REFERENCES
Beltrami, H., Kellman, L., (2003). An examination of short-and long-term
air-ground temperature coupling. Global Planet Change , 38 (3-4),
291-303. https://doi.org/10.1016/S0921-8181(03)00112-7.
Brown, R.J.E., (1973). Influence of climatic and terrain factors on
ground temperatures at three locations in the permafrost region of
Canada. In: 1973 The Second International Conference on Permafrost,
pp.27-34.
Camill, P., (2000). How much do local factors matter for predicting
transient ecosystem dynamics? Suggestions from permafrost formation in
boreal peatlands. Global change biology , 6(2),169-182.
https://doi.org/10.1046/j.1365-2486.2000.00293.x.
Camill, P., Clark, G.S., (1998). Climate change disequilibrium of boreal
permafrost peatlands caused by local processes. The American
Naturalist, 15(3), 207-222. https://doi.org/10.1086/286112.
Cannone, N., Guglielmin, M., (2009). Influence of vegetation on the
ground thermal regime in continental Antarctica. Geoderma , 151,
215-223. https://doi:10.1016/j.geoderma.2009.04.007.
Chang, X.L., Jin, H.J., Wang, Y.P., Zhang, Y.L., Zhou, G.Y., Che, F.Q.,
Zhao, Y. M., (2012). Influences of vegetation on permafrost: a review.Acta Ecologica Sinica , 32(24), 7981-7990.
https://doi:10.5846/stxb201202120181. (Chinese in English Abstract)
Chang, J., Wang, G.X., Gao, Y.H., Wang, Y.B., 2014b. The Influence of
Seasonal Snow on Soil Thermal and Water Dynamics under Different
Vegetation Covers in a Permafrost Region. Journal of Mountain
Science , 11(3), 727-745. https://doi:10.1007/s11629-013-2893-0.
Chang, X.L., Yu, S.P., Jin, H.J., Zhang, Y.L., (2014a). Vegetation
impact on the thermal regimes of the active layer and near-surface
permafrost in the Greater Hinggan Mountains, Northeastern China.Sciences in Cold and Arid Regions , 6(5), 0511-0520.
https://doi:10.3724/SP.J.1226.2014.00511.
Chen, S.P., Chen, J.Q., Lin, G.H., Zhang, W.L., Miao, H.X., Wei, L.,
Huang, J.H., Han, X.G., (2009). Energy balance and partition in Inner
Mongolia steppe ecosystems with different land use types.Agricultural & Forest Meteorology , 149 (11), 1800–1809.
https://doi:10.1016/j.agrformet.2009.06.009.
Cheng, G.D., (1983). Vertical and horizontal zonation of high altitude
permafrost. In: 1983 The Fourth International Conference on Permafrost,
pp. 136-141.
Cheng, G.D., Dramis, F., (1992). Distribution of Mountain Permafrost and
Climate. Permafrost and Periglacial Processes , 3, 83-91.
https://doi:10.1002/ppp.3430030205.
Cheng, G.D., (2003). Influences of local factors on the distribution of
permafrost and its enlightenment to the design of Qinghai-Tibet Railway.Science in China (Series
D) , 33(6): 602-607. (Chinese in English Abstract)
Cheng, G.D., (2004). Influences of local factors on permafrost
occurrence and their implications for Qinghai-Xizang Railway design.Science in China (Series D) , 47(8), 704-709.
http://dx.doi.org/10.1360/02yd0438.
Chou, Y.L., Sheng, Y., Wei, Z.M., Ma, W., (2008). Calculation of
temperature difference between sunny slope and shady slope along
railways in permafrost regions on Qinghai-Tibet Plateau. Cold
Regions Science and Technology , 53, 346-354.
https://doi.org/10.1016/j.coldregions.2008.04.004
Dorfer, C., Kuhn, P., Baumann, F., He, J.S., Scholten, T., (2013). Soil
organic carbon pools and stocks in permafrost-affected soils on the
Tibetan Plateau. PLOS One , 8 (2), e57024.
http://dx.doi.org/10.1371/journal.pone.0057024.
Eaton, A.K., Rouse, W.R., Lafleur, P.M., Marsh, P., Blanken, P.D.,
(2001). Surface energy balance of the western and central Canadian
subarctic: variations in the energy balance among five major terrain
types. Journal of Climate , 14, 3692-3703.
https://doi.org/10.1175/1520-0442(2001)014b3692:SEBOTWN2.0.CO;2.
Everett, D.H., (1961). The thermodynamics of frost damage to porous
solids. Transactions of the Faraday Society , 57, pp.1541-1551.
https://doi:10.1039/tf9615701541.
Fan, X.W., Lin, ZJ., Gao, Z.Y., Meng. X.L., Niu, F.J., Luo, J., Yin,
G.A., Zhou, F.J., Lan, A.Y., (2021). Cryostructures and ground ice
content in ice-rich permafrost area of the Qinghai-Tibet Plateau with
Computed Tomography Scanning. Journal of Mountain Science , 2021.
18(5):1028-1221. https://doi.org/10.1007s11629-020-6197-x.
Ferrians, O.J.Jr, Hobson, G.D., (1973). Mapping and predicting
permafrost in North America: a review, 1963-1973. In: 1973 The Second
International Conference on Permafrost, pp.479-498.
Fisher, J.P., Estop-Aragonés, C., Thierry, Aaron., Charman, D.J., Wolfe,
S.A., Hartley, I.P., Murton, J.B., Williams, M., Phoenix, G.K., (2016).
The influence of vegetation and soil characteristics on active-layer
thickness of permafrost soils in boreal forest. Global change
biology , 22, 3127-3140. https://doi: 10.1111/gcb.13248.
Gorbunov, A.P., (1978). Permafrost in the mountains of Central Asia. In:
1978 The Third International Conference on Permafrost, pp. 372-377.
Gorbunov, A.P., (1988). The alpine permafrost zone of the USSR. In: 1988
The Fifth International Conference on Permafrost, pp. 154-158.
Grosse, G., Harden, J., Turetsky, M., McGuire, A.D., Camill, P.,
Tarnocai, C., Frolking, S., Schuur, E.A.G., Jorgenson, T., Marchenko,
S., Romanovsky, V., Wickland, K.P., French, N., Waldrop, M.,
Bourgeau-Chavez, L., Strieg, R.G., (2011). Vulnerability of highlatitude
soil organic carbon in North America to disturbance. Journal of
Geophysical Research , 116, G00K06.
http://dx.doi.org/10.1029/2010JG001507.
Harris, S.A., (1981). Climatic relationships of permafrost zones in
areas of low winter snow-cover. Arctic . 34(1), 64-70.
http://www.jstor.org/stable/40509106.
Harris, S.A., (1986). Permafrost distribution, zonation and stability
along the Eastern Ranges of the Cordillera of North America.Arctic , 39, 29-38. https://doi.org/10.14430/arctic2042.
Heggem, E.S.F., Etzelmuller, B., Anarmaa, S., Sharkhuu, N., Goulden,
C.E., Nandinsetseg, B., (2006). Spatial distribution of ground surface
temperatures and active layer depths in the Hovsgol Area, Northern
Mongolia. Permafrost and Periglacial Processes , 17, 357-369.
https://doi:10.1002/ppp.568.
Hu, Z.Y., Qian, Z.Y., Cheng, G.D., Wang, J.M., (2002). Influence of
solar radiation on embankment surface thermal regime of the
Qinghai-Xizang Railway. Journal of Glaciology and Geocryology ,
24(2), 121-128. https://doi: 10.3969/j.issn.1000-0240.2002.02.003.
(Chinese in English Abstract)
Jin, H.J., He, R.X., Cheng, G.D., Wu, Q.B., Wang, S.L., Lü, L.Z., Chang,
X.L., (2009). Changes in frozen ground in the Source Area of the Yellow
River on the Qinghai-Tibet Plateau, China, and their eco-environmental
impacts. Environmental Research Letters , 4, 045206.
https://doi:10.1088/1748-9326/4/4/045206.
Jobbagy, E.G., Jackson, R.B., (2000). The vertical distribution of soil
organic carbon and its relation to climate and vegetation. Journal
of Applied Ecology , 10, 423–436. https://doi:10.2307/2641104.
Jorgenson, M.T., Shur, Y.L., (2009). Permafrost. In: Goudie, A., Cuff,
D. (Eds.), The Oxford Companion to Global Change. Oxford Univ. Press,
Oxford, U. K., pp. 540–547.
Keuper, F., Dorrepaal, E., van Bodegom, P.M., Logtestijn, R.,Venhuizen,
G., van Hal, J., Aerts, R., (2017). Experimentally increased nutrient
availability at the permafrost thaw front selectively enhances biomass
production of deep-rooting subarctic peatland species. Global
change biology , 1-10. https://doi: 10.1111/gcb.13804.
King, L., (1986). Zonation and ecology of high mountain permafrost in
Scandinavia. Geografiska Annaler: Series A, Physical Geography ,
68(3), 131-139. https://doi: 10.1080/04353676.1986.11880166.
Lai, Y.M., Zhang, S.J., Zhang, L.X., Xiao, J.Z., (2004). Adjusting
temperature distribution under the south and north slopes of embankment
in permafrost regions by the ripped-rock revetment. Cold Regions
Science and Technology, 39, 67-79.
https://doi.org/10.1016/j.coldregions.2004.04.003.
Li, B.Y., Gu, G.A., Li, S.D., (1996). Natural environment in the Hoh Xil
hill region of Qinghai. Science Press, pp. 55.
Li, S.Q., Yang, P., Zhao, F.Z., (2018). A study of the thermal physical
properties of frozen soil in gravel layers. Hydrogeology &
Engineering Geology , 45(6), 122-126.
https://doi:10.16030/j.cnki.issn.1000-3665.2018.06.18. (Chinese in
English Abstract)
Lin, Z.J., Burn, C., Niu, F.J., Luo, J., Liu, M.H., Yin, G.A., (2015b).
The thermal regime, including a reversed thermal offset, of arid
permafrost sites with variations in vegetation cover density, Wudaoliang
Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial
Processes, 26(2), 142-159. https://doi.org/10.1002/ppp.1840.
Lin, Z.J., Gao, Z.Y., Niu, F.J., Luo, J., Yin, G.A., Liu, M.H., Fan,
X.W., (2019). High spatial density ground thermal measurements in a
warming permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau.Geomorphology , 340, 1-14.
https://doi.org/10.1016/j.geomorph.2019.04.032.
Lin, Z.J., Niu, F.J., Liu, H., Lu, J.H., (2011). Hydrothermal Processes
of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold
Regions Science and Technology, 65, 446-455.
https://doi.org/10.1016/j.coldregions.2010.10.013.
Lin, Z.J., Niu, F.J., Luo, J., Liu, M.H., Yin, G.A., (2015a). Permafrost
thermal regime at north and south aspects, Kunlun Mountain,
Qinghai-Tibet Plateau. In: 2015 The 7th Canadian Permafrost Conference,
GeoQuebec. 183, 1-8.
Lin, Z.J., Niu, F.J., Xu, Z.Y., Xu, J., Wang, P., (2010). Thermal regime
of a thermokarst lake and its influence on permafrost, Beiluhe Basin,
Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 21,
315-324. https://doi.org/10.1002/ppp.692.
Lin, Z.J., Gao, Z.Y., Fan, X.W., Niu, F.J., Luo, J., Yin, G.A., Liu,
M.H., (2020). Factors controlling near surface ground-ice
characteristics in a region of warm permafrost, Beiluhe Basin,
Qinghai-Tibet Plateau. Geoderma , 2020, 376: 114540.
https://doi.org/10.1016/j.geoderma.2020.114540.
Liu, W.J., Chen, S.Y., Zhao, Q., Sun, Z.Z., Ren, J.W., Qin, D.H.,
(2014). Variation and control of soil organic carbon and other nutrients
in permafrost regions on central Qinghai-Tibetan Plateau.Environmental Research Letters, 9, 114013 (9pp).
https://doi:10.1088/1748-9326/9/11/114013.
Luo, J., Lin, Z.J., Yin, G.A., Niu, F.J., Liu, M.H., Gao, Z.Y., Fan,
X.W., (2019). The ground thermal regime and permafrost warming at two
upland, sloping, and undisturbed sites, Kunlun Mountain, Qinghai-Tibet
Plateau. Cold Regions Science and Technology, 167, 102862.
https://doi.org/10.1016/j.coldregions.2019.102862.
Ma, Y.M., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., Ma, W., Zhong, L.,
Sun, F., Chen, X., Zhu, Z., Wang, S., Ishikawa, H., (2009). Recent
advances on the study of atmosphere-land interaction observations on the
Tibetan Plateau. Hydrology And Earth System Sciences , 13,
1103–1111. https://doi:10.5194/hess-13-1103-2009.
Matsuoka, N., (1994). Diurnal freeze-thaw depth in rockwalls: field
measurements and theoretical considerations. Earth Surface
Processes and Landforms , 19, 423–435.
https://doi:10.1002/esp.3290190504.
Mu, C.C., Zhang, T.J., Zhang, X.K., Cao, B., Peng, X.Q., Cao, L., Su,
H., (2016). Pedogenesis and physicochemical parameters influencing soil
carbon and nitrogen of alpine meadows in permafrost regions in the
northeastern Qinghai-Tibetan Plateau. Catena , 141 (2016) 85–91.
http://dx.doi.org/10.1016/j.catena.2016.02.020.
Munkhjargal, M., Yadamsuren, G., Yamkhin, J., Menze, L., (2020). Ground
surface temperature variability and permafrost distribution over
mountainous terrain in northern Mongolia. Arctic Antarctic and
Alpine Research , 52(1), 13-26.
https://doi.org/10.1080/15230430.2019.1704347.
Nelson, F.E., Outcalt, S.I., (1983). A frost index number for spatial
prediction of ground-frost zones. In: Permafrost Fourth International
Conference Proceedings, vol. I. Washington, D.C.: National Academy
Press, 907-911.
Nelson, F. E., Outcalt, S.I., (1987). A computational method for
prediction and regionalization of permafrost. Arctic Antarctic and
Alpine Research , 19(3), 279-288. https://doi:10.2307/1551363.
Niu, F.J., Lin, Z.J., Lu, J.H., Liu, H., Xu, Z.Y., (2011).
Characteristics of roadbed settlement in embankment-bridge transition
section along the Qinghai-Tibet Railway in permafrost regions.Cold Regions Science and Technology , 65, 437-445.
https://doi:10.1016/j.coldregions.2010.10.014.
Niu, F.J., Liu, M.H., Cheng, G.D., Lin, Z.J., Luo, J., Yin, G.A.,
(2015). Long-term thermal regimes of the Qinghai-Tibet Railway
embankments in plateau permafrost regions. Science in China
(Series D) , 58(9), 1669-1676. https://doi:10.1007/s11430-015-5063-0.
Otterman, J., (1974). Baring high-albedo soils by overgrazing: a
hypothesized desertification mechanism. Science , 186 (4163),
532–533. https://doi:10.1126/science.186.4163.531.
Pang, Q.Q., Zhao, L., Li, S.X., (2011). Influences of Local Factors on
Ground Temperatures in Permafrost Regions along the Qinghai-Tibet
Highway. Journal of Glaciology and Geocryology , 33(2), 350-356.
(Chinese in English Abstract)
Price, L.W., (1971). Vegetation, microtopography, and depth of active
layer on different exposures in subarctic alpine tundra. Ecology ,
52(4), 638-647. http://www.jstor.org/stable/1934152.
Prick, A., (2003). Frost weathering and rock fall in an arctic
environment, Longyearbyen, Svalbard. In: 2003 The Eighth International
Conference on Permafrost, pp. 907–912.
Riseborough, D., Shiklomanov, N., Etzelmu, B., Gruber, S., Marchenko,
S., (2008). Recent advances in permafrost modelling. Permafrost
and Periglacial Processes , 19, 137-156.
https://doi.org/10.1002/ppp.615.
Shiklomanov, N.I., Nelson, F.E., (2013). Active layer processes. In
Encyclopedia of Quaternary Sciences, Second Edition. (eds Elias SA, Mock
CJ) Vol. 3, pp. 421–429, Elsevier, Amsterdam, The Netherlands.
Shiklomanov, N.I., Streletskiy, D.A., Nelson, F.E., Hollister, R.D.,
Romanovsky, V.E., Tweedie, C.E., Bockheim, J.G., Brown, J., (2010).
Decadal variations of active-layer thickness in moisture-controlled
landscapes, Barrow, Alaska. Journal of Geophysical Research , 115,
G00I04. https://doi:10.1029/2009jg001248.
Wang G.X., Hongchang, H., Guangsheng, L., Na, L., (2009). Impacts of
changes in vegetation cover on soil water heat coupling in an alpine
meadow of the Qinghai-Tibet Plateau, China. Hydrology and Earth
System Sciences ,1, 13, 327-341. https://doi: 10.5194/hessd-5-2543-200.
Wang, G.X., Li, S.N., Hu, H.C., Li, Y.S., (2009). Water regime shifts in
the active soil layer of the Qinghai-Tibet Plateau permafrost region,
under different levels of vegetation. Geoderma , 149 (3),
280–289. https://doi:10.1016/j.geoderma.2008.12.008.
Wang, K.C., Wang, P.C., Liu, J.M., Sparrow, M., Haginoya, S., Zhou,
X.J., (2005). Variation of surface albedo and soil thermal parameters
with soil moisture content at a semi-desert site on the western Tibetan
Plateau. Boundary-Layer Meteorology, 116, 117–129.
https://doi:10.1007/s10546-004-7403-z.
Wang, P., Limpens, J., Mommer, L., van Ruijven, J., Nauta, A.L.,
Berendse, F., Schaepman-Strub, G., Blok, D., Maximov, T.C., Heijmans,
M.M.P.D., (2017). Above and belowground responses of four tundra plant
functional types to deep soil heating and surface soil fertilization.Journal of Ecology , 105, 947-957.
https://doi:10.1111/1365-2745.12718.
Wang, Q.F., Jin, H.J., Zhang, T.J., Wu, Q.B., Cao, B., Peng, X.Q., Wang,
K., Li, L.L., (2016). Active layer seasonal freeze-thaw processes and
influencing factors in the alpine permafrost regions in the upper
reaches of the Heihe River in Qilian Mountains. Chinese Science
Bulletin , 61(24): 2742-2756. https://doi:10.1360/N972015-01237.
(Chinese in English Abstract)
Williams, P.G., Smith, M. W., (1989). The frozen earth. Cambridge:
Cambridge University Press, pp. 59-82.
Xu, X.D., Chen, L.S., 2006. Advances of the study on Tibetan Plateau
Experiment of Atmospheric Sciences. Journal of Applied
Meteorological Science , 17(6), 756-772. (Chinese in English Abstract)
Xue, X., Guo, J., Han, B.S., Sun, Q.W., Liu, L.C., (2009). The effect of
climate warming and permafrost thaw on desertification in the
Qinghai–Tibetan Plateau. Geomorphology , 108, 182-190.
https://doi:10.1016/j.geomorph.2009.01.004.
Yin, G.A., Niu, F.J., Lin, Z.J., Luo, J., Liu, M.H., (2017). Effects of
local factors and climate on permafrost conditions and distribution in
Beiluhe basin, Qinghai-Tibet Plateau, China. Science of The Total
Environment , 581-582, 472-485.
http://dx.doi.org/10.1016/j.scitotenv.2016.12.155.
You, Q.G., Xue, X., Peng, F., Dong, S.Y., Gao, Y.H., (2017). Surface
water and heat exchange comparison between alpine meadow and bare land
in a permafrost region of the Tibetan Plateau. Agricultural And
Forest Meteorology . 232, 48-5.
http://dx.doi.org/10.1016/j.agrformet.2016.08.004.
Zhang, D.F., Fengquan, L., Jianmin, B., (2000). Eco-environmental
effects of the Qinghai-Tibet Plateau uplift during the Quaternary in
China., Environmental geology . 39(12), 1352-1358.
https://doi:10.1007/s002540000174
Zhang, M.Y., Pei, W.S., Li, S.Y., Lu, J.G., Jin, L. 2017. Experimental
and numerical analyses of the thermo-mechanical stability of an
embankment with shady and sunny slopes in a permafrost region.Applied Thermal Engineering. 127, 1478-1487.
http://dx.doi.org/10.1016/j.applthermaleng.2017.08.074.
Zhou, Y.W., Guo, D.X., Qiu, G.Q., Cheng, G.D., Li, S.D., (2000).Geocryology in China . Science Press, Beijing.
Zollinger, B., Alewell, C., Kneisel, C., et al., (2013). Effect of
permafrost on the formation of soil organic carbon pools and their
physical–chemical properties in the Eastern Swiss Alps. Catena110, 70–85. https://doi:10.1016/j.catena.2013.06.010.
Table
1 Air temperature (Ta), freezing and thawing indices,
and air frost number at both sites for September 2016-2019.