References
Aizen, M.A., Gleiser, G., Sabatino, M., Gilarranz, L.J., Bascompte, J. &Verdu, M. (2016). The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol Lett , 19, 29–36.
Althoff, D.M., Segraves, K.A. & Johnson, M.T.J. (2014). Testing for coevolutionary diversification: Linking pattern with process.Trend Ecol Evol , 29, 82–89.
Balbuena, A.J., Miguez-Lozano, R. & Blasco-Costa, I. (2013). PACo: a novel procrustes application to cophylogenetic analysis. PlosOne , 8, e61048.
Bascompte, J., Jordano, P. & Olesen, J.M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance.Science , 312(5772), 431-433.
Bolmgren, K. & Eriksson, O. (2005). Fleshy fruits: origins, niche shifts, and diversification. Oikos, 109, 255–272.
Brooks, D.R. (1988). Macroevolutionary comparisosns of host and parasite phylogenies. Ann Rev Ecol Evol Syst , 19, 235–259.
Burín, G., Guimarães, P.R. & Quental, T.B. (2021). Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks. Science , 372, 733-737.
DeCasein, A.R., Williams, S.A. & Higham, J.P. (2017). Primate brain size is predicted by diet but not sociality. Nat Ecol Evol , 1, 0112.
Dehling, D.M., Topfer, T., Schaefer, H.M., Jordano, P., Böhning-Gaese, K. & Schleuning, M. (2014). Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Global Ecol Biogeogr 23, 1085–1093.
Donatti, C.I., Guimaraes, P.R., Galetti, M., Pizo, M.A., Marquitti, F.M.D. & Dirzo R. (2011). Analysis of a hyper–diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett, 14, 773–781
Dunbar, R. & MacDonald, I. (2013). Primate social systems.Springer Science & Business Media.
Eriksson, O., Friis, E.M. & Löfgren, P. (2000). Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. Am Nat , 156, 47–58.
Eriksson, O. (2016). Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol Rev , 91, 168-186
Estrada, A., Garber, P.A., Pavelka, M.S.M. & Luecke, L. (2006). Overview of the mesoamerican primate fauna, primate studies, and conservation concerns. In: (New Perspectives in the Study of Mesoamerican Primate. Developments in Primatology: Progress and Prospects ) {  [ed(s).]  [Estrada, A., Garber, P.A., Pavelka, M.S.M., Luecke, L.] } Springer, Boston (MA), pp. 1–22
Fleming, T.H. & Kress, W.J. (2013). The ornaments of life. Coevolution and conservation in the tropics. University of Chicago Press, Chicago.
Fuzessy, L.F., Cornelissen, T.G., Janson, C.H. & Silveira, F.A.O. (2016). How do primates affect seed germination? A meta–analysis of gut passage effects on neotropical plants. Oikos , 125, 1069–1080.
Fuzessy, L.F., Janson, C.H. & Silveira, F.A.O. (2017). How far do Neotropical primates disperse seeds? Am J Primatol , 79, e22659.
Gautier-Hion, A., Duplantier, J-., Quris, R., Feer, F., Sourd, C., Decoux, J-., et al . (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community.Oecologia, 65, 324–337.
Gittleman, J. & Purvis, A. (1998). Body size and species-richness in carnivores and primates. Proc Royal Soc B , 265, 113–119.
Gómez, J.M. & Verdú, M. (2012). Mutualism with plants drives primate diversification. Syst Biol , 61, 567–577.
Gotelli, N.J. & McCabe, D.J. (2002). Species co-occurrence: a meta-analysis of JM Diamond’s assembly rules. Ecology, 83, 2091–2096.
Guimarães, P.R., Jordano, P. & Thompson, J.N. (2011). Evolution and coevolution in mutualistic networks. Ecol Lett , 14, 877–885.
Guimarães, P.R., Pires, M.M., Jordano, P., Bascompte, J. & Thompson, J.N. (2017). Indirect effects drive coevolution in mutualistic networks.Nature , 550, 511–514.
Hall, A.R., Ashby, B., Bascompte, J. & King, K.C. (2020). Measuring coevolutionary dynamics in species-rich communities. Trends Ecol Evol , 35, 539–550.
Harcourt, A.H., Coppeto, S.A. & Parks, S.A. (2002). Rarity, specialization and extinction in primates. J Biogeogr , 29(4), 445–456.
Hawes, J.E. & Peres, C.A. (2014). Ecological correlates of trophic status and frugivory in Neotropical primates. Oikos , 123, 365–377.
Herrera, C.M. (2019). Flower traits, habitat, and phylogeny as predictors of pollinator service: a plant community perspective.Ecol Monogr , 90, e01402.
Heymann, E.W. & Fuzessy, L.F. (2021). Are palms a good model to explain primate colour vision diversification? A comment on Onstein et al. 2020.Proc Royal Soc B, 288, 20201423.
Howe, H.F. (2014). Diversity Storage: Implications for tropical conservation and restoration. Global Ecol Cons , 2, 349–358.
Hutchinson, M.C., Cagua, E.F. & Stoufer, D.B. (2017). Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology , 98(10), 2640–2652.
Isaac, N.J., Jones, K.E., Gittleman, J.L & Purvis, A. (2005). Correlates of species richness in mammals: body size, life history, and ecology. Am Nat , 165(5), 600–607.
Janson, C.H. (1983). Adaptationof fruitmorphologyto dis- persal agentsin a neotropicalforest. Science , 219, 187- 189.
Jordano, P. (1995). Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Am Nat , 145, 163–191.
Kawamura, S. (2016). Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics , 38, 779–791.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest Package: Tests in Linear Effects Models. J Stat Softw , 82(13), 1–26.
Lefebvre, L.S., Reader, M. & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain Behav Evol , 63, 233–246.
Lengyel, S., Gove, A.D., Latimer, A.M., Majer, J.D. & Dunn. R.R. (2010). Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. PEPEES , 12, 43–55.
Lomáscolo, S.B., Speranza, P. & Kimball, R.T. (2008). Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia , 156, 783–796.
Matthews, L.J., Arnold, C., Machanda, Z. & Nunn, C.H. (2011). Primate extinction risk and historical patterns of speciation and extinction in relation to body mass. Proc Royal Soc B , 278, 1256–1263.
Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B., Westoby, M. (2005). A brief history of seed size. Science , 307, 576–580.
Nevo, O., Razafimandimby, D., Jeffrey, J.A.J., Schulz, S. & Ayasse, M. (2018). Fruit scent as an evolved signal to primate seed dispersal.Sci Adv , 4, eaat4871.
Nevo, O., Valenta, K., Kleiner, A., Razafimandimby, D., Jeffrey, J.A.J., Chapman, C.A. & Ayasse, A. (2020). The evolution of fruit scent: phylogenetic and developmental constraints. BMC Evol Biol , 20, 138.
Nunn, C.L., Altizer, S., Sechrest, W., Jones, K.E., Barton, R.A., Gittleman, J.L. (2004). Parasites and the evolutionary diversification of Primate clades. Am Nat , 164, S90–S103.
O’Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P. et al . (2013). The placental mammal ancestor and the post-K-Pg radiation of placentals. Science , 339, 662–667.
Onstein, R.E., Vink, D.N., Veen, J., Barratt, C.D., Flantua, S.G.A., Wich, S.A. et al. (2020). Palm fruit colours are linked to the broad-scale distribution and diversification of primate colour vision systems. Proc Royal Soc B , 287, 20192731.
Poisot, T. (2015). When is co-phylogeny evidence of coevolution? In: (Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics ), {  [ed(s).]  [Morand, S., Krasnov, B.R. & Littlewood, D.T.J.] } Cambridge University Press, Cambridge (MA), pp. 420–33.
Raven, P.H., Gereau, R.E., Phillipson, P.B., Chatelain, C., Jenkins, C.N. & Ulloa Ulloa, C. (2020). The distribution of biodiversity richness in the tropics. Sci Adv 6(37), eabc6228.
Rojas, D., Vale, Á., Ferrero, V. & Navarro, L. (2012). The role of frugivory in the diversification of bats in the Neotropics. J Biogeogr , 39(11), 1948–1960.
Scott, J. E. (2019). Macroevolutionary effects on primate trophic evolution and their implications for reconstructing primate origins. J Hum Evol , 133, 1–12.
Schrago, C. G. (2007). On the time scale of new world primate diversification. Am J Phys Anthropol , 132(3), 344–354.
Smith, A.C., Buchanan-Smith, H.M., Surridge, A.K., Osorio, D. & Mundy, N.I. (2003). The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol , 206, 3159–3165.
Stiles, F. G. & L. Rosselli. (1993). Consumption of fruits of the Melastomataceae by birds: How diffuse is coevolution? Vegetatio , 108, 57–73.
Sussman, R.W. (1995) How primates invented the rainforest and vice-versa. In: (Creatures of the Dark ), {  [ed(s).]  [Alterman, L., Doyle, G.A. & Izard M.K.] }. Springer, Boston (MA), pp. 1–10.
Sussman, R.W., Rasmussen, D.T. & Raven, P.H. (2013). Rethinking primate origins again. Am J Primatol , 75(2), 95–106.
Sussman, R.W. (2017). Angiosperm Radiation Theory. In: (The International Encyclopedia of Primatology ), {  [ed(s).]  [Fuentes, A.] }. John Wiley & Sons Inc, West Sussex
Sussman, R. W. (1991). Primate origins and the evolution of angiosperms.Am J Primatol , 23(4), 209–223.
Tran, L.A.P. (2014). The role of ecological opportunity in shaping disparate diversification trajectories in a bicontinental primate radiation. Proc R Soc B , 281, 20131979.
Valenta, K. & Nevo, O. (2020) The dispersal syndrome hypothesis: How animals shaped fruit traits, and how they did not. Funct Ecol , 34, 1158–1169.
Valenta, K., Miller, C.N., Monckton, S.K., Melin, A.D., Lehman, S.M., Styler, S.A. et al . (2016). Fruit ripening signals and cues in a Madagascan dry forest: Haptic indicators reliably indicate fruit ripeness to dichromatic lemurs. Evol Biol , 43(3), 344–355.
Valenta, K., Nevo, O., & Chapman, C.A. (2018). Primate fruit color: Useful concept or alluring myth? Int J Primatol , 39(3), 321–337.
Voigt, F., Bleher, B., Fietz, J., Ganzhorn, J., Schwab, D. & Böhning‐Gaese, K. (2004). A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia , 141,  94–104.
Wang, B.C., & Smith, T.B. (2002). Closing the seed dispersal loop.Trends Ecol Evol , 17(8), 379–386.