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Abstract

By designing a novel combined event-triggered control technique, this article analytically studies the distributed leader-
following consensus problem of nonlinear fractional chaotic multi-agent systems. First, a novel combined event-triggered
mechanism which takes into account both the relative error and the absolute error of the samples is proposed, under
which each follower agent executes control update independently at its own event times. Next, a fully distributed
event-triggered consensus protocol is designed and the sufficient conditions of consensus are attained. Finally, compared
with other event-triggered mechanisms, the simulation experiments illustrate that the event-based consensus protocol
proposed in this article can effectively reduce the frequency of actuator data update while ensuring desired consensus
performance.
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1. Introduction

Nowadays, the consensus of multi-agent systems
(MASs) is becoming more and more attractive, due to
its wide applications in networked secure communication,
path planing, satellite formation and other fields [1, 2].5

It should be stressed that most of the previous work-
s focus on the multi-agent systems described by integer-
order dynamics, such as first-order integral dynamics [3, 4],
as well as second-order integrator dynamics [5–7] or even
high-order integrator dynamics[8, 9]. However, for many10

multi-agent systems working in the field of macromolecule
fluids, porous media or food seeking of microbes, the frac-
tional calculus operator can provide more accurate dynam-
ic system model than the integer calculus operator does.
Hence it is necessary to investigate the consistency of frac-15

tional multi-agent systems. This topic is first studied by
Cao in [10], following which, a series of in-depth related
researches have been launched [11–13].

Notice that the establishments of most multi-agent sys-
tems are constrained by limited resources, such as on-20

board resources, actuator capability, processor capacity,
and network bandwidth. Therefore, for many complex
networks, it is expected that each agent can minimize
the update frequency of the actuator input with-
out compromising the consensus performance. To25

achieve this goal, the event triggering control strategy comes
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into being. Its’ basic idea is the sampled-data of actuator
will not update until a certain event is triggered, thereby
reducing the burden of resource occupancy [14–23].

So far, the consistency problem of integer MASs vi-30

a event-triggered mechanism has obtained abundant re-
search results, which make the event-triggered consensus
of fractional MASs become more attractive. Although the
fractional derivative is a generalization of the integer one,
most of the properties and techniques applicable for inte-35

ger order dynamic system are inapplicable for fractional
system. Therefore, the lack of theoretical tools makes the
development of fractional dynamic systems is far behind
that of integer case,which indicates this subject needs fur-
ther study.40

Extensive literature review shows that the current re-
sults of the consistency of fractional MASs based on event
triggering control technique are still rare [24–27]. This
topic is first discussed in [24] where Xu first extends the
norm event-triggered mechanism (NETM) dealing
with integer system to the fractional system and applies
it to solve the consensus problem of fractional MASs. In
this scheme, the event-triggering instant is given by

tk+1 = tk + min{t| ‖δk(t)‖2 > σ ‖x(t)‖2},

where t0 = 0 and x(t) refers to the current sample output,
tk denotes the nearest event-triggered instant before the
current time t, σ ∈ (0, 1) represents the parameter that
determines the sampling interval, and δk(t) = x(tk)−x(t).

Noticing ‖δk(t)‖2 > σ ‖x(t)‖2 is equivalent to
∥∥∥ δk(t)
x(t)

∥∥∥45
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> σ
1
2 as ‖x(t)‖ 6= 0, this mechanism determines whether to

update the executor input by measuring the relative error
value of the current sample. Shi applied the NETM control
method to investigate the exponential consensus protocol
of fractional MASs in [25] and Ren extends NETM method50

to distributed NETM in [26] respectively. However, it is
worth pointing out that, since the influence of absolute
error is not taken into account in this method, frequent
sampling and even Zeno behavior will occur as ‖x(t)‖ is
very close to zero.55

In [27], Wang studies the leader-following consensus of
fractional MASs via exponential event-triggered mech-
anism (EETM), in which the sequence of event-triggered
instants {tk} is defined as

tk+1 = tk + min{t| ‖δk(t)‖2 > β exp(−γt)},

where the two constants β > 0, γ > 0 are preassigned
threshold parameters. Since this triggering mechanism is
determined by the absolute error of the current sample, it
can avoid Zeno behavior effectively. Unfortunately, it is
independent of the relative error, which lead to the short-60

coming of poor screening ability for larger sample data.
Hence it is a valuable and challenging topic to com-

bine the above two event-triggered mechanisms NETM
and EETM together or to design a better one to handle
the consensus control of fractional dynamic systems. This65

inspires the following work.
In addition, in most of the researches on event-triggered

consensus of MASs, the actuators of all agents update their
data synchronously generated by a same event-triggered
mechanism. Since individual difference is not taken into70

account, it is impossible to ensure each agent achieves its
optimal update frequency. Thus it is necessary to establish
a separate triggering mechanism for each agent [28–31] .
This is another factor that motivates this article.

In view of the above discussion, this article focuses on75

designing a novel event-trigger mechanism and applying it
to handle the consistency control of nonlinear uncertain
fractional MASs with leaders. The framework of the arti-
cle is arranged as follows. The research background and
status are introduces in Section 1. Some mathematical80

preliminaries as well as the problem statement are formu-
lated in Section 2. In section 3, a novel separate combined
event-triggered mechanism is constructed and a consen-
sus control scheme is designed to conserve the limited re-
sources and ensure good consensus performance. In Sec-85

tion 4, a concrete simulation example is given to show the
validity and superiority of the proposed consensus scheme.
Summary and further work are drawn in Section 5.

The main contributions that make this article more
competitive are summarized in the following aspects. First-90

ly, the separate consensus of uncertain fractional chaotic
MASs based on event-triggered mechanism is first investi-
gated. Secondly, the combined event-triggered mech-
anism (CETM) designed in this article skillfully retains
the advantages and avoids the disadvantages of the two95

Table 1: Acronyms for Technical terms frequently used in
this work

Acronym Corresponding technical term
MASs Multi-agent systems
ETC Event-triggered condition
ETM Event-triggered mechanism
CETM Combined event-triggered mechanism
NETM Norm event-triggered mechanism
EETM Exponential event-triggered mechanism

traditional mechanisms NETM and EETM, so it shows
good data-filtering ability throughout the consensus pro-
cess. Thirdly, the introduction of separate triggering s-
trategy further increases the flexibility of the event-driven
mechanism and improves the ability of data filtering.100

Notation index: The notation used in this paper is
uniform and standard. For convenience, we apply some
acronyms to represent the technical terms which are fre-
quently used in this work. This is shown in Table 1.

2. Preliminaries and Problem Statement105

In this section, we will list some relevant preliminaries
and introduce the consensus problem.

2.1. Graph theory

Let G = (V,E,A) represent an undirected graph, in
which V = {v1, · · · , vN} denotes the node set and E ⊆
V × V refers to the edge set. A = [aij ] ∈ RN×N is the
weighted adjacency matrix of G and its element aij =
aji > 0 if there exists a edge between the nodes vi and vj ,
otherwise aij = aji = 0. Furthermore, we specify aii = 0.
L = D − A ∈ RN×N denotes the Laplacian matrix of G

with D = diag{d1, · · · , dN} and di =
N∑
j=1

aij . Moreover,

the elements of matrix L satisfies

lij = −aij , i 6= j,

lii =

N∑
j=1,j 6=i

lij ,

N∑
j=1

lij = 0.

This article mainly concerns the leader-following MASs
composed of one leader v0 andN followers vi(i = 1, · · · , N).110

The topology of the follower system is denoted as graph
G = (V,E,A), then, the algebraic topological structure
of the whole leader-following MASs can be expressed as
graph Ḡ = (V̄ , Ē, Ā) with V̄ = V ∪ {v0}. The connec-
tion weighted matrix between G and v0 is represented by115

B = diag{b1, · · · , bN}. If the information of leader can
be obtained by the i-th follower, bi > 0, else bi = 0.
H = L+B is a symmetric matrix will be frequently used
in subsequent analysis. Assume graph Ḡ is connected, i.e.
at least one follower vi can obtain the information from120

v0.
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2.2. Caputo fractional derivative

The dynamic model of the multi-agent system involved
in this article is described by the following Caputo frac-
tional derivative.125

Definition 1. [32] For a univariate function f(t), we de-
fine its Caputo fractional derivative with order α as

Dα
t0,tf(t) =

1

Γ(m− α)

∫ t

t0

(t− τ)
m−α−1

f (m)(τ)dτ,

in which α ∈ (m − 1,m) and m ∈ Z. Γ(·) denotes the
Gamma function defined by

Γ(z) =

∫ ∞
0

tz−1exp(−t)dt

and which satisfies Γ(z + 1) = zΓ(z), Γ(1) = 1.
Specially, let m = 1, one obtains α ∈ (0, 1) and

Dα
t0,tf(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)
−α
f ′(τ)dτ.

For simplicity of notation, we denoteDα
t0,tf(t) briefly

by Dαf(t) in this work.

Definition 2. [32] For a continuous function z(·) : R →
Rm1×m2 , the Mittag-Leffter function with two parameters
α, β > 0 is defined as

Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
, (1)

Moreover, let β = 1, (1) will be simplified to the Mittag-
Leffter function with single parameter

Eα(z) = Eα,1(z) =

+∞∑
k=0

zk

Γ(αk + 1)
.

Lemma 3. [32] Let α ∈ (0, 1], the inequation below holds

Dα(xT (t)x(t)) ≤ 2xT (t)Dαx(t)

for any derivable vector-valued function x(t) ∈ Rn.

Lemma 4. [33] Let χ(·) : [0,+∞) → R be a continuous
function, and α be a given constant belong to (0, 1]. If
there are two constants p1 > 0 and p2 ≥ 0 which comply
to

Dαχ(t) ≤ −p1χ(t) + p2,

then

χ(t) ≤ χ(0)Eα(−p1t
α) + p2t

αEα,α+1(−p1t
α).

Lemma 5. [34] For any constants α ∈ (0, 2) and β > 0
,if there is a constant % > 0 satisfies

πα

2
< % < min{π, πα},

then there exists a positive real constant C complies to

|Eα,β(z)| ≤ C

|z|+ 1
,

where % ≤ |arg(z)| ≤ π, |z| ≥ 0.130

Lemma 6. [35] Let α ∈ (0, 1) and denote

Φαι := tιEα,ι+1(Λtα),

then there are two finite positive real constants η1 and η2

such that

‖Eα,α(Λtα)‖ ≤ η1 ‖exp(Λt)‖ ,
‖Φαι‖ ≤ η2 ‖tιexp(Λt)‖ .

where ι ∈ {0, α}, Λ is a matrix with appropriate dimen-
sion, and ‖·‖ represents the inductive norm for a vector or135

matrix.

2.3. Problem Statement

In this work, we focus on the fractional MASs with one
leader and N followers that are described as below,

Leader:

Dαx0(t) = f(x0(t), t). (2)

The ith follower:

Dαxi(t) = f(xi(t), t) + ui(t), (3)

in which the vectors x0(t) = (x01(t), · · · , x0n(t))T and140

xi(t) = (xi1(t), · · · , xin(t))T ∈ Rn denote the states for
the agents involved, f : R × Rn → Rn represents a con-
tinuously differentiable vector-valued function, and ui(t)
∈ Rn is the consensus protocol or control input for the ith
follower, i = 1, 2, · · · , N .145

The global state consensus error between the ith
follower and the leader is defined as

ei(t) = xi(t)− x0(t), i = 1, 2, · · · , N. (4)

The main task of this work is to design a consensus
control protocol based on the event-triggered mech-
anism so that state trajectory of each follower can be
consistent with that of the leader, i.e.

lim
t→∞

ei(t) = 0, i = 1, 2, · · · , N. (5)

For in-depth study, we define the local consensus er-
ror for the ith follower agent as below

qi(t) =

N∑
j=1

aij(xi(t)− xj(t)) + bi(xi(t)− x0(t)),

i = 1, 2, · · · , N. (6)

Denote

x(t) = (xT1 (t), · · · , xTN (t))T ,

e(t) = (eT1 (t), · · · , eTN (t))T ,

q(t) = (qT1 (t), · · · , qTN (t))T ,

f̃(x(t), t) = (fT (x1(t), t), · · · , fT (xN (t), t))T .
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and 1N = (1, 1, · · · , 1)T , then we obtain

e(t) = x(t)− 1N ⊗ x0(t),

q(t) = ((L+B)⊗ In)(x(t)− 1N ⊗ x0(t))

= (H ⊗ In)e(t). (7)

where ⊗ refers to the Kronecker product.
For function f(·, ·), we propose the assumption below.

Assumption 7. There is a semi-positive matrix Υ ∈ Rn×n
such that the following inequality holds for all x, y ∈ Rn,

(x− y)T (f(x, t)− f(y, t)) ≤ (x− y)TΥ(x− y).

3. Design of event-triggered consensus protocol

Notice the network resource shared by the MASs is lim-
ited, we adopt the event-triggered condition mecha-150

nism (ETM) to cut down the data-broadcasting frequen-
cy in the communication network.

It is worth noting that, when adopting the centralized
consensus protocol, each follower agent is required to in-
teract directly with the leader, i.e. bi > 0, i = 1, · · · , N ,
otherwise, in the process of communication, it is necessary
to obtain the consensus error ei(t) indirectly by using the
information of all the nodes on the path between the ith
follower and the leader. This will increase the burden of
network communication. Thus in this subsection, we dis-
cuss the distributed event-triggered consensus protocol, in
which each follower updates its control input depending
only on its own information and that of its neighbors, with-
out using global information. In this consensus protocol,
the series of event-triggered instants for the ith follower is
determined by

tik+1 = tik + min{t | ‖δ̄i(t)‖2 > σ‖qi(t)‖2 +
β

N
exp(−γt)},

i = 1, 2, · · · , N, k = 0, 1, 2, · · · , (8)

in which ti0 = 0 and δ̄i(t) = qi(t
i
k)− qi(t), t ∈ [tik, t

i
k+1).

Accordingly, the event-triggered condition (ETC)
for the i-th follower is described as

‖δ̄i(t)‖2 ≤ σ‖qi(t)‖2 +
β

N
exp(−γt), (9)

and the framework of the distributed consensus of leader-
following MASs via ETM is shown in Fig.1.155

Remark 8. Equation (8) shows that, for the ith follower
agent, there must be a non-negative integer k, such that

t ∈ [tik, t
i
k+1),∀t ≥ 0.

Remark 9. In the event-triggered mechanism mentioned
above, the threshold function on the left side of inequal-
ity (9) can be regarded as a linear combination of ‖qi(t)‖2
and exp(−γt). The norm term determines the system’s ac-
ceptance of relative error

∥∥qi(t)− qi(tik)
∥∥/‖qi(t)‖ while the160

exponential term describes the tolerance for absolute error∥∥qi(t)− qi(tik)
∥∥. The relative error plays the dominant role

in the sample screening process as ‖qi(t)‖ is large, the ab-
solute error plays the major role to filter the sample and
avoid Zeno behavior as ‖qi(t)‖ is very small. Therefore,165

(9) is called the combined event-triggered condition
and the corresponding triggering mechanism (8) is called
the combined event-triggered mechanism(CETM).

Based on (8) and (9), we design the following control
protocol

ui(t) = −Kiqi(t
i
k), t ∈ [tik, t

i
k+1) (10)

in which the real constant Ki > 0 denotes the control gain.

Theorem 10. For the MASs (2) and (3), if the matrix
H = L + B is reversible and there exists a control gain
matrix K = diag{K1 ⊗ In, · · · ,KN ⊗ In, } such that

Ξ = IN ⊗Υ−H ⊗K +
1

2ε2
(H ⊗K)(H ⊗K)T

+
σµε2

2
H̄T H̄

< 0, (11)

where H̄ = H ⊗ In, µ =
∥∥H̄−1

∥∥2
, and ⊗ denotes the170

Kronecker product.
Then the leader-follower consensus will realize a the

control protocol (10) and the combined event-triggered mech-
anism (8) are employed, i.e.

lim
t→+∞

ei(t) = 0, i = 1, 2, · · · , N.

or
lim
t→∞

e(t) = 0

Proof. Constuct the following Lyapunov function

V (t) =
1

2
‖e(t)‖2 =

1

2

N∑
i=1

‖ei(t)‖2.

Based on the algebraic topological graph Ḡ, one can
derive

qi(t
i
k) =

N∑
j=1

aij(xi(t
i
k)− xj(tik)) + bi(xi(t

i
k)− x0(tik))

=

N∑
j=1

lijej(t
i
k) + biei(t

i
k)

=

N∑
j=1

lijδj(t) +

N∑
j=1

lijej(t) + biδi(t) + biei(t). (12)

According to the property of fractional derivative, it
can be obtained that

Dαei(t) = f(xi(t), t)− f(x0(t), t)

4



Figure 1: Framework of the distributed consensus scheme via CETM.

−
N∑
j=1

lijKδj(t)−
N∑
j=1

lijKej(t)

− biKδi(t)− biKei(t). (13)

Differentiate the function V1(t) and use Lemma 3 and
Assumption 7, we obtain

DαV (t) ≤ eT (t)Dαe(t)

= eT (t)(f̃(x(t), t)− 1N ⊗ f(x0(t), t))

− eT (t)(H ⊗K)e(t)− eT (t)(H ⊗K)δ(t)

≤ eT (t)(IN ⊗Υ)e(t)− eT (t)(H ⊗K)e(t)

− eT (t)(H ⊗K)δ(t). (14)

with δ(t) = [δT1 (t), · · · , δTN (t)]T .
Noticing that the following equation holds for any pos-

itive constant ε∥∥∥(H ⊗K)
T
e(t) + ε2δ(t)

∥∥∥2

=
∥∥∥(H ⊗K)

T
e(t)

∥∥∥2

+ 2ε2eT (t)(H ⊗K)δ(t) + ε4‖δ(t)‖2,

then, we have

eT (t)(H ⊗K)δ(t)

=
1

2ε2

∥∥∥(H ⊗K)
T
e(t) + ε2δ(t)

∥∥∥2

− 1

2ε2

∥∥∥(H ⊗K)
T
e(t)

∥∥∥2

− ε2

2
‖δ(t)‖2 (15)

Combining (14)with (15), we obtain

DαV (t)

≤ eT (t)Ωe(t)− 1

2ε2

∥∥∥(H ⊗K)
T
e(t) + ε2δ(t)

∥∥∥2

+
ε2

2
‖δ(t)‖2

≤ eT (t)Ωe(t) +
ε2

2
‖δ(t)‖2, (16)

where

Ω = IN ⊗Υ−H ⊗K +
1

2ε2
(H ⊗K)(H ⊗K)T .

Denote δ̄(t) = [δ̄T1 (t), · · · , δ̄TN (t)]T and H̄ = H ⊗ In, we
get q(t) = H̄e(t), δ̄(t) = H̄δ(t). Since H = L + B is re-
versible, further we have e(t) = H̄−1q(t), δ(t) = H̄−1δ̄(t).175

From the distributed event-triggered condition∥∥δ̄i(t)∥∥2 ≤ σ‖qi(t)‖2 +
β

N
exp(−γt)

we derive it holds for any t ≥ that

∥∥δ̄(t)∥∥2
=

N∑
i=1

∥∥δ̄i(t)∥∥2

≤
N∑
i=1

(σ‖qi(t)‖2 +
β

N
exp(−γt))

= σ‖q(t)‖2 + βexp(−γt)
= σeT (t)H̄T H̄e(t) + βexp(−γt), (17)

which yields

‖δ(t)‖2 =
∥∥H̄−1δ̄(t)

∥∥2

≤
∥∥H̄−1

∥∥2 ·
∥∥δ̄(t)∥∥2

≤ σ
∥∥H̄−1

∥∥2
eT (t)H̄T H̄e(t)

+ βexp(−γt)
∥∥H̄−1

∥∥2
. (18)
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Applying(16)-(18), we deduce that

DαV (t) ≤ eT (t)Ξe(t) +
βµε2

2
exp(−γt), (19)

where

Ξ = Ω +
σµε2

2
H̄T H̄,

µ =
∥∥H̄−1

∥∥2
.

Denote

p̄1 = 2λmin(−Ξ),

p̄2 =
βµε2

2
exp(−γt),

then we have

DαV (t) ≤ −p̄1V (t) + p̄2.

Applying Lemma 4, we obtain

V (t) ≤ V (0)Eα(−p̄1t
α)+ p̄2t

αEα,α+1(−p̄1t
α), t ≥ 0. (20)

In the next step, we are committed to proving

lim
t→+∞

V (t) = 0.

Since

arg(−p̄1t
α) = −π, |−p̄1t

α| ≥ 0,∀t ≥ 0,∀α ∈ (0, 1),

then, according to Lemma 5, there exists a constant C > 0
such that

|Eα(−p̄1t
α)| ≤ C

1 + p̄1tα
→ 0 (t→ +∞)

which implies

lim
t→+∞

V (0)Eα(−p̄1t
α) = 0. (21)

Employing Lemma 6, we deduce that

‖tαEα,α+1(−p̄1t
α)‖ ≤ η2 ‖tαexp(−p̄1t)‖

= η2t
αexp(−p̄1t) → 0,

as t→ +∞, which yields

lim
t→+∞

tαEα,α+1(−p̄1t
α) = 0. (22)

Using (20)-(22), we get

lim
t→+∞

V (t) ≤ lim
t→+∞

V (0)Eα(−p̄1t
α)

+ p̄2 lim
t→+∞

tαEα,α+1(−p̄1t
α)

= 0.

It hence appears

lim
t→+∞

‖e(t)‖ ≤ lim
t→+∞

√
2V1(t) = 0,

thus,
lim

t→+∞
‖e(t)‖ = 0.

Therefore, MASs (2))−(3) realize the leader-following
consensus.

In the following, we work to prove the Zeno behavior
will be excluded when the combined event-triggering con-
sensus strategy is used.180

Theorem 11. Consider the fractional MASs (2) and (3),
if the distributed consensus protocol (10) is driven by the
separate combined event-triggered mechanism (CETM)(8),
then the Zeno behavior will be excluded.

Proof. The proof of Theorem 10shows that the fractional
derivative of qi(t) with order α ∈ (0, 1) is norm bounded,
i.e., there exists a real constant Mi ≥ 0, such that∥∥∥Dα

tik,t
qi(t)

∥∥∥ ≤Mi, ∀t ∈ [tik, t
i
k+1).

Since D−αt0,tD
α
t0,tqi(t) = qi(t)− qi(t0), we obtain∥∥δ̄i(t)∥∥ =
∥∥qi(tik)− qi(t)

∥∥ =
∥∥∥D−αtik,tDα

tik,t
qi(t)

∥∥∥
=

∥∥∥∥∥ 1

Γ(α)

∫ t

tik

(t− τ)
α−1

Dα
tik,t

qi(τ)dτ

∥∥∥∥∥
=

1

Γ(α)

∫ t

tik

(t− τ)
α−1

∥∥∥Dtik, tαqi(τ)
∥∥∥dτ

≤ Mi

Γ(α)

∫ t

tik

(t− τ)
α−1

dτ

=
Mi(t− tik)

α

αΓ(α)
=
Mi(t− tik)

α

Γ(α+ 1)
. (23)

For the ith follower agent, assume tik is the latest event-
triggering instant before the current instant t. It follows
from (8) that, the next event will not be triggered before
the instant ti∗k which satisfying∥∥δi(ti∗k )

∥∥ = [σ
∥∥ei(ti∗k )

∥∥2
+
β

N
exp(−γti∗k )]

1
2 . (24)

and ti∗k > t.185

Let ∆ti∗k = ti∗k − tik, then the right side of inequality
(24) can be rewritten as

[σ
∥∥qi(tik + ∆ti∗k )

∥∥2
+
β

N
exp(−γ(tik + ∆ti∗k ))]

1
2 .

Combined with (23) and (24), we have

[σ̄
∥∥qi(tik + ∆ti∗k )

∥∥2
+
β

N
exp(−γ(tik + ∆ti∗k ))]

1
2

≤ Mi(∆t
i∗
k )

α

Γ(α+ 1)
. (25)

Notice
∥∥qi(tik + ∆ti∗k )

∥∥2
is non-negative and the expo-

nential term exp(−γ(tik + ∆ti∗k )) is strictly positive, there-

fore,
Mi(∆t

i∗
k )

α

Γ(α+1) > 0, which yields

∆ti∗k > 0.

Denote mi := min{∆ti∗k }, then, it follows by

tik+1 − tik > ∆ti∗k ≥ mi > 0,

which means that, for each follower agent i, there exists a
positive lower bound mi for the sequence of event intervals.
Hence, there is no Zeno behavior.
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Figure 2: Phase portrait of the leader agent.

Table 2: Special cases of separate combined event-triggered mechanism for distributed consensus protocol

Parameter selection Mathematical model Name

‖δ̄i(tik)‖2 ≤ σ‖qi(t)‖2 + β
N

exp(−γt) Separate CETM (proposed in this work)

(i) β = 0 ‖δ̄i(t)‖2 ≤ σ‖qi(t)‖2 Separate NETM

(ii) σ = 0 ‖δ̄i(t)‖2 ≤ β
N

exp(−γt) Separate EETM

Table 3: Comparison of the distributed consensus protocols based on separate CETM and unified CETM.

Mathematical model Name

(i)

{
tik+1 = tik + min{t | ‖δ̄i(t)‖2 > σ‖qi(t)‖2 + β

N
exp(−γt)},

ui(t) = −Kiqi(tik), t ∈ [tik, t
i
k+1), i = 1, 2, · · · , N.

Distributed consensus protocol based on separate CETM
(proposed inthis work)

(ii)

{
tk+1 = tk + min{t | ‖δ̄(t)‖2 > σ‖q(t)‖2 + β

N
exp(−γt)},

ui(tk) = −Kiqi(tk), t ∈ [tk, tk+1), i = 1, 2, · · · , N. Distributed consensus protocol based on unified CETM

4. Simulation Experiment

To verify the feasibility and superiority of our consen-190

sus scheme, a simulation experiment is given below.
We focus on the leader-following MASs involving 6

fractional chaotic Chen systems, in which α = 0.9,

f(t, xi(t)) =

 −35xi1 + 35xi2
−7xi1 + 28xi2 − xi1xi3
−3xi3 + xi1xi2

 ,

and i = 0, 1, · · · , 5.
Choose the initial state x0(0) = (10, 3, 12)T , then the

attractor of the leader agent system can be depicted in
Figure 2.195

The connection weighted matrix B and the Laplacian
matrix L for the considered MASs are given by

B = diag{15, 15, 15, 0, 0},

L =


2 0 −1 −1 0
0 1 0 0 −1
−1 0 1 0 0
−1 0 0 1 0
0 −1 0 0 1

 .

Taking the simulation time as 3 seconds, we get |x1| ≤
17, |x2| ≤ 19, |x3| ≤ 37. It follows from Assumption 7 that

eTi (t)(f(xi(t), t)− f(x0(t), t))

7



≤ eTi (t)

 39.5 0 0
0 44.25 0
0 0 6.5

 ei(t).

In this simulation, the leader agent is initialized with
x0(0) = (10, 3, 12)T while the follower agents are start-
ed from x1(0) = (5, 5, 6)T , x2(0) = (3, 6, 8)T , x3(0) =
(6,−2, 6)T , x4(0) = (7,−5, 7)T , x5(0) = (11, 1, 15)T .

To ensure inequality (11) in Theorem 10 holds, the pa-200

rameters in the consensus protocol are taken as σ = 0.5,
β = 0.1, γ = 0.01 and ε = 100, the control gains are de-
signed as K1 = K2 = K3 = 3.5,K4 = K5 = 5.5. Then, ap-
plying the control law(10) based on the distributed CETM
given by (8), the experiment results are displayed by Ta-205

bles 2-3 and Figures 3-12.
1) Comparison among CETM and two tradi-

tional event-triggered mechanisms
First, we compare the proposed method CETM with

two traditional event-triggered mechanisms. The mathe-210

matical models of the three mechanisms are given in Ta-
ble 2. Meanwhile, for the multi-agent systems mentioned
above, the simulation results based on the latter two mech-
anisms are shown in Figures 5-6 and Figures 7-8 respec-
tively.215

As shown in Table 2, CETM will degenerate to NETM
or EETM respectively if we set β = 0 or σ = 0 .

Comparing Figure 3 with Figures 5 and Figures 7 one
can see, a satisfactory consensus performance can be achie-
ved no matter applying which event-triggered mechanism220

mentioned above.
It follows from Figure 6 that, for each follower agent, if

the consensus protocol is based on NETM, Zeno behavior
will occur when ‖ei(t)‖ is close to zero. On the other
hand, as shown in Figure 8, if it is based on EETM ,225

events will be triggered very frequently as ‖ei(t)‖ is large.
However, when we employ CETM, both of the two adverse
performance mentioned above will be excluded, which can
be shown by Figure 6.

Furthermore, It can be perceived from Figure9 that,230

no matter comparing with CETM or CETM, there is a
significant reduction in the number of samples that need to
be transmitted to the actuator via the network as CETM is
applied, which verifies the advancement of the event-based
consensus strategy designed in this work.235

2) Comparison between the separate CETM and
the unified CETM

The event-triggered mechanism CETM designed in this
work is separate. To further show the superiority of this
mechanism, we compare it with the unified CETM. The240

comparison between the mathematical models of this two
mechanisms are described in Table 3 and the simulation
results based on the unified CETM are given by Figures
10-12.

As shown in Table 3, for the unified CETM, all the fol-245

lower agents update their actuator inputs at the same time
according to a same triggering condition. But in contrast,
for the separate CETM, each follower agent updates its ac-

tuator input independently according to its own triggering
condition, so it is more flexible.250

Comparing Figures 3-4 with Figures10-??, we can see
that both this two triggering mechanism can achieve good
consensus performance, and the event-update number of
each follower agent based on the the separate CETM is far
less than the unified CETM. And this conclusion can be255

further proved by Figure 12.
To sum up, the fully distributed CETM designed in this

work has significant advantages in data filtering whether
it is compared with the traditional distributed NETM and
EETM, or compared with the unified-distributed CETM.260

5. Conclusion

This work proposes a novel combined event-triggered
control technique to realize the consensus of nonlinear frac-
tional chaotic leader-following MASs. Applying the in-
teraction graph theory and the fractional Lyapunov sta-265

bility theory, some sufficient conditions are presented to
achieve the event-triggered consensus for the fractional
MASs. The simulation examples illustrate the superior-
ity of the proposed consensus protocol from two aspects.

It is believed that the proposed CETM has a wide ap-270

plication prospect in dealing with other control or syn-
chronization problems of fractional dynamic systems. In
addition, the event trigger mechanism CETM has the same
advantages for integer order systems. Our further work is
to extend the results in this work to the case of α > 1 by275

combining the integer differential theory with the fraction-
al differential theory.
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