Acknowledgement
We thank Kanehiro Kitayama for providing us many thoughtful and constructive comments. This study was funded by the National Natural Science Foundation of China (Grant Nos. 41991285, 41977287, 41825020 and 31961143023), Key Research and Development Program of Guangdong Province (2020B1111530004) and the Science and Technology Programs of Guangzhou City (Grant No. 201903010021). The authors declare no conflict of interests.
Reference
Allison, S. D., Weintraub, M. N., Gartner, T. B., & Waldrop, M. P. (2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil enzymology (pp. 229–243). Springer, Berlin, Heidelberg.
Anderson, J.M., & Ingram, J. (1989). Tropical soil biology and fertility. CAB International, Wallingford.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. ,67 , 1–48.
Chacon, N., Silver, W. L., Dubinsky, E. A., & Cusack, D. F. (2006). Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry, 7 8 , 67–84.
Cheeke, T.E., Phillips, R.P., Brzostek, E.R., Rosling, A., Bever, J.D., & Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol.,  214 , 432–442.
Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., & Son, Y. (2013). Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res.126 , 447–460.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S. C., Parton, W., et al.(2013). Patterns of new versus recycled primary production in the terrestrial biosphere. P. Natl. Acad. Sci ., 110 , 12733–12737.
Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M., Chuyong, G., et al.(2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. lett.14 , 939–947.
Devau, N., Hinsinger, P., Le Cadre, E., Colomb, B., & Gérard, F.(2011). Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim.Cosmochim.Ac. 75 , 2980–2996.
Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science ,341 , 486–492.
Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal, D. M., Carrillo, Y., LeCain, D. R., et al. (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. , 196 , 807–815.
Du, E., Terrer, C., Pellegrini, A. F., Ahlström, A., van Lissa, C. J., Zhao, X., et al. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci.13 , 221–226.
Estiarte, M., & Peñuelas, J. (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.Global Change Biol. ,21 , 1005–1017.
Fang, X., Zhou, G., Qu, C., Huang, W., Zhang, D., Li, Y., et al . (2020). Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon. Soil Biol. Biochem. ,142 , 107707.
Gerdol, R., Iacumin, P., & Brancaleoni, L. (2019). Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients. Funct. Ecol.33 , 1351–1361.
Gong, S., Zhang, T., Guo, R., Cao, H., Shi, L., Guo, J., & Sun, W. (2015). Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe. Soil Res. 53 , 242–252.
Gross, A., Lin, Y., Weber, P. K., Pett‐Ridge, J., & Silver, W. L (2020). The role of soil redox conditions in microbial phosphorus cycling in a humid tropical forest. Ecology ,101 , e02928.
Gunderson, C. A., Edwards, N. T., Walker, A. V., O’Hara, K. H., Campion, C. M., & Hanson, P. J.(2012). Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biol. ,18 , 2008–2025.
Güsewell, S. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol. , 164 , 243–266.
Hall, S. J., & Silver, W. L. (2015). Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry , 125 , 149–165.
Hood, J. M., Benstead, J. P., Cross, W. F., Huryn, A. D., Johnson, P. W., Gíslason, G. M., et al.(2018). Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Global Change Biol. , 24 , 1069–1084.
Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., et al.(2021). Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecol. Lett. DOI: 10.1111/ele.13761.
Huang, W., & Hall, S. J. (2017). Optimized high-throughput methods for quantifying iron biogeochemical dynamics in soil. Geoderma , 306 , 67–72.
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., et al. (2020). Asynchronous carbon sink saturation in African and Amazonian. Nature ,579 , 80–87.
Jonasson, S., Castro, J., & Michelsen, A. (2004). Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms. Soil Biol. Biochem. ,36 , 1129–1139.
enzyme activities and protein expression. Biogeosciences ,9 , 4537–4551.
Li, Y., Zhou, G., Huang, W., Liu, J., & Fang, X. (2016). Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant Soil , 409 , 247–257.
Lie, Z., Huang, W., Liu, X., Zhou, G., Yan, J., Li, Y., et al.(2021). Warming leads to more closed nitrogen cycling in nitrogen‐rich tropical forests. Global Change Biol.27 , 664–674.
Lin, Y., Bhattacharyya, A., Campbell, A. N., Nico, P. S., Pett‐Ridge, J., & Silver, W. L. (2018). Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil. J. Geophys. Res-Biogeo. 123 , 3016–3027.
Liptzin, D., & Silver, W. L. (2009). Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biol. Biochem. , 41 , 1696–1702.
Liptzin, D., & Silver, W. L. (2015). Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils. Ecosphere , 6 , 1–14.
McDowell, R. W., & Condron, L. M. (2000). ChemicalNature , and potential mobility of phosphorus in fertilized grassland soils. Nutr. Cycl. Agroecosys. 57 , 225–233.
McGroddy, M. E., Silver, W. L., de Oliveira Jr, R. C., De Mello, W. Z., & Keller, M. (2008). Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem. J. Geophys. Res-Biogeo. 113 , G04012.
Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., et al.(2013). The projected timing of climate departure from recent variability. Nature, 502 , 183–187.
Navratil, T., Rohovec, J., Amirbahman, A., Norton, S. A., & Fernandez, I. J. (2009). Amorphous aluminum hydroxide control on sulfate and phosphate in sediment-solution systems. Water Air Soil Poll., 201 , 87–98.
Nottingham, A. T., Whitaker, J., Ostle, N. J., Bardgett, R. D., McNamara, N. P., Fierer, N., et al. (2019). Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. lett. , 22 , 1889–1899.
Nottingham, A. T., Meir, P., Velasquez, E., & Turner, B. L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584 , 234–237.
Peretyazhko, T., & Sposito, G. (2005). Iron (III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Ac. 69 , 3643–3652.
Reed, S. C., Wood, T., & Cavaleri, M. A. (2012). Tropical forests in a warming world. New Phytol. , 193 , 27–29.
Reed, S. C., Yang, X., & Thornton, P. E. (2015). Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol. , 208 , 324–329.
Ren, H., Kang, J., Yuan, Z., Xu, Z., & Han, G. (2018). Responses of nutrient resorption to warming and nitrogen fertilization in contrasting wet and dry years in a desert grassland. Plant Soil ,432 , 65–73.
Rosling, A., Midgley, M. G., Cheeke, T., Urbina, H., Fransson, P., & Phillips, R. P. (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytol. , 209 , 1184–1195.
Rui, Y., Wang, Y., Chen, C., Zhou, X., Wang, S., Xu, Z., et al.(2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant Soil , 357 , 73–87.
Sardans, J., & Penuelas, J. (2012). The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol ., 160 , 1741–1761.
Sardans, J., Peñuelas, J., & Estiarte, M. (2006). Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil , 289 , 227–238.
Sullivan, M. J., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., et al. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science ,368 , 869–874.
Sun, X., Kang, H., Chen, H. Y., Björn, B., Samuel, B. F., & Liu, C.et al. (2016). Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China. Plant Biology , 18 , 505–513.
Sun, Y., Peng, S., Goll, D. S., Ciais, P., Guenet, B., Guimberteau, M., et al. (2017). Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earths Future , 5 , 730–749.
Tabatabai, M. A. (1994). Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds).Methods of soil analysis. Part 2. Microbiological and biochemical properties, SSSA Book Ser, vol 5. SSSA, Madison (pp 801–834).
Tian, D., Reich, P. B., Chen, H. Y., Xiang, Y., Luo, Y., Shen, Y., et al. (2019). Global changes alter plant multi‐element stoichiometric coupling. New Phytol. , 221 , 807–817.
Tiessen, H. J. W. B., & Moir, J. O.(1993). Characterization of available P by sequential extraction. Soil sampling and methods of analysis , 7 , 5–229.
Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature , 555 , 367–370.
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. , 19 , 703–707.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. , 82 , 205–220.
Vitousek, P. (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist , 119 , 553–572.
Wang, H., Holden, J., Spera, K., Xu, X., Wang, Z., Luan, J., et al. (2013). Phosphorus fluxes at the sediment-water interface in subtropical wetlands subjected to experimental warming: a microcosm study. Chemosphere , 90 , 1794–1804.
Wang, Y., Wang, H., He, J. S., & Feng, X. et al. (2017). Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. , 8 , 15972.
Wieder, W. R., Cleveland, C. C., Smith, W. K., & Todd-Brown, K. (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci .,8 , 441–444.
Wu, T., Liu, S., Lie, Z., Zheng, M., Duan, H., Chu, G., et al.(2020). Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species. Forest Ecol. Manag .,461 , 117952.
You, C., Wu, F., Yang, W., Xu, Z., Tan, B., Zhang, L., et al.(2018). Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition? Sci. Total Environ. , 645 , 733–742.
Yuan, Z. Y., & Chen, H. Y. (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change , 5 , 465–469.
Yuan, Z. Y., & Chen, H. Y. (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol. Biogeogr. , 18 , 11–18.
Zhang, Z., Wang, H., Zhou, J., Li, H., He, Z., Van Nostrand, J. D. et al. (2015). Redox potential and microbial functional gene diversity in wetland sediments under simulated warming conditions: implications for phosphorus mobilization. Hydrobiologia , 743 , 1–235.
Zhang, Z. J, Wang, Z. D., Holden, J., Xu, X. H., Hang W., Ruan J. H., et al. (2012). The release of phosphorus from sediment into water in subtropical wetlands: a warming microcosm experiment. Hydrol. Process. , 26 , 15–26.
Zhou, X., Chen, C., Wang, Y., Xu, Z., Han, H., Li, L., & Wan, S.(2013). Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci.Total Environ. , 444 , 552–558.
Zi, H. B., Hu, L., Wang, C. T., Wang, G. X., Wu, P. F., Lerdau, M., & Ade, L. J. (2018). Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow. Eur. J. Soil Sci. , 69 , 429–438.
Zong, N., Shi, P., & Chai, X. (2018). Effects of warming and nitrogen addition on nutrient resorption efficiency in an alpine meadow on the northern Tibetan Plateau. Soil Sci. Plant Nutr. , 64 , 482–490.
Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J., & Peñuelas, J. (2020). Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Global Change Biol. , 26 , 3698–3714.