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Abstract: In this paper, we consider the following p-Laplacian equation
−∆pu+ |u|p−2u− λu = µ|u|q−2u+ |u|p∗−2u, in RN ,

u > 0,

∫
RN

u2dx = a2,

where a, µ > 0, −∆pu = div(|∇u|p−2∇u), 1 < p < N, λ ∈ R is an unknown parameter that

appears as a Lagrange multiplier, p < q < N+2
N
p and p∗ = Np

N−p
is the critical Sobolev expo-

nent. By employing a minimization theorem and the truncation argument, we establish the

multiplicity of normalized solutions of above equation. Our results extend and complement

some existing results in the literature.

Keywords: p-Laplacian equation; normalized solutions; critical growth; variational meth-

ods; truncation argument

1 Introduction

In this paper, we are concerned with the multiplicity of normalized solutions for the

following p-Laplacian equation
−∆pu+ |u|p−2u− λu = µ|u|q−2u+ |u|p∗−2u, in RN ,

u > 0,

∫
RN

u2dx = a2,
(1.1)

where a > 0 is a prescribed mass, −∆pu = div(|∇u|p−2∇u), 1 < p < N, λ ∈ R is an

unknown parameter that appears as a Lagrange multiplier, p < q < N+2
N
p and p∗ = Np

N−p

is the critical Sobolev exponent. Such types of equations have been derived as models of
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several physical phenomena and have been the subject of extensive study in recent years. In

the case N > p ̸= 2, the important contribution to p-Laplacian equation

−∆p + ω|u|p−2u = f(x, u), ω ∈ R, in RN (1.2)

can be found in [25]. After that, in [27], Li and Zhou researched the p-Laplacian problem

(1.2) in bounded domain where f(x, u) = |u|p−1 at infinity. Gu et al. [18] studied the

following type of p-Laplacian equation

−∆p + V (x)|u|p−2u = λ|u|p−2u+ a|u|s−2u, in RN , (1.3)

where a ≥ 0, λ ∈ R, p ∈ (1, N), s = p + p2

N
and V (x) is the potential function satisfying the

suitable conditions. They obtained the existence of solutions of (1.3) by using variational

methods. As we all know, if p = 2 in (1.1), the solutions of (1.1) are related to the existence

of standing waves for the following Schrödinger equation of the form

i∂tψ +∆ψ + g(|ψ|2)ψ = 0, (t, x) ∈ R+ × RN , (1.4)

where N ≥ 1, i denotes the imaginary unit, ψ : R+ × RN → R is an unknown function and

g is a real function. By standing waves, we denote solutions of the form ψ(t, x) = eiλtu(x),

where λ ∈ R is a parameter and u : RN → R is a function to be found. At this point, (1.4)

can be reduced to the following form

−∆u+ λu = f(u), in RN . (1.5)

If λ ∈ R is a given value, there are a lot of papers devoted to studying the existence

and multiplicity of solutions of (1.5) (see [8, 9, 10, 11]) by using the variational methods

([3, 17, 36, 38, 41, 43]). In the last few years, mathematicians begin to find solutions of (1.5)

with prescribed mass and in this case, λ ∈ R is part of the unknown. From the physical

point of view, this approach seems to be particularly meaningful because the L2-norm is a

preserved quantity of the evolution and the variational characterization of such solutions is

often a strong help to analyze their orbital stability, see [7, 11, 39] for more details in this

direction. A solution of (1.5) with ||u||22 = c can be obtained as a constrained critical point

of the functional

I(u) := 1

2

∫
RN

u2dx−
∫
RN

F (u)dx

on the constraint

S(c) := {u ∈ H1(RN)| ||u||22 = c}.

Note that λ cannot longer be imposed but instead appears as a Lagrange parameter. Now

we recall some existing results in this direction. The pioneer of this type of work can date

back to Louis Jeanjean in [20]. After that, many researchers begin to study the normalized

solutions under different forms of (1.5). We refer to [26] for Choquard equations; [45, 46] for
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Kirchhoff-type equations; [14, 15, 47] for quasilinear Schrödinger equation; [7, 12, 13, 21] for

Schrödinger-Poisson equation; [4, 6, 28] for Schrödinger systems; [22, 23, 39, 40] for combined

nonlinearities; [32] for fractional Schrödinger equation; [33, 34, 35, 37] for bounded domain.

For more detailed results concerning normalized problems, readers can refer to the above

mentioned papers and the reference within.

Existence of multiple normalized solutions has also been studied extensively in the lat-

est few years. In [31], Luo established the multiplicity of radial normalized solutions for

Schrödinger-Poisson-Slater equations inspired by [5]. Later, Xie and Chen [44] considered

the nonlinear Kirchhoff type problem and proved infinitely many radial normalized solutions.

By applying the symmetric mountain pass approaches, Hirata and Tanaka in [19] obtained

the existence of infinitely many normalized solutions for nonlinear scalar field equations with

L2 constraint. After that, Jeanjean and Lu [24] proved multiple nonradial normalized solu-

tions and these solutions are sign-changing. Very recently, in [2], Alves et al. considered the

following nonlinear Schrödinger equation
−∆u+ λu = µ|u|q−2u+ f(u), in RN ,

u > 0,

∫
RN

|u|2dx = a2,
(1.6)

where a, µ > 0, λ < 0, q ∈ (2, 2 + 4
N
), f has an exponential critical growth when N = 2

and f(u) = |u|2∗−2u when N ≥ 3. By applying a minimax theorem found in [24] and the

truncation argument introduced in [16], they obtained the existence of multiple normalized

solutions of (1.6). As far as we know, [2] is the first paper devoted to establishing the

existence of multiple solutions when combined power nonlinearity is of mixed type.

Motivated by [2], the aim of this paper is to extend the results in [2] and find the multiple

prescribed norm solutions of (1.1). To authors’ knowledge, there is no work concerning p-

Laplacian equation with L2-norm except [42] that constructs normalized solutions under the

L2-supercritical and Sobolev subcritical cases by a mountain pass argument. In our work,

we consider the p-Laplacian equation with critical growth which makes the problem more

complicated since the lack of the compactness caused by the critical exponent.

A solution u to the problem (1.1) with
∫
RN |u|2dx = a2 corresponds to a critical point of

the functional

I(u) =
1

p

∫
RN

(|∇u|p + |u|p)dx− µ

q

∫
RN

|u|qdx− 1

p∗

∫
RN

|u|p∗dx (1.7)

on the constraint

S(a) = {u ∈ X :

∫
RN

|u|2dx = a2},

where X := W 1,p(RN) ∩ L2(RN) with the norm

||u|| =
(∫

RN

(|∇u|p + |u|p)dx
) 1

p

+

(∫
RN

|u|2dx
) 1

2
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and W 1,p(RN) is the usual Sobolev space with the norm

||u||W 1,p =

(∫
RN

(|∇u|p + |u|p)dx
) 1

p

.

The main results of this paper can be presented as follows.

Theorem 1.1. For given a > 0 and n ∈ N, there exist µ∗ > 0 independent of n and

µ∗ = µ(n) > 0 such that (1.1) admits at least n couples (uj, λj) ∈ X ×R (j = 1, 2, · · · , n) of
weak solutions possessing negative energy for µ∗ < µ < µ∗ with

∫
R2 |uj|2dx = a2 and λj < 0.

The above theorem extends some existing results found in the literature for the nonlinear

elliptic equation, because we consider the p-Laplacian operator which is more general than

the case p = 2. Moreover, it is very important to point out that a similar result can be

obtained if we consider Sobolev subcritical case, i.e.,
−∆pu+ |u|p−2u− λu = µ|u|q−2u+ |u|r−2u, in RN ,

u > 0,

∫
RN

u2dx = a2,
(1.8)

where p < q < N+2
N
p < r < p∗. Hence we have the following corollary:

Corollary 1.1. For given a > 0 and n ∈ N, there exist µ∗ > 0 independent of n and

µ∗ = µ(n) > 0 such that (1.8) admits at least n couples (uj, λj) ∈ X ×R (j = 1, 2, · · · , n) of
weak solutions possessing negative energy for µ∗ < µ < µ∗ with

∫
R2 |uj|2dx = a2 and λj < 0.

Remark 1.1. It is noteworthy that as [42] mentioned, we cannot investigate the problem

−∆pu− λ|u|p−2u = µ|u|q−2u+ |u|p∗−2u, in RN , (1.9)

for q ∈ (p, p + p2

N
), which is Lp-supercritical growth problem. In fact, if we consider the

functional of (1.9)

J(u) =
1

p

∫
RN

|∇u|pdx− µ

q

∫
RN

|u|qdx− 1

p∗

∫
RN

|u|p∗dx

on the constraint

Sa = {u ∈ W 1,p(RN) :

∫
RN

|u|pdx = a2},

it fails to prove the weak limit u is a solution of some equation because W 1,p(RN) cannot

embed into a Hilbert space, which is an essential condition, see [8] for more detailed analysis.

In our setting, it is easy to obtain X ↪→ H, where H is a Hilbert space, then one can define

the inner product (see (2.1)). Thus the minimax argument can be formulated (see Sect.2.1).

Remark 1.2. Recall the Gagliardo-Nirenberg inequality (see [1]) which is often used in the

study of normalized solutions:

For any u ∈ Ls(RN) and s ≥ 2, there exists CN,s > 0 such that

||u||s ≤ CN,s||∇u||
Np(s−2)

s[Np−2(N−p)]
p ||u||

2Np−2s(N−p)
s[Np−2(N−p)]

2 . (1.10)
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Remark 1.3. The proof of Theorem 1.1 bases on an abstract theorem involving genus theory

developed by Jeanjean and Lu in [24], we will show more details in Sect.2. In the proofs of

Theorem 1.1, we shall work on a radial space Xrad since it supplies the delicate compact

embedding. Moreover, it follows from Palais’ principle of symmetric criticality (see [36]),

that the critical points of I in Xrad are actually the critical points in the whole space X.

The remaining part of this paper is organized as follows. In section 2, we introduce some

preliminaries and establish some technical lemmas used in the proofs of Theorem 1.1. In

section 3, we give the proof of Theorem 1.1.

Throughout this paper, we make use of the following notations:

• For 1 ≤ s <∞, Ls(R2) is the usual Lebesgue space endowed with the norm

||u||s =
(∫

R2

|u|sdx
) 1

s

and || · ||∞ denotes the L∞-norm;

• X∗ is the dual space of X;

• We use “ → ” and “ ⇀ ” to denote the strong and weak convergence in the related

function space respectively;

• For any x0 ∈ R2 and R > 0, BR(x0) denotes the ball centered at x0 with radius R;

• Letters C,C1, C2, · · · represent positive constants which may change from lines to lines

and on(1) denotes the quantity that tends to 0 as n→ ∞.

2 Preliminaries

In this section, we show the minimax theorem and some crucial lemmas which are important

in the proofs of our main results.

2.1 A minimax theorem

Now we present a minimax theorem for a class of constrained even functionals developed in

[24]. First of all, we give some useful notations.

Let E be a real Banach space with the norm || · ||E and H be a real Hilbert space with

inner product (·, ·)H . For any c > 0, define the following manifold

N = {u ∈ E| (u, u)H = c}, (2.1)
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which is endowed with the topology inherited from E. And the tangent space of N at a

point u ∈ N is defined by

TuN = {v ∈ E| (u, v)H = 0}.

Let Ĩ ∈ C1(E,R), then Ĩ|N belongs to C1 on N . The norm of the derivative of I|N at any

point u ∈ N is given by

||Ĩ ′|N (u)|| = sup
||v||E≤1,v∈TuN

|⟨Ĩ ′(u), v⟩|.

Note that N is symmetric with respect to 0 ∈ E and 0 /∈ N . Let Σ(N ) be the family

of closed symmetric subsets of N . In order to formulate the minimax argument, in the

following, we introduce some concepts of Z2 genus, see [30] for more description. For any

nonempty set A ∈ Σ(N ), the Z2 genus γ(A) of A is defined by

γ(A) =


0, if A = ∅,

inf{n : there exists an odd, continuous ϕ : A→ Rn\{0}},

+∞, if it does not exist odd, continuous h : A→ Rn\{0}.

In the following lemma, we give the main properties of genus.

Proposition 2.1. ([38]) Let A,B ∈ Σ(N ). Then

(1) If there exists an odd map f ∈ C(A,B), then γ(A) ≤ γ(B).

(2) If A ⊂ B, then γ(A) ≤ γ(B).

(3) If there exists an odd homeomorphism between A and B, then γ(A) = γ(B).

(4) If SN−1 is the sphere in RN , then γ(SN−1) = N .

(5) γ(A ∪B) ≤ γ(A) + γ(B).

(6) If γ(A) <∞, then γ(A−B) ≥ γ(A)− γ(B).

(7) If A is compact, then γ(A) <∞, and there exists δ > 0 such that γ(A) = γ(Nδ(A)),

where Nδ(A) = {x ∈ Y | dist(x,A) ≤ δ}.
(8) If Y0 is a subspace of Y with codimension k, and γ(A) > k, then A ∩ Y0 ̸= ∅.

For each k ∈ N, let
Γk = {A ∈ Σ(N )| γ(A) ≥ k}.

Now we state the minimax theorem and the detailed proof can refer to [24], here we omit.

Proposition 2.2. Let Ĩ ∈ C1(E,R) be an even functional. Assume that Γk ̸= ∅ for each

k ∈ N, Ĩ|N is bounded from below and satisfies the (PS)d condition for all d < 0. Define

dk = inf
A∈Γk

sup
u∈A

Ĩ(u), k ≥ 1.

Then the following statements hold:

(i) −∞ < d1 ≤ d2 ≤ · · · ≤ dk ≤ · · · and dk is a critical value of Ĩ|N if dk < 0.
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(ii) If dk = dk+1 = · · · = dk+l−1 =: d < 0 for some k, l ≥ 1, then γ(Kd) ≥ l, where Kd

denotes the set of critical points of Ĩ|N at the level d. In particular, Ĩ|N admits infinitely

many critical points at the level d if l ≥ 2.

In the sequel, we restrict our study to the space Xrad which supplies the delicate com-

pactness results. Precisely, if {un} is bounded in Xrad, then for p̂ ∈ [p, p∗), one has

lim
n→∞

∫
RN

|un|p̂dx =

∫
RN

|u|p̂dx. (2.2)

2.2 The truncation argument

To proceed our proof, we shall employ the truncation argument introduced in [16]. By

Sobolev embedding and the Gagliardo-Nirenberg inequality (1.10), we have

I(u) ≥ 1

p
||∇u||pp −

C1µ

q
||∇u||

Np(q−2)
Np−2(N−p)
p ||u||

2Np−2q(N−p)
Np−2(N−p)

2 − 1

p∗S
p∗
p

||∇u||p∗p

=: g(||∇u||p),
(2.3)

where

g(s) =
1

p
sp − C1µa

2Np−2q(N−p)
Np−2(N−p)

q
s

Np(q−2)
Np−2(N−p) − 1

p∗S
p∗
p

sp
∗

and S is the best constant of the Sobolev embedding D1,p(RN) ↪→ Lp∗(RN) given by

S = inf
u∈D1,p(RN )\{0}

||∇u||pp
||u||pp∗

.

Recalling that q ∈ (p, N+2
N
p), which gives that Np(q−2)

Np−2(N−p)
< p, then one can infer that g

attains its negative local minimum. Moreover, for given a > 0, there exists µ∗ > 0 such

that for 0 < µ < µ∗, µa
2Np−2q(N−p)
Np−2(N−p) can take small value, which can ensure that the function

g reaches its positive local maximum. Therefore, the function g possesses two positive zero

points, denoted by R0 and R1 (R0 < R1) respectively.

For each 0 < µ < µ∗ and 0 < R0 < R1 given above, now we define the nonincreasing

cut-off function η ∈ C∞(R+, [0, 1]) by

η(t) =

1, if t ≤ R0,

0, if t ≥ R1.

In the sequel, we define the truncation functional

IT (u) =
1

p

∫
RN

(|∇u|p + |u|p)dx− µ

q

∫
RN

|u|qdx− η(||∇u||p)
p∗

∫
RN

|u|p∗dx.

Then similar above, we know that IT (u) ≥ g̃(||∇u||p), where

g̃(s) =
1

p
sp − C1µa

2Np−2q(N−p)
Np−2(N−p)

q
s

Np(q−2)
Np−2(N−p) − η(s)

p∗S
p∗
p

sp
∗
.
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From above analysis, it is not difficult to observe that g̃ attains its negative local minimum

and has unique zero point R0. Furthermore, we know that g̃ is coercive, bounded from below

and g̃(s) < 0 for s ∈ (0, R0). Without loss of generality, hereafter we will assume that

1

p
sp − 1

p∗S
p∗
p

sp
∗ ≥ 0, ∀ s ∈ [0, R0] and R0 < S

N
p . (2.4)

The following lemma gives some important properties of the truncation functional IT .

Lemma 2.1. (i) The functional IT ∈ C1(X,R).

(ii) If IT (u) ≤ 0, then ||∇u||p < R0 and I(v) = IT (v) for all v ∈ Nσ(u), where

Nσ(u) = {v : |v − u| ≤ σ}.

(iii) For all µ ∈ (0, µ∗), IT satisfies the Palais-Smale condition for the level c < 0, where µ∗

is given above.

Proof. (i) and (ii) are trivial. Now we prove (iii). Let {un} ⊂ Xrad ∩ S(a) be a (PS)c

sequence of IT with c < 0, then we have ||∇u||p < R0 for n large enough. At this point,

{un} is in fact a (PS)c sequence of I, that is

I(un) → c and ||I ′(un)|S(a)|| → 0 as n→ ∞. (2.5)

On one hand, in view of the definition of IT , one can see that IT is coercive on S(a),

from where it follows that {un} is bounded in Xrad. Up to a subsequence if necessary, there

exists u ∈ Xrad satisfying

un ⇀ u in X, un → u a.e. in RN ,

un → u in Lr(RN) for r ∈ [p, p∗).

By adapting the arguments used in Lemma 2.7 in [42], we know that there exists {λn} ⊂ R
such that

(a) −∆pun + |un|p−2un − λnun − µ|un|q−2un − |un|p
∗−2un → 0 in X∗;

(b) there exists λa ∈ R such that λn → λa;

(c) −∆pun + |un|p−2un − λaun − µ|un|q−2un − |un|p
∗−2un → 0 in X∗;

(d) −∆pu+ |u|p−2u− λau− µ|u|q−2u− |u|p∗−2u = 0 in X∗.

We claim u ̸= 0. Arguing by contradiction that u = 0, then we have ||un||p = ||un||q =

on(1). Then it follows from Sobolev inequality and (2.4) that

I(un) ≥
1

p

∫
RN

|∇u|pdx− µ

q

∫
RN

|u|qdx− 1

p∗S
p∗
p

(∫
RN

|∇u|pdx
) p∗

p

≥ −µ
q

∫
RN

|u|qdx.
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Hence one concludes that

0 > c+ on(1) = I(un) ≥ −µ
q

∫
RN

|u|qdx = 0,

which is impossible. So the claim holds.

On the other hand, since u ̸= 0, then from this observation, by Pohozaev identity, similar

to the method used in Lemma 2.9 in [42], we can prove that λa < 0. On account of {un}
is bounded in Xrad, applying the concentration-compactness principle due to Lions [29], it

follows that

|∇un|p ⇀ κ and |un|p
∗
⇀ ν in the sense of measure.

Moreover, for an at most countable index set J , we have
(1) ν = |u|p∗ +

∑
j∈J

νiδxj
, νj > 0,

(2) κ ≥ |∇u|p +
∑
j∈J

κiδxj
, κj > 0,

(3) Sν
p/p∗

j ≤ κj, ∀j ∈ J .

where δxj
is the Dirac mass at xj. In view of (a), for any ϕ ∈ C∞

0 (RN), we derive that∫
RN

|∇un|p−2∇un∇ϕdx+
∫
RN

|un|p−2unϕdx− λn

∫
RN

unϕdx

= µ

∫
RN

|un|q−2unϕdx+

∫
RN

|un|p
∗−2unϕdx+ on(1).

(2.6)

In the sequel, for any ϵ > 0, we consider the function χ ∈ C∞
0 (RN) satisfying

χ ≡ 1 on Bϵ(xj), χ ≡ 0 on RN \B2ϵ(xj) and |∇χ| ≤ 2
ϵ
.

Let ϕ = χun in (2.6), one can obtain that∫
RN

|∇un|pχdx+
∫
RN

|∇un|p−2∇un∇χundx+
∫
RN

|un|pχdx− λn

∫
RN

|un|2χdx

= µ

∫
RN

|un|qχdx+
∫
RN

|un|p
∗
χdx+ on(1).

(2.7)

Passing to the limit as n→ ∞ in (2.7), we arrive at∫
RN

χdκ+

∫
RN

|∇un|p−2∇un∇χundx+
∫
RN

|un|pχdx− λa

∫
RN

|un|2χdx

= µ

∫
RN

|un|qχdx+
∫
RN

χdν + on(1).

(2.8)

Observe that

lim
ϵ→0

∫
RN

|un|pχdx = lim
ϵ→0

∫
RN

|un|2χdx = lim
ϵ→0

∫
RN

|un|qχdx = 0 (2.9)
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and by Hölder inequality,

0 ≤ lim
ϵ→0

∣∣∣∣∫
RN

|∇un|p−2∇un∇χundx
∣∣∣∣ ≤ lim

ϵ→0
C

(∫
B2ϵ(xj)

|un|p
∗
dx

)1/p∗

= 0. (2.10)

In view of (2.8)-(2.10), one obtains

lim
ϵ→0

∫
RN

χdκ = lim
ϵ→0

∫
RN

χdν,

which gives that

κj = νj, for each j ∈ J . (2.11)

Recalling that

Sν
p/p∗

j ≤ κj, ∀ j ∈ J ,

then we have

νj = 0 or νj ≥ S
N
p , ∀ j ∈ J .

If νj ≥ S
N
p , then R0 ≥ lim sup

n→+∞
|∇un|p ≥ S

N
p , which contradicts to (2.4). Thus νj = 0 and

J = ∅. So we arrive at

un → u in Lp∗

loc(R
N).

Next we prove for each R > 0, un → u in Lp∗(RN \ BR(0)). Indeed, for each n ∈ N,
un ∈ Xrad is a radial function, we know that

|un(x)| ≤
||un||
|x|

N−1
p

a.e. in RN .

On account of {un} is bounded in Xrad, we have

|un(x)| ≤
C

|x|
N−1

p

a.e. in RN ,

so one gets

|un(x)|p
∗ ≤ C

|x|
N(N−1)

N−p

a.e. in RN .

Note that
C

|x|
N(N−1)

N−p

∈ L1(RN \BR(0)).

Then it follows from Lebesgue’s Dominated Convergence Theorem that

un → u in Lp∗(RN \BR(0)).

Therefore, we obtain

un → u in Lp∗(RN).

To complete the proof, it remains to show that

un → u in Xrad.
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In view of (c) and (d), choosing un and u as the testing functions respectively, one gets∫
RN

(|∇un|p + |un|p)dx− λa

∫
RN

|un|2dx− µ

∫
RN

|un|qdx−
∫
RN

|un|p
∗
dx = on(1) (2.12)

and ∫
RN

(|∇u|p + |u|p)dx− λa

∫
RN

|u|2dx− µ

∫
RN

|u|qdx−
∫
RN

|u|p∗dx = 0. (2.13)

Then using the fact that un → u in Ls(RN) for s ∈ [p, p∗], gathering (2.12) with (2.13), one

can deduce that

lim
n→∞

(||∇un||pp − λa||un||22) = ||∇u||pp − λa||u||22.

Due to λa < 0, we have

lim
n→∞

||∇un||pp = ||∇u||pp and lim
n→∞

||un||22 = ||u||22 = a2,

which give that un → u in Xrad.

Thus we finish the proof of this lemma. �

3 Proof of Theorem 1.1

The aim of this section is to give the proof of Theorem 1.1. In the following, we will construct

an appropriate minimax sequence possessing negative critical values for the functional IT .

For given ε > 0, define

A = {u ∈ Xrad ∩ S(a) : IT (u) ≤ −ε} ⊂ Xrad,

which is a closed symmetric subset of S(a) since IT is even and continuous.

Lemma 3.1. For given n ∈ N, there are ε∗ = ε(n) > 0 and µ∗ = µ(n) > 0 such that

γ(A) ≥ n for 0 < ε < ε∗ and µ > µ∗.

Proof. To prove this lemma, we borrow some arguments from [16]. For fixed n ∈ N and each

ϱ > 0, let En be an n-dimensional subspace of Xrad possessing a basis of form

B = {u1, u2, · · · , un}

such that ||∇ui||
p
2
p = ϱ and ||ui||2 = a for i = 1, 2, · · · , n. Then it yields that

||∇ui||pp + ||ui||22 = ϱ2 + a2.

Set

Υn := {t1u1 + t2u2 + · · ·+ tnun : t11 + t22 + · · ·+ t2n = 1}.
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As [2], we know that there exists a homomorphism between Υn and the sphere B ⊂ RN

defined as

B = {(z1, z2, · · · , zn) : z21 + z22 + · · ·+ z2n = ϱ2 + a2}.

Then it follows from Proposition 2.1 that γ(Υn) = n. For any v ∈ Υn and 0 < ϱ < R
p
2
0 , we

can deduce that ||∇v||p = ϱ
2
p < R0, thus

IT (v) = I(v) =
1

p
ϱ2 +

ϱp

p

∫
RN

|v
ϱ
|pdx− µϱq

q

∫
RN

|v
ϱ
|qdx− ϱp

∗

p∗

∫
RN

|v
ϱ
|p∗dx,

where R0 is given in Sect.2. Since En is a finite dimension space, all the norms are equivalent.

Then we define

αn = sup{
∫
RN

|w|pdx : w ∈ S(
a

ϱ
) ∩ En, ||∇w||

p
2
p = 1} > 0,

βn = inf{
∫
RN

|w|p∗dx : w ∈ S(
a

ϱ
) ∩ En, ||∇w||

p
2
p = 1} > 0

and

θn = inf{
∫
RN

|w|qdx : w ∈ S(
a

ϱ
) ∩ En, ||∇w||

p
2
p = 1} > 0,

where

S(
a

ϱ
) = {u ∈ Xrad : ||u||2 =

a

ϱ
}.

Therefore, we obtain that

IT (v) ≤ 1

p
ϱ2 +

ϱp

p
αn −

µϱq

q
θn −

ϱp
∗

p∗
βn. (3.1)

It follows from (3.1) that for given 0 < ϱ < R
p
2
0 , we can choose µ∗ = µ(n) > 0 and

ε∗ = ε(n) > 0 such that for µ > µ∗ and 0 < ε < ε∗,

IT (v) ≤ −ε, for all v ∈ Υn.

From this, we can conclude that Υn ⊂ A and γ(A) ≥ γ(Υn) = n. The proof of this lemma

is completed. �

Proof of Theorem 1.1 For each k ∈ N, define

Σk = {A ⊂ Xrad ∩ S(a) : A is closed, A = −A and γ(A) ≥ k}

and

ck = inf
A∈Σk

sup
u∈A

IT (u).

Let 0 < µ < µ∗, where µ∗ is given above. For ε > 0, define

A−ε = {u ∈ Xrad ∩ S(a) : IT (u) ≤ −ε} ⊂ Xrad.

On one hand, regarding from Lemma 3.1, for each k ∈ N, there exist ε∗ = ε(k) > 0 and

µ∗ = µ(k) > 0 such that γ(A−ε) ≥ k for all 0 < ε < ε∗ and µ > µ∗. Since I
T is continuous,

even and bounded from below, thus we obtain that

12



A−ε ∈ Σk and −∞ < ck ≤ −ε < 0 for any k ∈ N.

Furthermore, if c = ck = ck+1 = · · · = ck+r < 0, then by Lemma 3.1, IT satisfies the (PS)c

condition for c < 0, from where it follows that Kc is a compact set, where

Kc = {u ∈ Xrad ∩ S(a) : (IT )′(u) = 0, IT (u) = c}.

On the other hand, by the definition of the truncated functional, we know that IT (u) =

I(u) for the level c < 0. Therefore, by applying Proposition 2.2, the existence of multiple

solutions of (1.1) is obtained.

Thus we finish the proof of Theorem 1.1. �

Remark 3.1. As mentioned above, the argument employed in this paper can also deal with

the following Sobolev subcritical case,
−∆pu+ |u|p−2u− λu = µ|u|q−2u+ |u|r−2u, in RN ,

u > 0,

∫
RN

u2dx = a2,

where p < q < N+2
N
p < r < p∗. The outline of the proof is similar to the Sobolev critical case,

here we do not give the details.
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