
New and more dual-mode solitary wave solutions for the

Kraenkel-Manna-Merle system incorporating fractal

effects

May 22, 2021

Nauman Raza1, Zara Hassan1, Asma Rashid Butt2, Riaz ur Rahman1, Abdel-Haleem Abdel-Aty3,4,∗

1Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.

2Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan.

3Department of Physics, College of Sciences, University of Bisha, PO Box 344, Bisha 61922, Saudi Arabia.

4Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.

Abstract

This paper introduces the fractal Kraenkel-Manna-Merle (KMM) system, that explains nonlinear short

wave propagation with zero conductivity for saturated ferromagnetic materials in an external field. The

semi inverse technique and the new auxiliary equation method (NAEM) are used to generate a new set of

solutions. The proposed methods are more straightforward, succinct, accurate, and simple to calculate dual

mode solitary wave solutions. A collection of exact soliton solutions specifically bright, dark, singular-shaped

and singular-periodic are generated. The estimated solutions are obtained using constraint conditions and

are displayed through 2D, 3D and contour plots with appropriate parametric values. The arbitrary functions

in the solutions are chosen as unique functions to generate some novel soliton structures.
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1 Introduction

In recent years, the study of ferromagnetic materials has wide-ranging applications in several technologies

such as information, computers and network communication. Due to this, scientists have given remarkable

attention to this research to overcome the requirements of high field intensity storage and massive data with

great capacity and speed. For this purpose different attempts have been made to convert the ferromagnetic

materials to the nano-scale materials to the size 20-30 nm, with the help of this data in low volume, high density

and huge capacity has been processed and transmitted [1–3]. It is important to understand the microstructure

and nano-scale characteristics of ferromagnetic media in detail. When it comes to tiny nano-particles, the

term magnetization can be considered through a magnetic moment and investigated as homogeneous by these

particles. The magnetic moments of ferromagnetic materials can coordinate through dipolar motions [4–6].
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Moreover, a particular type of solitary wave solutions to some complicated nonlinear evolution equations that

play a vital role in various types of materials are termed as solitons. Such solitary waves have distinct important

uses in the fields of fluid dynamics, engineering, elastic media, quantum mechanics, biological sciences, optical

fibers, plasma physics, material sciences and many other areas of physics due to its amazing characteristic of

stability. Specifically, most of the solitary waves dispersed inelastically and because of radiation phenomena,

energy of the wave has lost, as a consequence of which these solitary waves vanished, maintaining their speed

and shape after this nonlinear collision. The physical behavior and importance of complex nonlinear evolution

processes can be described and interpreted using soliton theory. In order to explore the dynamics of nonlinear

complicated process, various effective and efficient techniques for computing solitons and exact solutions have

been developed in the literature[7–17].

The spotlight of this piece of research is to present a detailed and readily readable highlighter to a fractal

KMM system [18] which is a growing interest for researchers employing semi-inverse algorithm and NAEM

[19–23]. In fact, our techniques allow one to acquire fresh exact wave solutions of many nonlinear evolution

equations. These can be utilized to produce general exact results that include not only the outcomes obtained

as special cases using the procedure but also a collection of new and more popular specific solutions. Some exact

solutions with parameters including existing solutions, have been successfully acquired. This article provides

the Ritz-like approach combined with the variational method known as He’s variational method [24] to find the

soliton solution of the KMM system which may help physicists to understand the physical significance of this

fractal model. The dynamics of dark and bright solitons can be addressed using techniques[25, 26]. Traveling

wave solutions which are developed from existing techniques, may also be practiced by determining the involved

parameters in the methods of special values . Many nonlinear mathematical physical models can be constructed

using fractal calculus.

The rest of the paper is classified as follows: In section 2, Governing model is given . In section 3, consists

of the soliton extraction of the solution with geometrical interpretation by using semi-inverse method. Section

4 composed of soliton solution by NAEM with graphical illustrations. Discussion of the results is in the section

5. In section 6, conclusion of the article is given.

2 Governing system

Kraenkal et al [27] investigated the Maxewell and Landau-Lifshitz-Gilbert equations, short wave propagation in

saturated ferromagnetic materials and discovered the following nonlinear evolution system:

∂2

∂T 2
(G+ S) = −∇.(∇.G) +∇2G,

∂S

∂T
= −S ∧Geff +

α

a
S ∧ ∂S

∂T
, (1)

where H and G represents magnetization density vector and magnetic induction respectively having no di-

mensions, whereas α and a are constants and exemplify dimensionless saturation magnetization and Gilbert

damping-parameter coorespondingly, where ∇ is divergence for vector field.

Nguepjouo et al.[28] studied a combination of expansion series magnetization density and coordinate transfor-

mation in recent years, and transformed the model into the following form:

yxt − yzx + byx = 0,

zxt + yyx = 0, (2)

where z = z(x, t) and y = y(x, t) denote the external magnetic field analogous to ferrite and magnetization while

x and t are the spatial and temporal components whereas the damping effect is demonstrated by the parameter
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b. So, Eq.(2) is referred as Kraenkel-Manna-Merle (KMM) system.

Substituting b = 0 different type of soliton solutions like one , two and multiple soliton solutions have been

derived by various approaches.

3 Mathematical analysis

By implementing the He’s variational principle for innovative solitary wave solutions of Eq.(1) to KMM model.

We consider the traveling wave transformation as:

y(x, t) = ψ(η),

z(x, t) = φ(η), where η = (x− et). (3)

Substituting the transformation in Eq.(2) yields,

2e2ψ′′ + 2eoψ + ψ3 = 0, (4)

φ
′

=
ψ2

2e
+
eo
e
, (5)

integration of above equation gives,

φ =
ψ3

6e
+
eo
e
ψ. (6)

In view of [29,30], a fractal form of KMM model can be written as:

2e2 d

dηγ

(
dψ

dηγ

)
+ 2eoψ + ψ3 = 0, (7)

where γ is the fractal dimension value and dψ
dηγ is the fractal derivative, described as:

dψ

dηγ
= Γ(1 + γ) lim

η−ηo→Mη

ψ(η)− ψ(ηo)

(η − ηo)γ
, M η 6= 0. (8)

By variational principle [31] the following trial-functional can be constructed as:

J =

∫
Ldη =

∫
(K − E)dη. (9)

The variational formulation of Eq.(7) is given as:

J =

∫ ∞
0

[
1

2
(2e2)

(
dψ

dηγ

)2

− eoψ2 − ψ4

4

]
dηγ , (10)

where K = 1
2 (2e2)

(
dψ
dηγ

)2

is the kinetic energy and E = eoψ
2 + ψ4

4 is the potential energy.

And

L =
1

2
(2e2)

(
dψ

dηγ

)2

− eoψ2 − ψ4

4
, (11)

H =
1

2
(2e2)

(
dψ

dηγ

)2

+ eoψ
2 +

ψ4

4
, (12)

3



are the Lagrangian and Hamiltonian. Using the two scale transformation,

Q = ηγ . (13)

Eq.(10) can be written as:

J =

∫ ∞
0

[
1

2
(2e2)

(
dψ

dQ

)2

− eoψ2 − ψ4

4

]
dQ. (14)

3.1 Soliton extraction by proposed method

Using Ritz method, one can assume the solitary wave solution as:

ψ = D sech(MQ), (15)

where D and M are constants to be further calculated. putting Eq.(15) into Eq.(14) we have,

J =
e2D2M

3
− eoD

2

M
− D4

6M
. (16)

Making J stationary with respect to D and M yields,

∂J

∂D
=

2e2DM

3
− 2eoD

M
− 2D3

3M
= 0, (17)

∂J

∂M
=
e2D2

3
+
eoD

2

M2
+

D4

6M2
= 0, (18)

from Eq.(17) and Eq.(18) we have,

D = ±2
√
−eo, (19)

M = ±
√
−eo
e

. (20)

Eq.(15) becomes,

ψ = ±2
√
−eo sech

(√
−eo
e

Q

)
. (21)

Substituting the value of ψ in Eq.(6) we have,

φ = ±

[
2
√
−eo sech

(√
−eo
e Q

)]3

6e
± eo

e

[√
−eo sech

(√
−eo
e

Q

)]
. (22)

The solution of solitary wave for Eq.(4) is,

y(x, t) = ±2
√
−eo sech

(√
−eo
e

ηγ
)
, where η = x− et. (23)

z(x, t) = ±

[
2
√
−eo sech

(√
−eo
e ηγ

)]3

6e
± eo

e

[√
−eo sech

(√
−eo
e

ηγ
)]
. (24)
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(a) (b) (c)

Figure 1: In these figure, we take e = 1, eo = −0.6 and γ = 0.2, 0.4, 0.6, 0.8. for the solution |y|2. (a) displays

the 3D-plot of |y|2 with γ = 0.8. (b) displays the contour plot of the solution |y|2. (c) displays the 2D-plot of

|y|2 with different values of γ.

(a) (b) (c)

Figure 2: In these figure, we take e = 1, eo = −0.6 and γ = 0.2, 0.4, 0.6, 0.8. for the solution |z|2. (a) displays

the 3D-plot of |z|2 with γ = 0.8. (b) displays the contour plot of the solution |z|2. (c) displays the 2D-plot of

|z|2 with different values of γ.

Also we search another soliton solution in the form,

ψ = N sech4(OQ), (25)

where N and O are constants to be further calculated. Substituting Eq.(25) in Eq.(14), we have,

J =
256e2N2O

315
− 16eoN

2

35O
− 512N4

6435O
. (26)

Making J stationary with respect to N and O yields.

∂J

∂N
=

512e2NO

315
− 32eoN

35O
− 2048N3

6435O
= 0, (27)

5



∂J

∂O
=

256e2N2

315
+

16eoN
2

35O2
+

512N4

6435O2
= 0, (28)

from Eq.(27) and Eq.(28) we have,

N = ±1

4

√
−429

7
eo, (29)

O = ±
√
−3eo
4e

. (30)

Eq.(25) becomes,

ψ = ±1

4

√
−429

7
eo sech

4

(√
−3eo
4e

Q

)
. (31)

Substituting the value of ψ in Eq.(6) we have,

φ = ±

[
1
4

√
− 429

7 eo sech
4

(√
−3eo
4e Q

)]3

6e
± eo

e

[
1

4

√
−429

7
eo sech

4

(√
−3eo
4e

Q

)]
. (32)

The solution of solitary wave for Eq.(4) is,

y(x, t) = ±1

4

√
−429

7
eo sech

4

(√
−3eo
4e

ηγ
)
, where η = x− et. (33)

z(x, t) = ±

[
1
4

√
− 429

7 eo sech
4

(√
−3eo
4e ηγ

)]3

6e
± eo

e

[
1

4

√
−429

7
eo sech

4

(√
−3eo
4e

ηγ
)]
. (34)

(a) (b) (c)

Figure 3: In these figure, we take e = 1, eo = −1 and γ = 0.2, 0.4, 0.6, 0.8. for the solution |y|2. (a) displays the

3D-plot of |y|2 with γ = 0.8. (b) displays the contour plot of the solution |y|2. (c) displays the 2D-plot of |y|2
with different values of γ.
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(a) (b) (c)

Figure 4: In these figure, we take e = 1, eo = −1 and γ = 0.2, 0.4, 0.6, 0.8. for the solution |z|2. (a) displays the

3D-plot of |z|2 with γ = 0.8. (b) displays the contour plot of the solution |z|2. (c) displays the 2D-plot of |z|2
with different values of γ.

4 Key points of the NAEM

Consider the general structure of NLPDE in the following expression:

Q(u, ux, uux, ut, uxx, uuxx, utt, ...) = 0, (35)

where Q is a polynomial function of u and their derivatives with respect to two independent variables x and t.

Use the transformation of single variable η = x− c0t to reduce the Eq.(35) into a simpler ordinary differential

equation of the following form:

R(ψ,ψ
′
, ψ
′′
, ψψ

′′
, ...) = 0. (36)

Here, R is a polynomial function involving the linear and nonlinear terms and the superscripts of ψ show

ordinary derivative of ψ with respect to η. Using the concept of NAEM, the initial solution of Eq.(36) can be

assumed in the following way:

ψ(η) =

M∑
i=0

ciβ
if(η), (37)

with satisfying the auxiliary equation

f
′
(η) =

1

ln(β)

(
µβ−f(η) + λ+ νβf(η)

)
. (38)

where c0, c1, c2, ..., cM are coefficients to be determined such that cM 6= 0. Now, we find the value of M with

the help of balancing principle which states that we can find the value of M by comparing the highest linear

and nonlinear terms involved in Eq.(4).

Now, putting Eq.(37) into Eq.(4) and performing few steps of algebra, yields a system of algebraic equations in

βf(η).

The family of solutions of Eq.(38) can be obtained as follows:

Family 1: When λ2 − 4µν < 0 and ν 6= 0,
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βf(η) =
−λ
2ν

+

√
4µν − λ2

2ν
tan

(√
4µν − λ2

2
η

)
, (39)

βf(η) =
−λ
2ν
−
√

4µν − λ2

2ν
cot

(√
4µν − λ2

2
η

)
. (40)

Family 2: When λ2 − 4µν > 0 and ν 6= 0,

βf(η) =
−λ
2ν
−
√
λ2 − 4µν

2ν
tanh

(√
λ2 − 4µν

2
η

)
, (41)

βf(η) =
−λ
2ν
−
√
λ2 − 4µν

2ν
coth

(√
λ2 − 4µν

2
η

)
. (42)

Family 3: When λ2 + 4µ2 < 0 and ν 6= 0 and ν = −µ,

βf(η) =
λ

2µ
−
√
−4µ2 − λ2

2µ
tan

(√
−4µ2 − λ2

2
η

)
, (43)

βf(η) =
λ

2ν
+

√
−4µ2 − λ2

2µ
cot

(√
−4µ2 − λ2

2
η

)
. (44)

Family 4: When λ2 + 4µ2 < 0 and ν 6= 0 and ν = −µ,

βf(η) =
λ

2µ
+

√
4µ2 + λ2

2µ
tanh

(√
4µ2 + λ2

2
η

)
, (45)

βf(η) =
λ

2µ
+

√
4µ2 + λ2

2µ
coth

(√
4µ2 + λ2

2
η

)
. (46)

Family 5: When λ2 − 4µ2 < 0 and ν = µ,

βf(η) =
−λ
2µ

+

√
4µ2 − λ2

2µ
tan

(√
4µ2 − λ2

2
η

)
, (47)

βf(η) =
−λ
2µ
−
√

4µ2 − λ2

2µ
cot

(√
4µ2 − λ2

2
η

)
. (48)

Family 6: When λ2 − 4µ2 > 0 and ν = µ,

βf(η) =
−λ
2µ
−
√
−4µ2 + λ2

2µ
tanh

√
−4µ2 + λ2

2
η

)
, (49)

βf(η) =
−λ
2µ
−
√
−4µ2 + λ2

2µ
coth

(√
−4µ2 + λ2

2
η

)
. (50)

Family 7: When λ2 = 4µν,

βf(η) = −2 + λη

2νη
. (51)
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Family 8: When νµ < 0, λ = 0 and ν 6= 0,

βf(η) = −
√
−µ
ν

tanh(
√
−νµ η), (52)

βf(η) = −
√
−µ
ν

coth(
√
−νµ η). (53)

Family 9: When λ = 0 and µ = −ν,

βf(η) =
1 + e−2νη

−1 + e−2νη
. (54)

Family 10: When µ = ν = 0,

βf(η) = cosh(λ η) + sinh(λ η). (55)

Family 11: When µ = λ = K and ν = 0,

βf(η) = eKη − 1. (56)

Family 12: When ν = λ = K and µ = 0,

βf(η) =
eKη

1− eKη
. (57)

Family 13: When λ = µ+ ν,

βf(η) = −1− µe(µ−ν)η

1− νe(µ−ν)η
. (58)

Family 14: When λ = −(µ+ ν),

βf(η) =
µ− e(µ−ν)η

ν − e(µ−ν)η
. (59)

Family 15: When µ = 0,

βf(η) =
λeλ η

1− νeλη
. (60)

Family 16: When λ = µ = ν 6= 0,

βf(η) =
1

2

[√
3 tan (

√
3

2
µ η)− 1

]
. (61)

Family 17: When λ = ν = 0,

βf(η) = µη. (62)

Family 18: When λ = µ = 0,

βf(η) = − 1

νη
. (63)

Family 19: When µ = ν and λ = 0,

βf(η) = tan(µ η). (64)
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Family 20: When ν = 0,

βf(η) = eλη − m

n
. (65)

4.1 Application of NAEM

The index M is to be calculated by employing the homogeneous system to higher order derivative with nonlinear

term in Eq.(4), which results M = 1. Hence, the Eq.(37) has the form:

ψ(ξ) = c0 + c1β
f(ξ). (66)

Now, substituting Eq.(66) into Eq.(4), a system of equations is attained. On solving the produced system via

Maple, it yields:

c0 =
√

2 λ Π, c1 = 2
√

2 Π ν, e =

√
− 2e0

4µν − λ2
, (67)

where

Π =

√
e0

4µν − λ2
. (68)

Now substituting the obtained solution into Eq.(66), we get the following:

ψ(η) =
√

2Π

(
λ+ 2νβf(ηγ)

)
. (69)

Substituting the value of ψ into Eq.(6) we have,

φ =

[√
2Π

(
λ+ 2νβf(ηγ)

)]3

6e
+
eo
e

[√
2Π

(
λ+ 2νβf(ηγ)

)]
. (70)

The solution of solitary wave for Eq.(4) is:

y(x, t) =
√

2Π

(
λ+ 2νβf(ηγ)

)
, where η = x− et (71)

and

z(x, t) =

[√
2Π

(
λ+ 2νβf(ηγ)

)]3

6e
± eo

e

[√
2Π

(
λ+ 2νβf(ηγ)

)]
. (72)

By substituting the solutions specified by Eq.(38) into Eq.(71) and Eq.(72), the solutions retrieved are:

For Family 1: When λ2 − 4µν < 0 and ν 6= 0,
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y1,1(x, t) =
√

2Π

[√
4µν − λ2 tan

(√
4µν − λ2

2
ηγ
)]
, (73)

y1,2(x, t) = −
√

2Π

[√
4µν − λ2 cot

(√
4µν − λ2

2
ηγ
)]
, (74)

z1,1(x, t) =

[√
2Π

[√
4µν − λ2 tan

(√
4µν−λ2

2 ηγ
)]]3

6e
+

eo
e

[√
2Π

[√
4µν − λ2 tan

(√
4µν − λ2

2
ηγ
)]]

, (75)

z1,2(x, t) =

[
−
√

2Π

[√
4µν − λ2 cot

(√
4µν−λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
4µν − λ2 cot

(√
4µν − λ2

2
ηγ
)]]

. (76)

For Family 2: When λ2 − 4µν > 0 and ν 6= 0,

y2,1(x, t) = −
√

2Π

[√
λ2 − 4µν tanh

(√
λ2 − 4µν

2
ηγ
)]
, (77)

y2,2(x, t) = −
√

2Π

[√
λ2 − 4µν coth

(√
λ2 − 4µν

2
ηγ
)]
, (78)

z2,1(x, t) =

[
−
√

2Π

[√
λ2 − 4µν tanh

(√
λ2−4µν

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
λ2 − 4µν tanh

(√
λ2 − 4µν

2
ηγ
)]]

, (79)

z2,2(x, t) =

[
−
√

2Π

[√
λ2 − 4µν coth

(√
λ2−4µν

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
λ2 − 4µν coth

(√
λ2 − 4µν

2
ηγ
)]]

. (80)
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For Family 3: When λ2 + 4µν < 0, ν 6= 0 and ν = −µ,

y3,1(x, t) =
√

2Π

[√
−4µ2 − λ2 tan

(√
−4µ2 − λ2

2
ηγ
)]
, (81)

y3,2(x, t) = −
√

2Π

[√
−4µ2 − λ2 cot

(√
−4µ2 − λ2

2
ηγ
)]
, (82)

z3,1(x, t) =

[√
2Π

[√
−4µ2 − λ2 tan

(√
−4µ2−λ2

2 ηγ
)]]3

6e
+

eo
e

[√
2Π

[√
−4µ2 − λ2 tan

(√
−4µ2 − λ2

2
ηγ
)]]

, (83)

z3,2(x, t) =

[
−
√

2Π

[√
−4µ2 − λ2 cot

(√
−4µ2−λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
−4µ2 − λ2 cot

(√
−4µ2 − λ2

2
ηγ
)]]

. (84)

For Family 4: When λ2 + 4µν > 0, ν 6= 0 and ν = −µ,

y4,1(x, t) = −
√

2Π

[√
4µ2 + λ2 tanh

(√
4µ2 + λ2

2
ηγ
)]
, (85)

y4,2(x, t) = −
√

2Π

[√
4µ2 + λ2 coth

(√
4µ2 + λ2

2
ηγ
)]
, (86)

z4,1(x, t) =

[
−
√

2Π

[√
4µ2 + λ2 tanh

(√
4µ2+λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
4µ2 + λ2 tanh

(√
4µ2 + λ2

2
ηγ
)]]

, (87)

z4,2(x, t) =

[
−
√

2Π

[√
4µ2 + λ2 coth

(√
4µ2+λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
4µ2 + λ2 coth

(√
4µ2 + λ2

2
ηγ
)]]

. (88)
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For Family 5: When λ2 − 4µ2 < 0 and ν = µ,

y5,1(x, t) =
√

2Π

[√
4µ2 − λ2 tan

(√
4µ2 − λ2

2
ηγ
)]
, (89)

y5,2(x, t) = −
√

2Π

[√
4µ2 − λ2 cot

(√
4µ2 − λ2

2
ηγ
)]
, (90)

z5,1(x, t) =

[√
2Π

[√
4µ2 − λ2 tan

(√
4µ2−λ2

2 ηγ
)]]3

6e
+

eo
e

[√
2Π

[√
4µ2 − λ2 tan

(√
4µ2 − λ2

2
ηγ
)]]

, (91)

z5,2(x, t) =

[
−
√

2Π

[√
4µ2 − λ2 cot

(√
4µ2−λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
4µ2 − λ2 cot

(√
4µ2 − λ2

2
ηγ
)]]

. (92)

For Family 6: When λ2 − 4µ2 > 0 and ν = µ,

y6,1(x, t) = −
√

2Π

[√
−4µ2 + λ2 tanh

(√
−4µ2 + λ2

2
ηγ
)]
, (93)

y6,2(x, t) = −
√

2Π

[√
−4µ2 + λ2 coth

(√
−4µ2 + λ2

2
ηγ
)]
, (94)

z6,1(x, t) =

[√
2Π

[
−
√

2Π

[√
−4µ2 + λ2 tanh

(√
−4µ2+λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
−4µ2 + λ2 tanh

(√
−4µ2 + λ2

2
ηγ
)]]

, (95)

z6,2(x, t) =

[
−
√

2Π

[√
−4µ2 + λ2 coth

(√
−4µ2+λ2

2 ηγ
)]]3

6e
+

eo
e

[
−
√

2Π

[√
−4µ2 + λ2 coth

(√
−4µ2 + λ2

2
ηγ
)]]

. (96)

For Family 7: When λ2 = 4µν,

y7(x, t) = 2
√

2Π

[
ληγ − 1

ηγ

]
, (97)

z7(x, t) =

[
2
√

2Π

[
ληγ−1
ηγ

]]3

6e
+
eo
e

[
2
√

2Π

[
ληγ − 1

ηγ

]]
. (98)
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For Family 8: When µν < 0, λ = 0 and ν 6= 0 ,

y8,1(x, t) = −2
√

2Π

[√
−µνtanh

(√
−νµ ηγ

)]
, (99)

y8,2(x, t) = −2
√

2Π

[√
−µνcoth

(√
−νµ ηγ

)]
, (100)

z8,1(x, t) =

[√
2Π

[
− 2
√

2Π

[
√
−µνtanh

(
√
−νµ ηγ

)]]3

6e
+

eo
e

[
− 2
√

2Π

[√
−µνtanh

(√
−νµ ηγ

)]]
, (101)

z8,2(x, t) =

[
− 2
√

2Π

[
√
−µνcoth

(
√
−νµ ηγ

)]]3

6e
+

eo
e

[
− 2
√

2Π

[√
−µνcoth

(√
−νµ ηγ

)]]
. (102)

For Family 9: When λ = 0 and µ = −ν,

y9(x, t) = 2
√

2Πν

[
1 + e−2νηγ

−1 + e−2νηγ

]
, (103)

z9(x, t) =

[
2
√

2Πν

[
1+e−2νηγ

−1+e−2νηγ

]]3

6e
+
eo
e

[
2
√

2Πν

[
1 + e−2νηγ

−1 + e−2νηγ

]]
. (104)

For Family 12: When ν = λ = K and µ = 0,

y12(x, t) =
√

2Π

[
K + 2K

(
eKη

γ

1− eKηγ
)]
, (105)

z12(x, t) =

[√
2Π

[
K + 2K

(
eKη

γ

1−eKηγ

)]]3

6e
+
eo
e

[√
2Π

[
K + 2K

(
eKη

γ

1− eKηγ
)]]

. (106)

For Family 13: When λ = µ+ ν,

v13(x, t) =
√

2Π

[
µ+ ν − 2ν

(
1− µe(µ−ν)ηγ

1− νe(µ−ν)ηγ

)]
, (107)

z13(x, t) =

[√
2Π

[
µ+ ν − 2ν

(
1−µe(µ−ν)η

γ

1−νe(µ−ν)ηγ

)]]3

6e
+

eo
e

[√
2Π

[
µ+ ν − 2ν

(
1− µe(µ−ν)ηγ

1− νe(µ−ν)ηγ

)]]
. (108)
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For Family 14: When λ = −(µ+ ν),

y14(x, t) =
√

2Π

[
− µ− ν + 2ν

(
µ− e(µ−ν)ηγ

ν − e(µ−ν)ηγ

)]
, (109)

z14(x, t) =

[√
2Π

[
− µ− ν + 2ν

(
µ−e(µ−ν)η

γ

ν−e(µ−ν)ηγ

)]]3

6e
+

eo
e

[√
2Π

[
− µ− ν + 2ν

(
µ− e(µ−ν)ηγ

ν − e(µ−ν)ηγ

)]]
. (110)

For Family 15: When µ = 0,

y15(x, t) =
√

2Π

[
λ+ 2ν

(
λeλη

γ

1− νeληγ
)]
, (111)

z15(x, t) =

[√
2Π

[
λ+ 2ν

(
λeλη

γ

1−νeληγ

)]]3

6e
+
eo
e

[√
2Π

[
λ+ 2ν

(
λeλη

γ

1− νeληγ
)]]

. (112)

For Family 16: When λ = µ = ν 6= 0,

y16(x, t) = Π

[
λ+ ν

{√
3tan

(√
3

2
µ ηγ

)
− 1

}]
, (113)

z16(x, t) =

[
Π

[
λ+ ν

{√
3tan

(√
3

2 µ ηγ
)
− 1

}]]3

6e
+

eo
e

[
Π

[
λ+ ν

{√
3tan

(√
3

2
mu ηγ

)
− 1

}]]
. (114)

For Family 18: When λ = µ = 0,

y18(x, t) =
−2
√

2Π

ηγ
, (115)

z18(x, t) =

[
−2
√

2Π
ηγ

]3

6e
+
eo
e

[
−2
√

2Π

ηγ

]
. (116)

For Family 19: When µ = ν and λ = 0,

y19(x, t) =

√
2e0ν

µ
tan
(
µ ηγ

)
, (117)

z19(x, t) =

[√
2e0ν
µ tan

(
µ ηγ

)]3

6e
+
eo
e

[√
2e0ν

µ
tan
(
µ ηγ

)]
. (118)
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4.2 Graphical depiction of solutions

(a) (b) (c)

Figure 5: In these figure, we take λ = µ = ν = 1, e0 = 1, e = −1, for the solution y1,1(x, t). (a) displays

the 3D-plot of y1,1(x, t) with γ = 0.8. (b) displays the contour plot of the solution y1,1(x, t). (c) displays the

2D-plot of y1,1(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 6: In these figure, we take λ = µ = ν = 1, e0 = 1, e = −1, for the solution z1,1(x, t). (a) shows the

3D-plot of z1,1(x, t) with γ = 0.8. (b) displays the contour plot of the solution z1,1(x, t). (c) presents the 2D-plot

of z1,1(x, t) for t = 1 with different values of γ.
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(a) (b) (c)

Figure 7: In these figure, we take µ = 2, λ = ν = 1, e0 = 1, e = −1, for the solution y1,2(x, t). (a) shows

the 3D-plot of y1,2(x, t) with γ = 0.8. (b) displays the contour plot of the solution y1,2(x, t). (c) displays the

2D-plot of y1,2(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 8: In these figure, we take µ = 2, λ = ν = 1, e0 = 1, e = −1, for the solution z1,2(x, t). (a) shows

the 3D-plot of z1,2(x, t) with γ = 0.2. (b) displays the contour plot of the solution z1,2(x, t). (c) presents the

2D-plot of z1,2(x, t) for t = 1 with different values of γ.
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(a) (b) (c)

Figure 9: In these figure, we take λ = 3, µ = ν = 1, e0 = −1, e = −1, for the solution y2,1(x, t). (a) shows

the 3D-plot of y2,1(x, t) with γ = 0.6. (b) displays the contour plot of the solution y2,1(x, t). (c) presents the

2D-plot of y2,1(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 10: In these figure, we take λ = 3, µ = ν = 1, e0 = −1, e = −1, for the solution z2,1(x, t). (a) shows

the 3D-plot of z2,1(x, t) with γ = 0.2. (b) displays the contour plot of the solution z2,1(x, t). (c) presents the

2D-plot of z2,1(x, t) for t = 1 with different values of γ.
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(a) (b) (c)

Figure 11: In these figure, we take λ = ν = 1, µ = −1 e0 = e = −1, for the solution y4,1(x, t). (a) shows

the 3D-plot of y4,1(x, t) with γ = 0.4. (b) displays the contour plot of the solution y4,1(x, t). (c) presents the

2D-plot of y4,1(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 12: In these figure, we take λ = ν = 1, µ = −1 e0 = e = −1, for the solution z4,1(x, t). (a) shows

the 3D-plot of z4,1(x, t) with γ = 0.8. (b) displays the contour plot of the solution z4,1(x, t). (c) presents the

2D-plot of z4,1(x, t) for t = 1 with different values of γ.
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(a) (b) (c)

Figure 13: In these figure, we take λ = ν = 1, µ = −1 e0 = e = −1, for the solution y6,1(x, t). (a) shows

the 3D-plot of y6,1(x, t) with γ = 0.8. (b) displays the contour plot of the solution y6,1(x, t). (c) presents the

2D-plot of y6,1(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 14: In these figure, we take λ = ν = 1, µ = −1 e0 = e = −1, for the solution z6,1(x, t). (a) shows

the 3D-plot of z6,1(x, t) with γ = 0.8. (b) displays the contour plot of the solution z6,1(x, t). (c) presents the

2D-plot of z6,1(x, t) for t = 1 with different values of γ.
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(a) (b) (c)

Figure 15: In these figure, we take λ = 1, ν = 2, µ = −2 e0 = e = −1, for the solution y19(x, t). (a) shows the

3D-plot of y19(x, t) with γ = 0.8. (b) displays the contour plot of the solution y19(x, t). (c) presents the 2D-plot

of y19(x, t) for t = 1 with different values of γ.

(a) (b) (c)

Figure 16: In these figure, we take λ = 1, ν = 2, µ = −2 e0 = e = −1, for the solution z19(x, t). (a) shows the

3D-plot of z19(x, t) with γ = 0.8. (b) displays the contour plot of the solution z19(x, t). (c) presents the 2D-plot

of z19(x, t) for t = 1 with different values of γ.

5 Results and Discussion

In this paper, we have practiced two effective integration approaches to the KMM model, one is the Semi-inverse

method and the other is NAEM. The first method provides us bright solitons in the form of Eq.(23), Eq.(24),

Eq.(33) and Eq.(34). Also the graphical interpretation for the absolute behavior of these solutions by assigning

different parameter values is given in section 3.1. Bright solitons in the form of 3D, contour and 2D plots are

given in Figs.1,2,3 and 4. 2D graphs are displaying fractal effect for the parameter values γ = 0.2, 0.4, 0.6, 0.8

on the solutions.

The preceding method presents dual-mode bright, dark, singular-periodic and singular-shaped solitons in Eq.[73-

118] for the governing system. This section consists of 3D, contour and 2D graphs of the mentioned solutions

21



with their physical significance. The fractal impact is illustrated by the irregularity in the curves for various

values of parameter γ = 0.2, 0.4, 0.6 on the solutions. From the graphs, it is clear that the semi-inverse technique

and NAEM may be applicable to any coupled nonlinear partial differential equation for the extraction of bright

and dual-mode solitary waves solutions, correspondingly. It is worth mentioning here that the above approaches

are efficient, versatile and powerful to acquire the solitons with real-world applications.

6 Conclusion

The study of optical solitons is discussed in this article by applying semi inverse and NAEM. The exact dark,

bright, singular-periodic and singular-shaped soliton solutions of the KMM model are developed, having signif-

icance in mathematics and physics. The fractal KMM system is of great importance and used for describing

ferromagnetic particle propagation in nano-scale ferrite materials. A new collection of solutions is investigated

with several of them being envisioned. The set of soliton from this analysis is effective to understand properties

of the governing system of equations. The results obtained are compared with the existing literature and found

to be new [27]. These consequences may be important for the future work of the given model. It should be noted

that, in contrast to other algebraic approaches, semi-inverse method and the NAEM revealed a variety of addi-

tional advantages for optical solitons. These results have been represented graphically in figures to understand

the physical importance.
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