REFERENCES

Beltrami, H., Kellman, L., (2003). An examination of short-and long-term air-ground temperature coupling. Global Planet Change , 38 (3-4), 291-303. https://doi.org/10.1016/S0921-8181(03)00112-7.
Brown, R.J.E., (1973). Influence of climatic and terrain factors on ground temperatures at three locations in the permafrost region of Canada. In: 1973 The Second International Conference on Permafrost, pp.27-34.
Camill, P., (2000). How much do local factors matter for predicting transient ecosystem dynamics? Suggestions from permafrost formation in boreal peatlands. Global change biology , 6(2),169-182. https://doi.org/10.1046/j.1365-2486.2000.00293.x.
Camill, P., Clark, G.S., (1998). Climate change disequilibrium of boreal permafrost peatlands caused by local processes. The American Naturalist, 15(3), 207-222. https://doi.org/10.1086/286112.
Cannone, N., Guglielmin, M., (2009). Influence of vegetation on the ground thermal regime in continental Antarctica. Geoderma , 151, 215-223. https://doi:10.1016/j.geoderma.2009.04.007.
Chang, X.L., Jin, H.J., Wang, Y.P., Zhang, Y.L., Zhou, G.Y., Che, F.Q., Zhao, Y. M., (2012). Influences of vegetation on permafrost: a review.Acta Ecologica Sinica , 32(24), 7981-7990. https://doi:10.5846/stxb201202120181. (Chinese in English Abstract)
Chang, J., Wang, G.X., Gao, Y.H., Wang, Y.B., 2014b. The Influence of Seasonal Snow on Soil Thermal and Water Dynamics under Different Vegetation Covers in a Permafrost Region. Journal of Mountain Science , 11(3), 727-745. https://doi:10.1007/s11629-013-2893-0.
Chang, X.L., Yu, S.P., Jin, H.J., Zhang, Y.L., (2014a). Vegetation impact on the thermal regimes of the active layer and near-surface permafrost in the Greater Hinggan Mountains, Northeastern China.Sciences in Cold and Arid Regions , 6(5), 0511-0520. https://doi:10.3724/SP.J.1226.2014.00511.
Chen, S.P., Chen, J.Q., Lin, G.H., Zhang, W.L., Miao, H.X., Wei, L., Huang, J.H., Han, X.G., (2009). Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types.Agricultural & Forest Meteorology , 149 (11), 1800–1809. https://doi:10.1016/j.agrformet.2009.06.009.
Cheng, G.D., (1983). Vertical and horizontal zonation of high altitude permafrost. In: 1983 The Fourth International Conference on Permafrost, pp. 136-141.
Cheng, G.D., Dramis, F., (1992). Distribution of Mountain Permafrost and Climate. Permafrost and Periglacial Processes , 3, 83-91. https://doi:10.1002/ppp.3430030205.
Cheng, G.D., (2003). Influences of local factors on the distribution of permafrost and its enlightenment to the design of Qinghai-Tibet Railway.Science in China (Series D) , 33(6): 602-607. (Chinese in English Abstract)
Cheng, G.D., (2004). Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design.Science in China (Series D) , 47(8), 704-709. http://dx.doi.org/10.1360/02yd0438.
Chou, Y.L., Sheng, Y., Wei, Z.M., Ma, W., (2008). Calculation of temperature difference between sunny slope and shady slope along railways in permafrost regions on Qinghai-Tibet Plateau. Cold Regions Science and Technology , 53, 346-354. https://doi.org/10.1016/j.coldregions.2008.04.004
Dorfer, C., Kuhn, P., Baumann, F., He, J.S., Scholten, T., (2013). Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. PLOS One , 8 (2), e57024. http://dx.doi.org/10.1371/journal.pone.0057024.
Eaton, A.K., Rouse, W.R., Lafleur, P.M., Marsh, P., Blanken, P.D., (2001). Surface energy balance of the western and central Canadian subarctic: variations in the energy balance among five major terrain types. Journal of Climate , 14, 3692-3703. https://doi.org/10.1175/1520-0442(2001)014b3692:SEBOTWN2.0.CO;2.
Everett, D.H., (1961). The thermodynamics of frost damage to porous solids. Transactions of the Faraday Society , 57, pp.1541-1551. https://doi:10.1039/tf9615701541.
Fan, X.W., Lin, ZJ., Gao, Z.Y., Meng. X.L., Niu, F.J., Luo, J., Yin, G.A., Zhou, F.J., Lan, A.Y., (2021). Cryostructures and ground ice content in ice-rich permafrost area of the Qinghai-Tibet Plateau with Computed Tomography Scanning. Journal of Mountain Science , 2021. 18(5):1028-1221. https://doi.org/10.1007s11629-020-6197-x.
Ferrians, O.J.Jr, Hobson, G.D., (1973). Mapping and predicting permafrost in North America: a review, 1963-1973. In: 1973 The Second International Conference on Permafrost, pp.479-498.
Fisher, J.P., Estop-Aragonés, C., Thierry, Aaron., Charman, D.J., Wolfe, S.A., Hartley, I.P., Murton, J.B., Williams, M., Phoenix, G.K., (2016). The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Global change biology , 22, 3127-3140. https://doi: 10.1111/gcb.13248.
Gorbunov, A.P., (1978). Permafrost in the mountains of Central Asia. In: 1978 The Third International Conference on Permafrost, pp. 372-377.
Gorbunov, A.P., (1988). The alpine permafrost zone of the USSR. In: 1988 The Fifth International Conference on Permafrost, pp. 154-158.
Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E.A.G., Jorgenson, T., Marchenko, S., Romanovsky, V., Wickland, K.P., French, N., Waldrop, M., Bourgeau-Chavez, L., Strieg, R.G., (2011). Vulnerability of highlatitude soil organic carbon in North America to disturbance. Journal of Geophysical Research , 116, G00K06. http://dx.doi.org/10.1029/2010JG001507.
Harris, S.A., (1981). Climatic relationships of permafrost zones in areas of low winter snow-cover. Arctic . 34(1), 64-70. http://www.jstor.org/stable/40509106.
Harris, S.A., (1986). Permafrost distribution, zonation and stability along the Eastern Ranges of the Cordillera of North America.Arctic , 39, 29-38. https://doi.org/10.14430/arctic2042.
Heggem, E.S.F., Etzelmuller, B., Anarmaa, S., Sharkhuu, N., Goulden, C.E., Nandinsetseg, B., (2006). Spatial distribution of ground surface temperatures and active layer depths in the Hovsgol Area, Northern Mongolia. Permafrost and Periglacial Processes , 17, 357-369. https://doi:10.1002/ppp.568.
Hu, Z.Y., Qian, Z.Y., Cheng, G.D., Wang, J.M., (2002). Influence of solar radiation on embankment surface thermal regime of the Qinghai-Xizang Railway. Journal of Glaciology and Geocryology , 24(2), 121-128. https://doi: 10.3969/j.issn.1000-0240.2002.02.003. (Chinese in English Abstract)
Jin, H.J., He, R.X., Cheng, G.D., Wu, Q.B., Wang, S.L., Lü, L.Z., Chang, X.L., (2009). Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters , 4, 045206. https://doi:10.1088/1748-9326/4/4/045206.
Jobbagy, E.G., Jackson, R.B., (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Journal of Applied Ecology , 10, 423–436. https://doi:10.2307/2641104.
Jorgenson, M.T., Shur, Y.L., (2009). Permafrost. In: Goudie, A., Cuff, D. (Eds.), The Oxford Companion to Global Change. Oxford Univ. Press, Oxford, U. K., pp. 540–547.
Keuper, F., Dorrepaal, E., van Bodegom, P.M., Logtestijn, R.,Venhuizen, G., van Hal, J., Aerts, R., (2017). Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Global change biology , 1-10. https://doi: 10.1111/gcb.13804.
King, L., (1986). Zonation and ecology of high mountain permafrost in Scandinavia. Geografiska Annaler: Series A, Physical Geography , 68(3), 131-139. https://doi: 10.1080/04353676.1986.11880166.
Lai, Y.M., Zhang, S.J., Zhang, L.X., Xiao, J.Z., (2004). Adjusting temperature distribution under the south and north slopes of embankment in permafrost regions by the ripped-rock revetment. Cold Regions Science and Technology, 39, 67-79. https://doi.org/10.1016/j.coldregions.2004.04.003.
Li, B.Y., Gu, G.A., Li, S.D., (1996). Natural environment in the Hoh Xil hill region of Qinghai. Science Press, pp. 55.
Li, S.Q., Yang, P., Zhao, F.Z., (2018). A study of the thermal physical properties of frozen soil in gravel layers. Hydrogeology & Engineering Geology , 45(6), 122-126. https://doi:10.16030/j.cnki.issn.1000-3665.2018.06.18. (Chinese in English Abstract)
Lin, Z.J., Burn, C., Niu, F.J., Luo, J., Liu, M.H., Yin, G.A., (2015b). The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 26(2), 142-159. https://doi.org/10.1002/ppp.1840.
Lin, Z.J., Gao, Z.Y., Niu, F.J., Luo, J., Yin, G.A., Liu, M.H., Fan, X.W., (2019). High spatial density ground thermal measurements in a warming permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau.Geomorphology , 340, 1-14. https://doi.org/10.1016/j.geomorph.2019.04.032.
Lin, Z.J., Niu, F.J., Liu, H., Lu, J.H., (2011). Hydrothermal Processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology, 65, 446-455. https://doi.org/10.1016/j.coldregions.2010.10.013.
Lin, Z.J., Niu, F.J., Luo, J., Liu, M.H., Yin, G.A., (2015a). Permafrost thermal regime at north and south aspects, Kunlun Mountain, Qinghai-Tibet Plateau. In: 2015 The 7th Canadian Permafrost Conference, GeoQuebec. 183, 1-8.
Lin, Z.J., Niu, F.J., Xu, Z.Y., Xu, J., Wang, P., (2010). Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 21, 315-324. https://doi.org/10.1002/ppp.692.
Lin, Z.J., Gao, Z.Y., Fan, X.W., Niu, F.J., Luo, J., Yin, G.A., Liu, M.H., (2020). Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma , 2020, 376: 114540. https://doi.org/10.1016/j.geoderma.2020.114540.
Liu, W.J., Chen, S.Y., Zhao, Q., Sun, Z.Z., Ren, J.W., Qin, D.H., (2014). Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau.Environmental Research Letters, 9, 114013 (9pp). https://doi:10.1088/1748-9326/9/11/114013.
Luo, J., Lin, Z.J., Yin, G.A., Niu, F.J., Liu, M.H., Gao, Z.Y., Fan, X.W., (2019). The ground thermal regime and permafrost warming at two upland, sloping, and undisturbed sites, Kunlun Mountain, Qinghai-Tibet Plateau. Cold Regions Science and Technology, 167, 102862. https://doi.org/10.1016/j.coldregions.2019.102862.
Ma, Y.M., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., Ma, W., Zhong, L., Sun, F., Chen, X., Zhu, Z., Wang, S., Ishikawa, H., (2009). Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrology And Earth System Sciences , 13, 1103–1111. https://doi:10.5194/hess-13-1103-2009.
Matsuoka, N., (1994). Diurnal freeze-thaw depth in rockwalls: field measurements and theoretical considerations. Earth Surface Processes and Landforms , 19, 423–435. https://doi:10.1002/esp.3290190504.
Mu, C.C., Zhang, T.J., Zhang, X.K., Cao, B., Peng, X.Q., Cao, L., Su, H., (2016). Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena , 141 (2016) 85–91. http://dx.doi.org/10.1016/j.catena.2016.02.020.
Munkhjargal, M., Yadamsuren, G., Yamkhin, J., Menze, L., (2020). Ground surface temperature variability and permafrost distribution over mountainous terrain in northern Mongolia. Arctic Antarctic and Alpine Research , 52(1), 13-26. https://doi.org/10.1080/15230430.2019.1704347.
Nelson, F.E., Outcalt, S.I., (1983). A frost index number for spatial prediction of ground-frost zones. In: Permafrost Fourth International Conference Proceedings, vol. I. Washington, D.C.: National Academy Press, 907-911.
Nelson, F. E., Outcalt, S.I., (1987). A computational method for prediction and regionalization of permafrost. Arctic Antarctic and Alpine Research , 19(3), 279-288. https://doi:10.2307/1551363.
Niu, F.J., Lin, Z.J., Lu, J.H., Liu, H., Xu, Z.Y., (2011). Characteristics of roadbed settlement in embankment-bridge transition section along the Qinghai-Tibet Railway in permafrost regions.Cold Regions Science and Technology , 65, 437-445. https://doi:10.1016/j.coldregions.2010.10.014.
Niu, F.J., Liu, M.H., Cheng, G.D., Lin, Z.J., Luo, J., Yin, G.A., (2015). Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions. Science in China (Series D) , 58(9), 1669-1676. https://doi:10.1007/s11430-015-5063-0.
Otterman, J., (1974). Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science , 186 (4163), 532–533. https://doi:10.1126/science.186.4163.531.
Pang, Q.Q., Zhao, L., Li, S.X., (2011). Influences of Local Factors on Ground Temperatures in Permafrost Regions along the Qinghai-Tibet Highway. Journal of Glaciology and Geocryology , 33(2), 350-356. (Chinese in English Abstract)
Price, L.W., (1971). Vegetation, microtopography, and depth of active layer on different exposures in subarctic alpine tundra. Ecology , 52(4), 638-647. http://www.jstor.org/stable/1934152.
Prick, A., (2003). Frost weathering and rock fall in an arctic environment, Longyearbyen, Svalbard. In: 2003 The Eighth International Conference on Permafrost, pp. 907–912.
Riseborough, D., Shiklomanov, N., Etzelmu, B., Gruber, S., Marchenko, S., (2008). Recent advances in permafrost modelling. Permafrost and Periglacial Processes , 19, 137-156. https://doi.org/10.1002/ppp.615.
Shiklomanov, N.I., Nelson, F.E., (2013). Active layer processes. In Encyclopedia of Quaternary Sciences, Second Edition. (eds Elias SA, Mock CJ) Vol. 3, pp. 421–429, Elsevier, Amsterdam, The Netherlands.
Shiklomanov, N.I., Streletskiy, D.A., Nelson, F.E., Hollister, R.D., Romanovsky, V.E., Tweedie, C.E., Bockheim, J.G., Brown, J., (2010). Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. Journal of Geophysical Research , 115, G00I04. https://doi:10.1029/2009jg001248.
Wang G.X., Hongchang, H., Guangsheng, L., Na, L., (2009). Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China. Hydrology and Earth System Sciences ,1, 13, 327-341. https://doi: 10.5194/hessd-5-2543-200.
Wang, G.X., Li, S.N., Hu, H.C., Li, Y.S., (2009). Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation. Geoderma , 149 (3), 280–289. https://doi:10.1016/j.geoderma.2008.12.008.
Wang, K.C., Wang, P.C., Liu, J.M., Sparrow, M., Haginoya, S., Zhou, X.J., (2005). Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Boundary-Layer Meteorology, 116, 117–129. https://doi:10.1007/s10546-004-7403-z.
Wang, P., Limpens, J., Mommer, L., van Ruijven, J., Nauta, A.L., Berendse, F., Schaepman-Strub, G., Blok, D., Maximov, T.C., Heijmans, M.M.P.D., (2017). Above and belowground responses of four tundra plant functional types to deep soil heating and surface soil fertilization.Journal of Ecology , 105, 947-957. https://doi:10.1111/1365-2745.12718.
Wang, Q.F., Jin, H.J., Zhang, T.J., Wu, Q.B., Cao, B., Peng, X.Q., Wang, K., Li, L.L., (2016). Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains. Chinese Science Bulletin , 61(24): 2742-2756. https://doi:10.1360/N972015-01237. (Chinese in English Abstract)
Williams, P.G., Smith, M. W., (1989). The frozen earth. Cambridge: Cambridge University Press, pp. 59-82.
Xu, X.D., Chen, L.S., 2006. Advances of the study on Tibetan Plateau Experiment of Atmospheric Sciences. Journal of Applied Meteorological Science , 17(6), 756-772. (Chinese in English Abstract)
Xue, X., Guo, J., Han, B.S., Sun, Q.W., Liu, L.C., (2009). The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology , 108, 182-190. https://doi:10.1016/j.geomorph.2009.01.004.
Yin, G.A., Niu, F.J., Lin, Z.J., Luo, J., Liu, M.H., (2017). Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. Science of The Total Environment , 581-582, 472-485. http://dx.doi.org/10.1016/j.scitotenv.2016.12.155.
You, Q.G., Xue, X., Peng, F., Dong, S.Y., Gao, Y.H., (2017). Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agricultural And Forest Meteorology . 232, 48-5. http://dx.doi.org/10.1016/j.agrformet.2016.08.004.
Zhang, D.F., Fengquan, L., Jianmin, B., (2000). Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China., Environmental geology . 39(12), 1352-1358. https://doi:10.1007/s002540000174
Zhang, M.Y., Pei, W.S., Li, S.Y., Lu, J.G., Jin, L. 2017. Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region.Applied Thermal Engineering. 127, 1478-1487. http://dx.doi.org/10.1016/j.applthermaleng.2017.08.074.
Zhou, Y.W., Guo, D.X., Qiu, G.Q., Cheng, G.D., Li, S.D., (2000).Geocryology in China . Science Press, Beijing.
Zollinger, B., Alewell, C., Kneisel, C., et al., (2013). Effect of permafrost on the formation of soil organic carbon pools and their physical–chemical properties in the Eastern Swiss Alps. Catena110, 70–85. https://doi:10.1016/j.catena.2013.06.010.
Table 1 Air temperature (Ta), freezing and thawing indices, and air frost number at both sites for September 2016-2019.