) + 3× 2× 2×
n−r∑
j=n−r

(2n+ 2j + 8)

+3× 3× 2×
r∑
j=1

(2n+ 7) + 3× 3× 2×
n−r∑
j=1

(2n+ 2j + 7) + 3× 3× 2×
r∑
j=1

(2n+ 8)

+3× 3× (2n+ 9) + 3× 3× [

n−1
2∑
i=1

(3n− i+ 8)(2i+ 1) +

n−1∑
i=n+1

2

(3n− i+ 8)(
n+ 11

2
)]

−3× [2×

n+1
4∑
i=1

(
7n+ 9

2
− 2i)] + 3× 3× 2×

n−5
2∑

k=1

n−2k−1∑
l=1

(2n+ l + k + 7)

+3× 2× 2×

n−5
2∑

k=1

(3n− k + 7) + 3× 2× 2× [
5

2
(n− 1) + 11].

After simplification, the eccentric-connectivity index ξ(SC2[n]) can be written as:

ξ(SC2[n]) =
6663

16
n− 1119

16
+

375

16
n3 +

3147

16
n2.

This completes the second case of the proof.

Corollary 4.4. The total-eccentricity index of SC2[n] nonocone for n odd is given by

ς(SC2[n]) =


2203
16 n−

57
4 + 119

16 n
3 + 513

8 n
2, when n ∼= 1(mod4)

2275
16 n−

255
8 + 119

16 n
3 + 135

2 n
2, when n ∼= 3(mod4).

Corollary 4.5. The first Zagreb index of SC2[n] nonocone for n odd is given by

M∗1 (SC2[n]) =


88971
32 n+ 631905

128 + 225
64 n

4 + 963
256n

6 + 273
64 n

5 + 15039
64 n3 + 224607

256 n2, when n ∼= 1(mod4)

399825
128 n+ 296937

64 − 3033
128 n

4 + 963
256n

6 + 303
128n

5 + 4437
32 n

3 + 236787
256 n2, when n ∼= 3(mod4).

Theorem 4.6. The eccentric-connectivity index of nanocone SC2[n] for n even is given by

ξ(SC2[n]) =

345 + 2151
4 n+ 87

4 n
3 + 819

4 n
2, when n ∼= 0(mod4)

357 + 2187
4 n+ 87

4 n
3 + 819

4 n
2, when n ∼= 2(mod4).
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Proof. Using symmetry of the nanocone SC2[n] we use only one branch of SC2[n] as labelled in Figure 5.
One representative from a set of vertices have been taken having same size and distances, labelled by
a, b, c, d, e, f, g and vji for 1 ≤ i ≤ n, given in Table 4.

Using Table 3, the ECI of SC2[n] for n ≥ 1, can be written as follows.
Case 1. When n ∼= 0(mod4).

ξ(SC2[n]) =
∑

u∈V (SC2[n])

d(u)ε(u)

= 3× 3× [(2n+ 5) + (2n+ 5) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6)]

+3× 3× 2×
r−1∑
j=1

(2n+ 6) + 3× 3× 2×
n−1∑
j=r

(2n+ 2j − 2r + 7) + 3× 2× 2×
n∑
j=n

(2n+ 2j − 2r + 7)

+3× 3× 2×
r∑
j=1

(2n+ 7) + 3× 3× 2×
n∑

j=r+1

(2n+ 2j − 2r + 6) + 3× 3× 2×
r+1∑
j=1

(2n+ 8)

+3× 3× [

n
2
−1∑
i=1

(3n− i+ 8)(2i+ 1) +
n∑

i=n
2

(3n− i+ 8)(n+ 1)]

−3× [2×

n
4∑
i=2

(
7n+ 9

2
− 2i) + (

7n+ 9

2
− 2)] + 3× 3× 2×

n+2
4∑

k=2

n−4k+2∑
l=1

(2n+ l + 2k + 6)

+3× 2× 2×

n+2
4∑

k=2

(3n− 2k + 9) + 3× 3× 2×
n−3∑
l=1

(2n+ l + 8) + 3× 2× 2× (3n+ 6).

After simplification, the eccentric-connectivity index ξ(SC2[n]) can be written as:

ξ(SC2[n]) = 345 +
2151

4
n+

87

4
n3 +

819

4
n2.

Case 2. When n ∼= 2(mod4).

ξ(SC2[n]) =
∑

u∈V (SC2[n])

d(u)ε(u)

= 3× 3× [(2n+ 5) + (2n+ 5) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6) + (2n+ 6)]

+3× 3× 2×
r−1∑
j=1

(2n+ 6) + 3× 3× 2×
n−1∑
j=r

(2n+ 2j − 2r + 7) + 3× 2× 2×
n∑
j=n

(2n+ 2j − 2r + 7)

+3× 3× 2×
r∑
j=1

(2n+ 7) + 3× 3× 2×
n∑

j=r+1

(2n+ 2j − 2r + 6) + 3× 3× 2×
r+1∑
j=1

(2n+ 8)

+3× 3× [

n
2
−1∑
i=1

(3n− i+ 8)(2i+ 1) +

n∑
i=n

2

(3n− i+ 8)(n+ 1)]

−3× [2×

n−2
4∑
i=2

(
7n+ 9

2
− 2i) + (

7n+ 9

2
− 2)] + 3× 3× 2×

n+2
4∑

k=2

n−4k+2∑
l=1

(2n+ l + 2k + 6)

+3× 2× 2×

n+2
4∑

k=2

(3n− 2k + 9) + 3× 3× 2×
n−3∑
l=1

(2n+ l + 8) + 3× 2× 2× (3n+ 6).
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After simplification, the eccentric-connectivity index ξ(SC2[n]) can be written as:

ξ(SC2[n]) = 357 +
2187

4
n+

87

4
n3 +

819

4
n2.

This completes the second case of proof.

Corollary 4.7. The total-eccentricity index of SC2[n] nonocone for n odd is given by

ς(SC2[n]) =

132 + 1499
8 n+ 29

4 n
3 + 1101

16 n
2, when n ∼= 0(mod4)

138 + 1535
8 n+ 29

4 n
3 + 1101

16 n
2, when n ∼= 2(mod4).

Corollary 4.8. The first Zagreb index of SC2[n] nonocone for n even is given by

M∗1 (SC2[n]) =

1710n+ 21075
4 + 53085

256 n
4 + 999

256n
6 + 3009

128 n
5 + 47517

64 n3 + 43629
64 n2, when n ∼= 0(mod4)

3405
2 n+ 21027

4 + 53085
256 n

4 + 999
256n

6 + 3009
128 n

5 + 47985
64 n3 + 44325

64 n2, when n ∼= 2(mod4).

5 Conclusion

In this paper, two families of nanocones are considered and their eccentric-connectivity index, total-
eccentricity index and eccentricity-based Zagreb index are computed. In future, we are interested to
formulate the architectures of next complex structured nanocones with more pentagons at the tip of
cones [8] and study their topological invariants which could be quite helpful to understand their chemical
structure and behavior.
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