REFERENCES
  1. Vanderheyden WM, Lim MM, Musiek ES, Gerstner JR. Alzheimer’s Disease and Sleep-Wake Disturbances: Amyloid, Astrocytes, and Animal Models.J Neurosci. 2018; 38(12): 2901-2910. DOI: https://doi: 10.1523/JNEUROSCI.1135-17.2017
  2. Brown GM. Light, melatonin and the sleep-wake cycle. J Psychiatry Neurosci. 1994; 19(5): 345-53.
  3. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits.Curr Neuropharmacol. 2017; 15(3): 434-443. DOI: https://doi: 10.2174/1570159X14666161228122115
  4. Wilson RS, Mayhew SD, Rollings DT, Goldstone A, Hale JR, Bagshaw AP. Objective and subjective measures of prior sleep-wake behavior predict functional connectivity in the default mode network during NREM sleep.Brain Behav. 2019; 9(1): e01172. DOI: https://doi: 10.1002/brb3.1172. Epub 2018 Dec 4
  5. Sormaz M, Murphy C, Wang HT, Hymers M, Karapanagiotidis T, Poerio G, et al. Default mode network can support the level of detail in experience during active task states. Proc Natl Acad Sci U S A.2018; 115(37): 9318-9323. DOI: https://doi: 10.1073/pnas.1721259115
  6. Koyanagi I, Akers KG, Vergara P, Srinivasan S, Sakurai T, Sakaguchi M. Memory consolidation during sleep and adult hippocampal neurogenesis.Neural Regen Res. 2019; 14(1): 20-23. DOI: https://doi: 10.4103/1673-5374.243695
  7. Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health.Front Neural Circuits. 2017; 11: 74. DOI: https://doi: 10.3389/fncir.2017.00074
  8. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of Hippocampal Neurogenesis by Lithium. J. Neurochem. 2000; 75, 1729–1734. DOI: https:// doi: 10.1046/j.1471-4159.2000.0751729.x
  9. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011; 472(7344): 466-70. DOI: https://doi: 10.1038/nature09817
  10. Wu L, Ran C, Liu S, Liao L, Chen Y, Guo H, et al. Jiaweisinisan facilitates neurogenesis in the hippocampus after stress damage.Neural Regen Res. 2013; 8(12): 1091-102. DOI: https://doi: 10.3969/j.issn.1673-5374.2013.12.004
  11. Zheng G, Cheng W, Wang Y, Wang X, Zhao S, Zhou Y, et al. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol. 2011; 133(2): 724-728. DOI: https://doi: 10.1016/j.jep.2010.01.064
  12. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature. J Neuropathol Exp Neurol. 2012; 71(5): 362-381. DOI: https://doi: 10.1097/NEN.0b013e31825018f7
  13. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus.Nat Med. 1998; 4(11): 1313-7. DOI: https://doi: 10.1038/3305
  14. Borgs L, Beukelaers P, Vandenbosch R, Nguyen L, Moonen G, Maquet P, et al. Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci. 2009; 10: 30. DOI: https://doi: 10.1186/1471-2202-10-30
  15. Tamai S, Sanada K, Fukada Y. Time-of-Day-Dependent Enhancement of Adult Neurogenesis in the Hippocampus. PLoS One. 2008; 3(12): e3835. DOI: https://doi: 10.1371/journal.pone.0003835
  16. Waterhouse J, Fukuda Y, Morita T. Daily rhythms of the sleep-wake cycle. J Physiol Anthropol. 2012; 31(1): 5. DOI: https://doi: 10.1186/1880-6805-31-5
  17. Opperhuizen A, Foppen E, Jonker M, Wackers P, Faassen M, Weeghel M, et al. Effects of Light-at-Night on the Rat Liver. A Role for the Autonomic Nervous System. Front Neurosci. 2019; 13: 647. DOI: https:// doi: 10.3389/fnins.2019.00647
  18. Almoosawi S, Vingeliene S, Gachon F, Voortman T, Palla L, Johnston JD, et al. Adv Nutr. 2019; 10(1): 30-42. DOI: https://doi: 10.1093/advances/nmy070
  19. Makimoto H, Shimizu K, Fujiu K, Lin T, Oshima T, Amiya E, et al.Int Heart J. 2018; 59(6): 1352-1358. DOI: https://doi: 10.1536/ihj.17-561
  20. Wislowska M, Giudice RD, Lechinger J, Wielek T, Heib DPJ, Pitiot A, et al. Sci Rep. 2017; 7(1): 266. DOI: http://doi: 10.1038/s41598-017-00323-4
  21. Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018; 128(6): 2157-2167. DOI: https://doi: 10.1172/JCI80590
  22. Boudreau P, Yeh W, Dumont GA, Boivin DB. Circadian Variation of Heart Rate Variability Across Sleep Stages. Sleep. 2013; 36(12): 1919-1928. DOI: https://doi: 10.5665/sleep.3230
  23. Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev. 2017; 39: 59–67. DOI: https://doi: 10.1016/j.arr.2016.12.006
  24. Roy HA, Green AL. The Central Autonomic Network and Regulation of Bladder Function. Front Neurosci. 2019; 13: 535. DOI: https://doi: 10.3389/fnins.2019.00535
  25. Wang H, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington’s Disease.eNeuro. 2017; 5(1): ENEURO.0431-17. DOI: https://doi: 10.1523/ENEURO.0431-17.2017
  26. French IT, Muthusamy KA. A Review of Sleep and Its Disorders in Patients with Parkinson’s Disease in Relation to Various Brain Structures. Front Aging Neurosci. 2016; 8: 114. DOI: https://doi: 10.3389/fnagi.2016.00114
  27. Folstein MF, Folstein SE, McHugh PR. ”Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.J Psychiatr Res. 1975; 12(3): 189-98. DOI: https://doi: 10.1016/0022-3956(75)90026-6
  28. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci.2000; 12(2): 233-9. DOI: https://doi: 10.1176/jnp.12.2.233
  29. Matsuda H. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer’s Disease. Aging Dis. 2013; 4(1): 29-37.
  30. Sone D, Imabayashi E, Maikusa N, Ogawa M, Sato N, Matsuda H, et al. Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD) on 3-tesla Normal Database: Diagnostic Accuracy in Two Independent. Aging Dis. 2018; 9(4); 755-760. DOI: https://doi: 10.14336/AD.2017.0818
  31. Okano Y, Tamura K, Kuji T, Masuda S, Tochikubo O, Umemura S. Effects of angiotensin II receptor blockers on relationships between 24-hour blood pressure, autonomic function, and health-related QOL. Clin Exp Hypertens. 2009; 31(3): 250-8. DOI: https://doi: 10.1080/10641960902822500
  32. Nakamura M, Oda M, Akiba Y, Inoue J, Ito T, Tsuchiya M, et al. Autoradiographic demonstration of lansoprazole uptake sites in rat antrum and colon. J Clin Gastroenterol. 1995; 20 Suppl 2: S8-13. DOI: https://doi: 10.1097/00004836-199506002-00004
  33. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia.Sleep. 1986; 9(2): 293-308. DOI: https://doi: 10.1093/sleep/9.2.293
  34. Höijer U, Hedner J, Ejnell H, Grunstein R, Odelberg E, Elam M. Nitrazepam in patients with sleep apnoea: a double-blind placebo-controlled study. Eur Respir J. 1994; 7(11): 2011-5.
  35. Montagnese S, Zarantonell L, Formentin C, Zancato C, Bonetto MB, Biscontin A, et al. Sleep, Circadian Rhythmicity and Response to Chronotherapy in University Students: Tips from Chronobiology Practicals. J Circadian Rhythms. 2021; 19(1): 1. DOI: https:// doi.org/10.5334/jcr.202
  36. Murofushi K. The mental world of the elderly with dementia of amnestic type (2). Japanese Journal of Geriatric Psychiatry. 1999; 10(10): 1187-1200.
  37. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol.2007; 6(8): 734-46. DOI: https://doi: 10.1016/S1474-4422(07)70178-3
  38. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7(3): 263-9. DOI: https://doi: 10.1016/j.jalz.2011.03.005
  39. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus Guidelines fo the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996; 47(5): 1113-24. DOI: https://doi: 10.1212/wnl.47.5.1113
  40. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB consortium. Neurology. 2017; 89(1): 88-100. DOI: https://doi: 10.1212/WNL.0000000000004058
  41. Fiford CM, Ridgway GR, Cash DM, Modat M, Nicholas J, Manning EN, et al. Ian B. Patterns of progressive atrophy vary with age in Alzheimer’s disease patients. Neurobiol Aging. 2018; 63: 22-32. DOI: https://doi: 10.1016/j.neurobiolaging.2017.11.002
  42. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol.1965. 124(3): 319-335. DOI: https://doi: 10.1002/cne.901240303
  43. Sreenivasmurthy SG, Liu JY, Song JX, Yang CB, Malampati S, Wang ZY, et. al. Neurogenic Traditional Chinese Medicine as a Promising Strategy for the Treatment of Alzheimer’s Disease. Int J Mol Sci. 2017. 28;18(2):272. DOI: https://doi: 10.3390/ijms18020272
  44. Ju YES, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, et. al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017. 1;140(8):2104-2111. DOI: https:// doi: 10.1093/brain/awx148
  45. Murphy MP, LeVine 3rd H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010. 19(1):311-23. DOI: https:// doi: 10.3233/JAD-2010-1221
  46. Valdes-Tovar M, Estrada-Reyes R, Solis-Chagoyan H, Argueta J, Dorantes-Barron AM, Quero-Chavez D, et. al. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression.Br J Pharmacol. 2018. 175(16):3200-3208. DOI: https:// doi: 10.1111/bph.14197
  47. Fernandes C, Rocha NBF, Rocha S, Herrera-Solis A, Salas-Pacheco J, Garcia-Garcia F, et. al. Detrimental role of prolonged sleep deprivation on adult neurogenesis. Front Cell Neurosci. 2015. 14;9:140. DOI: https:// doi: 10.3389/fncel.2015.00140
  48. Sack M, Lenz JN, Jakovcevski M, Biedermann SV, Falfan-Melgoza C Deussing J, et. al. Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav. 2017. DOI: https:// doi: 10.1007/s11682-016-9638-y
  49. Chen ISH. The circadian rhythm of Yin and Yang Syndrome on hypertension. Chinese Journal of Integrated Traditional and Western Medicine. 1998. 4(2):95-99. DOI: https://doi.org/10.1007/BF02934150
  50. Zhang HJ, Wang ZX. Yin-yang and Zheng: Exported from Chinese medicine.Chinese Journal of Integrated Traditional and Western Medicine.2014. 20(4):250-255. DOI: https://doi.org/10.1007/s11655-014-1777-z
  51. Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal.Front Neurol. 2018. 9:56. DOI: https:// doi: 10.3389/fneur.2018.00056
  52. Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev. 2016. 37(6): 584-608. DOI: https:// doi: 10.1210/er.2016-1083
  53. Terasawa K. On the Term Mind-Body Unity, an Etymological Review.Kampo Med. 2018. 69(2):199-201. DOI: https://doi.org/10.3937/kampomed.69.199
  54. Terasawa K. On the Mind-Body Unity in the Oketsu Syndrome. Kampo Med. 2018. 69(1):67-71. DOI: https://doi.org/10.3937/kampomed.69.67
Legend of Figure 1
We define the inspection at the time of the intervention with the chronobiological therapy as the first one and define the inspection after the intervention as the second one. The 1st scores of VSRAD were 1.48 to 5.7 and the average was 3.085. The 2nd Z scores were 0.93 to 5.58 and the average was 2.727.
Legend of Figure 2
The 1st MMSE scores were 11 to 25 and the average was 16.2. The 2nd MMSE scores after the intervention were 10 to 29 and the average was 18.5.
Legend of Figure 3
The 1st severities of Neuropsychiatric Inventory-Questionnaire (NPI-Q) in Case 4 and 5 were 20 and 21, and the average was 20.5. The 2nd severities of NPI-Q were 9 and 2, the average was 5.5.
Legend of Figure 4
The 1st VSRAD Z-scores were 1.48 to 5.7 and the 1st MMSE scores were 11 to 25 points. This Pearson correlation coefficient was -0.353.
Legend of Figure 5
The 2nd Z-scores were 0.93 to 5.58 and the 2nd MMSE scores were from 10 to 29 points. This Pearson correlation coefficient was -0.549.
Legend of Figure 6
The 1st Z scores were 1.48 to 5.7 and the 2nd Z scores were 0.93 to 5.58. This Pearson correlation coefficient was 0.965.
Legend of Figure 7
The 1st MMSE scores were 11 to 25 and the 2nd MMSE score were 10 to 29. This Pearson correlation coefficient of was 0.843.
Legend of Figure 8
We achieved the recovered 0.03 to 1.28 points of VSRAD Z-score. They were improvement rates of Z-scores (Imp Z). The Pearson correlation coefficient between these recovered points and the 1st MMSE scores was 0.872.
Legend of Figure 9
The Pearson correlation coefficient between these Imp Z and the 2nd MMSE scores was 0.740.
Legend of Table 1
The table shows milligram quantity of the medicines. Lansoprazole, furosemide, and spironolactone create the activities of the autonomic nervous system in the morning. Conversely, clonazepam and nitrazepam create an end of the activities of autonomic nervous system at night.
Legend of Table 2
The table shows gram quantity of the Japanese Kampo Medicines (JKMs). Ninjin-Yoei-To has an effect on decreased physical strength, fatigue, inappetence, night sweats, coldness of hands and feet, and anemia. Toki-Syakuyaku-San has an effect on anemia, fatigue, and edema. Hochu-Ekki-To treats decreased physical strength, inappetence, and gastroptosis. Bohu-Tsusho-San treats palpitation, stiff shoulder, obesity, and constipation. Yokkan-San and Yokkan-San-Ka-Chinpi-Hange act on irritation and insomnia. Keishi-Ka-Shakuyaku-To has an effect on stomachache. Oren-Gedoku-To has an effect on hypertension, insomnia, vertigo, and dermatitis. Choto-San has an effect on headache and hypertension.
Legend of Table 3
The table shows gram quantity of the ingredients of Japanese Kampo Medicines (JKMs). Toki, Japanese Angelica Root, creates the start of the activity of the autonomic nervous system. Chotoko, Uncaria Hook, creates the closure of the activity of the autonomic nervous system.