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Abstract

In this paper, a rapid and high accurate numerical method for pricing discrete single
and double barrier knock-out call options is presented. With regard to the well-known
Black-Scholes model, the price of an option in each monitoring date could be calculated
by computing a recursive integral formula that is based on the heat equation solution.
We have approximated these recursive solutions with the aid of Lagrange interpolation
on Jacobi polynomial nodes. After that, an operational matrix, that makes our com-
putation significantly fast, has been derived. In some theorems, the convergence of the
presented method has been shown and the rate of convergence has been derived. The
most important benefit of this method is that its complexity is very low and does not
depend on the number of monitoring dates. The numerical results confirm the accuracy
and efficiency of the presented numerical algorithm.
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1. Introduction

Barrier options are popular instruments that play an important role in financial secu-2

rities markets where the option pricing is the most important problem, i.e. to evaluate a
fair price for the option. The Nobel Prize-winning Black-Scholes option valuation theory4

motivates using classical methods for solving partial differential equations (PDE’s) [1].
In computational finance, numerous nonstandard numerical methods are proposed and6

successfully applied for pricing options [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Numerical meth-
ods are often preferred to closed-form solutions as they could be more easily extended or8

adapted to satisfy all the financial requirements of the option contracts and continuously
changing conditions imposed by financial institutions and over-the-counter market for10

controlling trading of derivatives.
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Kunitomo and Ikeda [13] obtained general pricing formulas for European double bar-12

rier options with curved barriers but like for a variety of path-dependent options and
corporate securities most formulas are obtained for restricted cases as continuous mon-14

itoring or single barrier [5]. The discrete monitoring is essential as the trading year is
considered to consist of 250 working days and a week of 5 days. Thus, taking for one16

year T = 1, the application of barriers occurs with a time increment of 0.004 daily and
0.02 weekly.18

Several other different contracts with discrete time monitoring are characterized by
updating the initial conditions, such as Parisian options and occupation time derivatives20

[14]. We remark that although most real contracts specify fixed times for monitoring
the asset price, academic researchers have focused mainly on continuous time monitoring22

models as the analysis of fixed barriers could be treated mathematically using some
techniques such as the reflection principle [15]. For example, Li utilize reflection principle24

of Brownian motion to obtain the conditional density of stock price process and then
obtain option price by evaluation of expectation of discounted payoff in [16]. Broadie26

et. al. have found an explicit correction formula for discretely monitored option with
one barrier [17]. However, these three well-known methods [6, 10, 11] have not been still28

applied in the presence of two barriers, i.e. a discrete double barrier option.
Initially classical quantitative methods in finance have been explored for pricing bar-30

rier options. This includes standard lattice techniques, i.e. the binomial and trinomial
trees of Kamrad and Ritchken [18], Boyle and Lau [19], Kwok [15], Heyen and Kat [20],32

Tian [21], Dai and Lyuu [22]. In lattice methods, at first, the time interval divided in
too small time step and then by generating price tree the price of the option is obtained.34

If at each time step there are two possible movements (down and up) for the price the
method is called binomial. The trinomial method is like binomial but at each time step36

the stock price has three possible states: up, down and middle. The negative point of
these methods is that they are time-consuming. In fact, for getting more accuracy of38

these methods, we must increase the number of time steps that increase CPU time. To
solve this problem, Ahn et al. [23] used adaptive mesh model approach that had been40

introduced before by Figlewski and Gao [24]. This method improves the efficiency of the
trinomial method.42

Another approach that is widely applied for option pricing is simulation Monte Carlo
methods. The base of this algorithm is to simulate great numbers of stock price sample44

path and then by computing the payoff at the maturity time estimate expectation value
of discounted payoff. For more information we refer interested readers to [25, 26, 27, 28,46

29, 30].
Although it could not be claimed that it is impossible to be found an exact or closed-48

form solution of the Black-Scholes equation [31] for the valuation of discrete double
barrier knock-out call option, it is sure that there is a substantial difference in the option50

prices between continuous and discrete monitoring even for 1 000 000 monitoring dates.
This could be trivially tested for a single barrier knock-in and knock-out option using52

formulas [3], [13], or the correction formula [17], for double barrier knock-out options with
the numerical algorithm [5] or with a high-order accurate finite difference scheme [11]. It54

is well-known in the literature the relation when comparing the price of continuous and
discretely monitored barrier options with the corresponding vanilla option with the same56

parameters and absence of rebates. The discrete monitoring considerably complicates
the analysis of barrier options [17] and their pricing often requires nonstandard method58
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as those presented in [2, 5, 7, 11]. Difficulties of pricing double barrier options emerge
even in the case of continuous monitoring where some drawbacks of closed-form formulas60

could be clearly observed. The analytical solutions of such options are usually expressed
as an infinite series of reflections and presented with Fourier series. For fixed barriers62

contracts the Fourier series solution gives the same answer when all the terms have been
added up but the main drawback is that the rate of convergence of the sum to the solution64

can be quite different, depending on the time to expiry.
Recently, different types of analytical and semi-analytical solution for pricing barrier66

options have been obtained by using integral transforms. Geman and Yor found the
Laplace transform of the price of barrier option and then compute invert Laplace trans-68

form by numerical integration [32]. Plesser in [33] proposed an analytical formula by using
contour integration for calculating invert Laplace transform. Fusai et al. convert single70

barrier option pricing to a Wiener-Hopf integral equation by the help of Z-transform and
then found an analytical solution for it [3]. In [34], Broadie and Yamamoto proposed72

a numerical algorithm based on the numerical computation of convolution integral by
using double exponential formula and fast Gauss transform. In [35] a method based on74

Fourier-cosine series expansions presented.
Farnoosh et al. considered double barrier options that their parameters are not76

constant. They used some change of variables to transform the time-dependent coefficient
partial differential equations in each monitoring interval to constant ones and then solve it78

by recursive formula and Romberg integration technique [36, 37], while in [38] projection
methods have been explored. Numerical integration and quadrature methods have been80

implemented for option pricing in [39, 5].
The main objective of this paper is to present a new efficient computational method82

for valuation of discrete barrier options based on Lagrange interpolation on Jacobi nodes
that have not only a simpler computer implementation but also differ with minimum84

memory requirements and extreme short computational times.
This article is organized as follows. In Section 2 we formulate the mathematical86

model for the valuation of barrier options under the classical Black-Scholes framework.
In Section 3 we briefly list definitions for Jacobi polynomials. In section 4 we propose88

a new efficient numerical method where an orthogonal Lagrange interpolation is utilized
and a suitable operational matrix form has been obtained for pricing discrete double90

barrier options. One of the main advantages of this algorithm is that it does not depend
on the number of monitoring dates. In section 5, the convergence of the presented method92

has shown. In the next Section 6, we observe numerical errors of order 10−4 and 10−6 in
the maximum norm for different computational experiments according to the number of94

node points. The obtained results are in good agreement with other benchmark values
in literature and this confirms the efficiency and accuracy of the presented numerical96

algorithm.

2. The Pricing Model98

Let r be the risk-free interest rate, σ volatility, and S0 initial stock price. We suppose
that underlying stock price St is an Ito process satisfies in Geometric Brownian motion100

as follows:
St = S0e

(r− 1
2σ

2)t+σBt102
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where Bt is standard Brownian motion under the neutral measure P . A European option
is named call (put) option if it gives the holder the right of buy (sell) of the underlying104

stock at an exercise price E on the maturity time T . A double barrier option is an option
that has two level barrier price: upper barrier U and lower barrier L. Depends on the106

type of barrier option if the stock price hits each of barriers, the option comes in or out
of the money. A knock-out (knock-in) barrier option is a barrier option that comes out108

(in) of money if the underlying stock price cross each of barriers before the maturity
time. If the barrier levels only monitored at specific predetermined dates t1, t2, ..., tM ,110

the barrier option is said discrete barrier option. In this article, we work on knock-
out discrete double barrier call option. In addition, the monitoring dates are assumed112

equally spaced, i.e. tm = mτ, i = 1, 2, ...,m where τ = T/M . If the barriers are not hit
by stock price in monitoring dates, the payoff of the option at the maturity time will be114

max(ST − E, 0).
The price of an option can be considered as the expectation value of discounted payoff116

at the expiration time. The price of option P (S, t,m− 1) at time time t ∈ (tm−1, tm),
under the the Black-Scholes model, fulfills in the following partial differential equations118

−∂P
∂t

+ rS
∂P
∂S

+
1

2
σ2S2 ∂

2P
∂S2

− rP = 0, (1)

subject to the initial conditions:120

P (S, t0, 0) = (S − E) 1(max(E,L)≤S≤U)

122
P (S, tm, 0) = P (S, tm,m− 1) 1(L≤S≤U); m = 1, 2, ...,M − 1 ,

where P (S, tm,m− 1) := lim
t→tm

P (S, t,m− 1).124

By denoting µ = r − σ2

2 , c2 = σ2

2 , a = − µ
σ2 , b = aµ + a2 σ2

2 − r, E∗ = ln
(
E
L

)
,

θ = ln(U/L), and change of variables z = ln(S/L), P(S, t, n) = eaz+btu(z, t, n) equation126

(1) is reduced to the heat equation:

∂u

∂t
− c2 ∂

2u

∂x2
= 0 (2)128

with the initial conditions as below:

u (z, t0, 0) = Le−az
(
ez − eE

∗
)
1(δ≤z≤θ),130

u (z, tm, 0) = u (z, tm,m− 1) 1(0≤z≤θ); m = 1, 2, ...,M − 1 .132

Equation (2) has analytical solution:

u(z, t,m) =

{
L
∫ θ
δ
k(z − ξ, τ)e−az

(
ez − eE∗)

(ξ) dξ;m = 0∫ θ
0
k(z − ξ, τ)u(z, tm,m− 1) (ξ) dξ; m = 1, 2, 3, ...,M

(3)134

where
k(z, t) =

1√
4πc2t

e−
z2

4c2t . (4)136
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We define um (z) as following recursive formula:

u1(z) =

∫ θ

0

k(z − ξ, τ)u0 (ξ) dξ (5)138

um(z) =

∫ θ

0

k(z − ξ, τ)um−1 (ξ) dξ; m = 2, 3, ...,M (6)140

where
u0 (z) = Le−αz

(
ez − eE

∗
)
1(δ≤z≤θ), (7)142

Therefore, the price of the knock-out discrete double barrier option can be obtained as
follows:144

P (S0, tM ,M − 1) ' eaz0+btuM (z0) (8)

where z0 = ln
(
S0

L

)
.146

3. Jacobi Polynomials

Let w(α,β)(x) = (1 − x)α(1 + x)β , α, β > −1, and L2
w(α,β)(−1, 1) be Hilbert space148

with the following inner product and norm:

< f, g >w(α,β)=

∫ 1

−1

f(x)g(x)w(α, β)(x)dx, (9)150

‖f‖w(α,β) =
√
< f, f >w(α,β) . (10)152

The Jacobi polynomials, J (α,β)
i (x) are orthogonal polynomials in L2

w(α,β)(−1, 1), i.e;∫ 1

−1

J
(α,β)
i (x)J

(α,β)
j (x)w(α, β)(x)dx = λiδij , (11)154

where λi = ‖J (α,β)
i ‖2

w(α,β) . These polynomials that set an orthogonal basis in L2
w(α,β)(−1, 1),

are eigenfunctions of singular Sturm-Liouville operator SL:156

SL(ϕ) := (x2 − 1)
d2ϕ

dx2
+Qα,β(x)

dϕ

dx

where Qα,β(x) = α−β+(α+β+2)x. Jacobi polynomials could be obtained by Rodrigues’158

formula:
J (α,β)
n (x) =

(−1)n

w(α,β)2nn!

dn

dxn
[(w(α,β) )n]160

They also satisfy in following three-term recurrence relation:

J
(α,β)
0 (x) = 1, J

(α,β)
1 (x) =

1

2
(α+ β + 2)x+

1

2
(α− β) (12)162

J
(α,β)
i+1 (x) =

(
a

(α,β)
i x− b(α,β)

i J
(α,β)
i (x)

)
− c(α,β)

i J
(α,β)
i−1 (x) (13)
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where:164

a
(α,β)
i =

(2i+ α+ β + 1)(2i+ α+ β + 2)

2(i+ 1)(n+ α+ β + 1)
(14)

b
(α,β)
i =

(β2 − α2)(2n+ α+ β + 1)

2(i+ 1)(n+ α+ β + 1)(2n+ α+ β)
(15)166

c
(α,β)
i =

(n+ α)(n+ β)(2n+ α+ β + 2)

(i+ 1)(n+ α+ β + 1)(2n+ α+ β)
. (16)

The roots of Jacobi polynomials are real and distinct. In addition, all of them lie in the168

interval [−1, 1]. On the other hand, they have density properties, i.e. for any subinterval
of [−1, 1] there exists N ∈ N such that for all n ≥ N Jacobi polynomials Jn has at least170

one root in this subinterval. Because of this appropriate features, they play important
role in spectral methods and approximation theory.172

4. Pricing by orthogonal Lagrange interpolation

In this section we consider Πn as vector space of all polynomials with real coefficients174

of degree less or equal to n, set points {xα,βi }ni=0 as roots of (n + 1)-th Jacobi polyno-
mial J (α,β)

n+1 that are shifted to [0, θ] and Iα,βn : C[0, θ] → Πn as orthogonal polynomial176

interpolation projection operator, that is defined as follows:

Iα,βn (f) =

n∑
i=0

f(xα,βi )Li(x) (17)178

where Li(x) is the i-th Lagrange polynomial basis function defined on {xα,βi }ni=0:

Li(x) =

n∏
j=0,j 6=i

(x− xα,βj )

(xα,βi − xα,βj )
. (18)180

For any f ∈ Cn+1[0, θ] we have:

||Iα,βn (f)− f ||max ≤ ||Qn||max
||f (n+1)||max

(n+ 1)!
(19)182

where Qn =
∏n
j=0(x− xα,βj ).

Let integral operator K : C[0, θ]→ C[0, θ] is defined as below:184

K (u) (z) :=

∫ θ

0

κ(z − ξ, τ)u(ξ)dξ. (20)

where kernel function κ is defined in (4). As κ is a continuous kernel function, hence186

linear integral operator K is a bounded and compact operator on C[0, θ], i.e. a linear
operator that maps every bounded subset of C[0, θ] to a precompact subset of C[0, θ].188

We rewrite equations (5) and (6) with the aid of operator K as follows:

u1 = Ku0 (21)190
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um = Kum−1 m = 2, 3, ...,M. (22)192

Now, we define
ũ1,n = Iα,βn K (u0) (23)194

ũm,n = Iα,βn K (ũm−1) =
(
Iα,βn K

)m
(u0) , m ≥ 2 (24)196

where Iα,βn K is as follows:
(Iα,βn K)(u) = Iα,βn (K(u)) .198

Since, ũm,n ∈ Πn for m ≥ 1, we can write

ũm,n =

n∑
i=0

amiLi(z) = Φ′n(x)Gm,200

where Gm = [am0, am1, · · · , amn]′ and Φn = [Lm,Lm, · · · ,Ln]′. From equation (24) we
obtain202

ũm,n = (Iα,βn K)m−1 (ũ1,n) . (25)

Since dimension of Πn is finite, then the linear operator Iα,βn K on Πn can be represented204

By a matrix that is here denoted K. Consequently matrix form of equation (25) is
represented as follows:206

ũm,n = Φ′nK
m−1G1. (26)

In above relation matrix operator K and the vector G1 are easily obtained as:208

G1 = [a10, a11, · · · , a1n]′

210

K = (kij)n×n

where212

a1i =

∫ θ

δ

κ(xα,βi − ξ, τ)u0(ξ)dξ , 0 ≤ i ≤ n.
214

kij =

∫ θ

0

κ(xα,βi − ξ, τ)Lj−1(ξ)dξ .

Thus, we could approximate the price of a knock-out discrete double barrier option by216

following formula:
P (S0, tM ,M − 1) ' eαz0+βtũM,n (z0) (27)218

where z0 = ln
(
S0

L

)
and ũM,n is obtained from (26).

Remark 1. In (26) the parameterm, the number of monitoring dates, arise as the power220

of the matrix K. Therefore, it could be said that the consuming time of the algorithm
is not impacted by changing m. In fact, the complexity of this algorithm is O(n2) that222

only depends on the number of basis functions. On the other hand computing (26) needs
only to compute n2 + n integral against double integral in [38, 8] that makes presented224

method far faster than them.
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5. Convergence of numerical scheme226

In this section we discuss the convergence of our presented method in following three
theorems.228

Theorem 1. The operator Iα,βn K is pointwise convergent to operator K on C[0, θ].

Proof:. Let ϕ ∈ C[0, θ] then230

||(Iα,βn K −K)ϕ||max =

n∑
i=0

(∫ θ

0

κ(xα,βi − ξ, τ)ϕ(ξ)dξ

)
Li(z)−

∫ θ

0

κ(z − ξ, τ)ϕ(ξ)dξ

≤ ||Qn||max
(n+ 1)!

∥∥∥∥∥
∫ θ

0

∂n+1κ(z − ξ, τ)

∂zn+1
ϕ(ξ)dξ

∥∥∥∥∥
max

232

≤ θ||Qn||max
(n+ 1)!

∥∥∥∥∂n+1κ(z − ξ, τ)

∂zn+1

∥∥∥∥
max

||ϕ||max. (28)
234

In addition, we have

∂n+1κ(z − ξ, τ)

∂zn+1
=

1√
4πc2τ

∂n+1e−
(z−ξ)2

4c2τ

∂zn+1
. (29)236

Now by change of variable y = (z−ξ)√
4c2τ

and considering C0 = 1√
4c2τ

, C1 = 1√
4πc2τ

we238

obtain:

∂n+1κ(z − ξ, τ)

∂zn+1
= C1 C

n+1
0

dn+1e−y
2

dyn+1
= C1 C

n+1
0 Hn+1(y)e−y

2

, (30)240

where Hn(y) is Hermite Polynomial of degree n. By using following inequality about242

hermite polynomials (see [40],page 324)

|Hn+1(y)| < k0

√
(n+ 1)!2(n+1)/2ey

2/2, (31)244

where k0 = 1.086435, we obtain the following inequality:

∂n+1κ(z − ξ, τ)

∂zn+1
≤ k0C1C

n+1
0

√
(n+ 1)!2(n+1)/2e−y

2/2 (32)246

and consequently:∥∥∥∥∂n+1κ(z − ξ, τ)

∂zn+1

∥∥∥∥
max

≤ k0C1C
n+1
0

√
(n+ 1)!2(n+1)/2. (33)248

On the other hand
‖Qn‖max ≤ θ

(n+1) (34)250

by substituting (33) and (34) in (28), it follows that:

||(Iα,βn K −K)ϕ||max ≤ θk0C1||ϕ||max
(

(2θ2C2
0 )n+1

(n+ 1)!

)1/2

. (35)252
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Since254

lim
n→∞

(2θ2C2
0 )n+1

(n+ 1)!
= 0 (36)

we conclude256

lim
n→∞

||(Iα,βn K −K)ϕ||max = 0, (37)

which finishes the proof. �258

Theorem 2. The operator Iα,βn K is norm convergent to operator K on C[0, θ], i.e.

lim
n→∞

||Iα,βn K −K|| = 0. (38)260

Proof:. Let B denotes
B = {ϕ ∈ C[0, θ]| ‖ϕ‖max ≤ 1},262

then we have
||(Iα,βn K −K)|| = sup

ϕ∈B
||(Iα,βn K −K)ϕ||max, (39)264

that by relation (35) tends to zero when n→∞. �
Following theorem guarantees the convergence of our presented method:266

Theorem 3. The function ũM,n is convergent to uM uniformly in [0, θ].268

Proof:. At the first we note that

||(Iα,βn K)M −KM || ≤
∥∥Iα,βn K

∥∥ ||(Iα,βn K)M−1 −KM−1|| − ||Iα,βn K −K||||K||M−1 (40)270

By regarding the above-mentioned relation, (38), and mathematical induction we reach
to272

lim
n→∞

||(Iα,βn K)M −KM || = 0. (41)

as a result, ones obtains274

‖ũM,n − uM‖ =
∥∥(Iα,βn K)Mu0 −KMu0

∥∥ ≤ ∥∥(Iα,βn K)M −KM
∥∥ ||u0||. (42)

From (41) the right hand side of (42) tends to zero as n→∞. This completes the proof276

of theorem. �

Remark 2. Since the convergence rate of our algorithm depends on decay rate of278 (
(2θ2C2

0 )n+1

(n+ 1)!

) 1
2

∼ exp
(
−n

2
log(n)

)
,

the convergence rate of presented numerical algorithm is supergeometric (see [41], page280

25).

9



α β −0.8 −0.5 0 0.5 0.8
−0.8 8.6074e− 06 8.1718e− 06 2.2103e− 05 1.8770e− 05 9.5120e− 06
−0.5 8.7606e− 06 7.8929e− 06 1.2852e− 05 3.8600e− 05 4.6071e− 05
0 2.7040e− 05 2.5788e− 05 2.2103e− 05 5.3726e− 05 9.3608e− 05
0.5 9.1438e− 05 9.5461e− 05 9.2619e− 05 8.2564e− 05 1.0667e− 04
0.8 1.4675e− 04 1.6600e− 04 1.7498e− 04 1.6536e− 04 1.5456e− 04

Table 1: The maximum norm error for n = 25 of example(1) with L = 95 and M = 125.

6. Computational Results282

In order to show the efficiency and accuracy of the presented numerical method,
in some examples, we solve barrier option pricing problem and compare it with some284

other ones. The method has been programmed in Matlab 2015 and numerical results
have been obtained on a personal computer with a 3.2 GHz Intel Core i5 processor and286

8-gigabit DDR3 memory.

Test problem 1. At the first test problem, we consider the price of a discrete double288

barrier option. The parameters is supposed to be r = 0.05, σ = 0.25, T = 0.5, S0 = 100,
and E = 100. The upper barrier is set 120 and lower barriers are set various values:290

80,90, 95, 99,and 99.5. Numerical results for various number of monitoring dates are
obtained by presented method with α = −0.5, β = −0.5, n = 25 and compared with292

reported results of other numerical schemes such as Milev method based on numerical
integration [5], Crank-Nicholson [42], trinomial based on tree methods, adaptive mesh294

model (AMM) and QUAD-K200 as benchmark based on quadrature methods [43]. The
compared results are provided in table 2 that demonstrate our results coincide with the296

benchmark. moreover, CPU time of presented method is far less than others and does not
depend on the number of monitoring dates against other methods. In table 1 the maximum298

norm error of presented method for various values of α and β has been provided. It is
easy to see that least error is obtained for (α = −0.5, β = −0.5) that is not by chance.300

Actually, it is due to the fact that ||Qn(x)||max gets its minimum when nodal points are
roots of Chebyshev polynomials. In figure 1 we have plotted maximum norm of error for302

M = 25, 125 and in figure 2 the estimated price and error of it have been plotted For
L = 80 and M = 125.304
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M l L PM (α = −0.5, β = −0.5)
(n=25)

Milev
(200)

Milev
(400) Trinomial AMM-8 Benchmark

80 2.4499 - - 2.4439 2.4499 2.4499
90 2.2028 - - 2.2717 2.2027 2.2028

5 95 1.6831 1.6831 1.6831 1.6926 1.6830 1.6831
99 1.0811 1.0811 1.0811 0.3153 1.0811 1.0811
99.9 0.9432 0.9432 0.9432 - 0.9433 0.9432

CPU 0.035 s 1 s 5 s
80 1.9420 - - 1.9490 1.9419 1.9420
90 1.5354 - - 1.5630 1.5353 1.5354

25 95 0.8668 0.8668 0.8668 0.8823 0.8668 0.8668
99 0.2931 0.2931 0.2931 0.3153 0.2932 0.2931
99.9 0.2023 0.2023 0.2023 - 0.2024 0.2023

CPU 0.035 s 8 s 30 s
80 1.6808 - - 1.7477 1.6807 1.6808
90 1.2029 - - 1.2370 1.2028 1.2029

125 95 0.5532 0.5528 0.5531 0.5699 0.5531 0.5532
99 0.1042 0.1042 0.1042 0.1201 0.1043 0.1042
99.9 0.0513 0.0513 0.0513 - 0.0513 0.0513

CPU 0.035 s 35 s 150 s

Table 2: The price of double barrier call option of test problem 1: T = 0.5, r = 0.05, σ = 0.25, S0 = 100,
E = 100.
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Figure 1: Max− error for example (1) with L = 80.

Test problem 2. In the second test problem, the price of a knock-out discrete double
barrier option with r = 0.05, σ = 0.25, T = 0.5, E = 100, and m = 5 for various306

values of initial price is evaluated. The lower and upper barriers are placed at 95 and 110
respectively. The numerical results are compared with Milev method, Crank-Nicholson,308

and Monte Carlo simulation method in [44].
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Figure 2: The error and estimated Price in example(1) with L = 80 and M = 125.

S0
PM (α = −0.5, β = −0.5, )

(n = 25)
Crank-Nicolson

(1000)
Milev
(400)

Milev
(1000)

MC (st.error)
with 107 paths

95 0.174498 0.1656 0.174503 0.174498 -
95.0001 0.174499 ' 0.1656 0.174501 0.174499 0.17486 (0.00064)
95.5 0.182428 0.1732 0.182429 0.182428 0.18291 (0.00066)
99.5 0.229349 0.2181 0.229356 0.229349 0.22923 (0.00073)
100 0.232508 0.2212 0.232514 0.232508 0.23263 (0.00036)
100.5 0.234972 0.2236 0.234978 0.234972 0.23410 (0.00073)
109.5 0.174462 0.1658 0.174463 0.174462 0.17426 (0.00063)

109.9999 0.167394 ' 0.1591 0.167399 0.167394 0.16732 (0.00062)
110 0.167393 0.1591 0.167398 0.167393 -
CPU 0.035 s Minutes 1 s 39 s

Table 3: Price of discrete double barrier option of test problem 2 in 5 monitoring dates: T = 0.5, M = 5,
r = 0.05, σ = 0.25, E = 100, U = 110 and L = 95.

Test problem 3. Because that the chance of touching the upper barrier level by stock310

price before the maturity time T when U ≥ 2E is insignificant, the price of a single down-
and-out call option can be approximated by double ones by considering the upper barrier312

above 2E. In this test problem, we want to evaluate price of a single down-and-out barrier
call option . We suppose r = 0.1, σ = 0.2, T = 0.5, S0 = 100, and E = 100. Then we set314

the lower barriers at 95, 99.5, and 99.9. After that, we approximate the price by double
ones with U = 250. In table (4) the numerical results are shown and compared with316

schemes referred in [3, 2, 28] that demonstrate the effectiveness of proposed approach in
this case.318
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PM (α = −0.5, β = −0.5)
L M n=25 n=50 (IR17) MCH MC (st.error)
95 25 6.63104 6.63156 6.63156 6.6307 6.63204 (0.0009)
99.5 25 3.35644 3.35558 3.35558 3.3552 3.35584 (0.00068)
99.9 25 3.00897 3.00887 3.00887 3.0095 3.00918 (0.00064)
95 125 6.16940 6.16863 6.16864 6.1678 6.16879 (0.00088)
99.5 125 1.95811 1.96130 1.96130 1.9617 1.96142 (0.00053)
99.9 125 1.50991 1.51020 1.51068 1.5138 1.5105 (0.00046)
CPU 0.038 s 0.051 s

Table 4: prices of Single barrier option of test problem 3: T = 0.5, r = 0.1, σ = 0.2, S0 = 100, E = 100,
U = 250.

Test problem 4. Here we estimate the price of continuous monitoring call barrier down
and out option, Pc, with discrete ones, Pdm, using the following formula [17]:

Pc(L) = Pdm
(
L eλσ

√
∆t
)
, (43)

where λ = ζ(1/2)/
√

2π ' 0.5826 with ζ the Riemann zeta function. The parameters of
this problem is considered as r = 0.1, σ = 0.3, T = 0.2, E = 100, S = 100. In table (5)320

the option price for different lower barriers is evaluated and compared with continuous
monitoring price that is obtained in [17]. As we can see, this estimations is accurate322

except when the barrier is close to the spot price.

PM(α = −0.5, β = −0.5,M = 50) PM(α = −0.5, β = −0.5,M = 125)
L Countinous Barrier n=25 n=50 n=25 n=50
85 6.308 6.307 6.308 6.306 6.308
88 6.185 6.185 6.185 6.182 6.185
91 5.808 5.808 5.808 5.809 5.808
93 5.277 5.277 5.277 5.277 5.277
95 4.398 4.396 4.397 4.398 4.397
97 3.060 3.067 3.067 3.059 3.059
99 1.171 1.479 1.477 1.265 1.267

CPU 0.038 s 0.051 s 0.038 s 0.051 s

Table 5: Single barrier option pricing with continuous monitoring of Example (4): T = 0.2, r = 0.1,
σ = 0.3, S0 = 100, E = 100, U = 250.

7. Conclusion and remarks324

In this work, a numerical algorithm with the aid of the Lagrange interpolation on
roots of Jacobi polynomials for pricing both single and double barrier call options have326

been proposed. Thanks to relation (26) CPU time of the presented method is almost
changeless when the number of monitoring dates grows. This feature enabled us to328

apply this method even in the continuous monitoring cases with the help of relation (43).
The numerical results show the effectiveness and reliability of the presented method in330
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comparison with other methods. On the other hand, we proved the convergence of this
method and obtained convergence rate of the algorithm, which provides the guarantee332

of reliability of the method for pricing discrete double barrier options.
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