REFERENCES
[1] R.M. Donlan, Biofilms: microbial life on surfaces, Emerging
infectious diseases 8(9) (2002) 881-890.
[2] T. Rudrappa, Causes and consequences of plant-associated
biofilms, FEMS Microbiol Ecol 64 (2008) 153-166.
[3] C. Buttimer, O. McAuliffe, R.P. Ross, C. Hill, J. O’Mahony, A.
Coffey, Bacteriophages and Bacterial Plant Diseases, Front Microbiol 8
(2017) 34-34.
[4] M.H. Muhammad, A.L. Idris, X. Fan, Y. Guo, Y. Yu, X. Jin, J.
Qiu, X. Guan, T. Huang, Beyond Risk: Bacterial Biofilms and Their
Regulating Approaches, Frontiers in microbiology 11 (2020) 928-928.
[5] Z. Khatoon, C.D. McTiernan, E.J. Suuronen, T.-F. Mah, E.I.
Alarcon, Bacterial biofilm formation on implantable devices and
approaches to its treatment and prevention, Heliyon 4(12) (2018).
[6] S. Sunarintyas, Bioadhesion of Biomaterials, in: F. Mahyudin, H.
Hermawan (Eds.), Biomaterials and Medical Devices: A Perspective from an
Emerging Country, Springer International Publishing, Cham, 2016, pp.
103-125.
[7] K. Vickery, J. Allan, A. Jacombs, P. Valente, A. Deva,
Prevention of Implantable Medical Device Failure (IMD) Associated with
Biofilm Infection, AJIC: American Journal of Infection Control 39(5)
(2011) E45-E45.
[8] P. Stoodley, L. Hall-Stoodley, B. Costerton, P. DeMeo, M.
Shirtliff, E. Gawalt, S. Kathju, 5 - Biofilms, Biomaterials, and
Device-Related Infections, in: K. Modjarrad, S. Ebnesajjad (Eds.),
Handbook of Polymer Applications in Medicine and Medical Devices,
William Andrew Publishing, Oxford, 2013, pp. 77-101.
[9] D. Sharma, L. Misba, A.U. Khan, Antibiotics versus biofilm: an
emerging battleground in microbial communities, Antimicrobial Resistance
& Infection Control 8(1) (2019) 76.
[10] M.J. Anderson-Glenna, V. Bakkestuen, N.J.W. Clipson, Spatial
and temporal variability in epilithic biofilm bacterial communities
along an upland river gradient, FEMS Microbiology Ecology 64(3) (2008)
407-418.
[11] T.J. Battin, L.A. Kaplan, J. Denis Newbold, C.M.E. Hansen,
Contributions of microbial biofilms to ecosystem processes in stream
mesocosms, Nature 426(6965) (2003) 439-442.
[12] Y.-G. Jung, J. Choi, S.-K. Kim, J.-H. Lee, S. Kwon, Embedded
biofilm: a new biofilm model based on the embedded growth of bacteria,
Applied and Environmental Microbiology (2014) AEM.02311-14.
[13] E. Wright, S. Neethirajan, X. Weng, Microfluidic wound model
for studying the behaviors of Pseudomonas aeruginosa in polymicrobial
biofilms, Biotechnology and Bioengineering 112(11) (2015) 2351-2359.
[14] T.A. Webster, H.J. Sismaet, I.P.J. Chan, E.D. Goluch,
Electrochemically monitoring the antibiotic susceptibility of
Pseudomonas aeruginosa biofilms, Analyst 140(21) (2015) 7195-7201.
[15] E. Faure, K. Kwong, D. Nguyen, Pseudomonas aeruginosa in
Chronic Lung Infections: How to Adapt Within the Host?, Front Immunol 9
(2018) 2416-2416.
[16] R. Mittal, S. Aggarwal, S. Sharma, S. Chhibber, K. Harjai,
Urinary tract infections caused by Pseudomonas aeruginosa: A minireview,
Journal of Infection and Public Health 2(3) (2009) 101-111.
[17] S.K. Reza Amin, Alexander Hart, Bekir Yenilmez, Fariba
Ghaderinezhad, Sara Katebifar, Michael Messina, Ali Khademhosseini and
Savas Tasoglu, 3D-printed microfluidic devices, Biofibracation 8(022001)
(2016).
[18] P.A. Suci, M.W. Mittelman, F.P. Yu, G.G. Geesey, Investigation
of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms,
Antimicrobial Agents and Chemotherapy 38(9) (1994) 2125-2133.
[19] Y.F. Wu, T.Y. Lee, W.T. Liao, H.H. Chuan, N.-C. Cheng, C.M.
Cheng, Rapid Detection of Biofilm with Modified Alcian Blue Staining:
In‐vitro Protocol Improvement and Validation with Clinical Cases, Wound
Repair and Regeneration 28 (2020).
[20] M.D. Brazas, R.E.W. Hancock, Ciprofloxacin induction of a
susceptibility determinant in Pseudomonas aeruginosa, Antimicrobial
agents and chemotherapy 49(8) (2005) 3222-3227.
[21] C. Chen, B.T. Mehl, A.S. Munshi, A.D. Townsend, D.M. Spence,
R.S. Martin, 3D-printed microfluidic devices: fabrication, advantages
and limitations—a mini review, Analytical Methods 8(31) (2016)
6005-6012.
[22] R.J. Palmer, D.E. Caldwell, A flowcell for the study of plaque
removal and regrowth, Journal of Microbiological Methods 24(2) (1995)
171-182.
[23] J. Zhou, D.A. Khodakov, A.V. Ellis, N.H. Voelcker, Surface
modification for PDMS‐based microfluidic devices, in: Z.E. Rassi (Ed.)
Weinheim, 2012, pp. 89-104.
[24] J.S. Teodósio, M. Simões, L.F. Melo, F.J. Mergulhão, Flow cell
hydrodynamics and their effects on E. coli biofilm formation under
different nutrient conditions and turbulent flow, Biofouling 27(1)
(2011) 1-11.
[25] C. Wu, Ji Y. Lim, Gerald G. Fuller, L. Cegelski, Quantitative
Analysis of Amyloid-Integrated Biofilms Formed by Uropathogenic
Escherichia coli at the Air-Liquid Interface, Biophysical journal 103(3)
(2012) 464-471.
[26] P.A. Rühs, L. Böcker, R.F. Inglis, P. Fischer, Studying
bacterial hydrophobicity and biofilm formation at liquid–liquid
interfaces through interfacial rheology and pendant drop tensiometry,
Colloids and surfaces, B, Biointerfaces 117 (2014) 174-184.
[27] B. Purevdorj, J.W. Costerton, P. Stoodley, Influence of
Hydrodynamics and Cell Signaling on the Structure and Behavior of
Pseudomonas aeruginosa Biofilms, Applied and Environmental Microbiology
68(9) (2002) 4457.
[28] R. Kolter, R. Losick, Microbiology: One for all and all for
one, Science (Washington) 280(5361) (1998) 226-227.
[29] K.A. Whitehead, J. Verran, The Effect of Substratum Properties
on the Survival of Attached Microorganisms on Inert Surfaces, Berlin,
Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
[30] S. Marti, Biofilm formation at the solid-liquid and air-liquid
interfaces by Acinetobacter species, BMC Research Notes (2011).
[31] H. Wang, H. Wu, Z. Song, N. Høiby, Ciprofloxacin shows
concentration-dependent killing of Pseudomonas aeruginosa biofilm in
vitro, Journal of cystic fibrosis 9 (2010) S41-S41.
[32] Broth Microdilution MIC Test, Clinical Microbiology Procedures
Handbook, 3rd Edition, American Society of Microbiology2010.
[33] A. International, ASTM E2799-17, Standard Test Method for
Testing Disinfectant Efficacy against Pseudomonas aeruginosa Biofilm
using the MBEC Assay, West Conshohocken, PA, , 2017.
[34] H. Ceri, M.E. Olson, C. Stremick, R.R. Read, D. Morck, A.
Buret, The Calgary Biofilm Device: New Technology for Rapid
Determination of Antibiotic Susceptibilities of Bacterial Biofilms,
Journal of Clinical Microbiology 37(6) (1999) 1771.
[35] K.P.e.a. Kim, In situ monitoring of antibiotic susceptibility
of bacterial biofilms in a microfluidic device, Lab on a chip 10 (2010)
4.