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Abstract
Generalized polarizabilities and the molecular charge distribution can describe the response of a molecule in an arbitrary static electric field up to second order. Depending on the expansion functions used to describe the perturbing potential, the generalized polarizability matrix can have rather large dimension (~1000). This matrix is the discretized version of the density response function or electronic susceptibility.  Diagonalizing and truncating it can lead to significant (over an order of magnitude) speed-up in simulations. We have analyzed the convergence behavior of the generalized polarizability using a plane wave basis for the potential. The eigenfunctions of the generalized polarizability matrix are the natural polarization potentials. They are potentially useful to construct efficient polarizability models for molecules. 
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1 | INTRODUCTION AND MOTIVATION

In the course of developing an efficient Quantum/Molecular Mechanics (QM/MM) program, we have realized the importance of a compact representation of generalized  molecular polarizabilities, i.e., polarizabilities which include not only the common dipole and quadrupole polarizabilities but arbitrary high order ones. In this paper, we will consider only static polarizabilities. In addition to their use in QM/MM calculations, these polarizabilities are of interest by themselves, providing a complete, compact, and non-arbitrary representation of the static electrostatic response property of a molecules. We describe first their role in QM/MM calculations. We investigate the convergence of the natural polarization expansion, and show typical natural polarization potentials.
Most chemistry and virtually all biochemistry takes place in solution. Accurate atomistic simulation of solutions or solvated molecules — and in general thermodynamic systems — is still currently beyond the capability of computers to carry out fully by first-principles methods. Molecules of most solvents, in particular the most important solvent, water, are small and rigid. Quantum/Molecular Mechanics (QM/MM) methods treat the solute by a quantum mechanical method and the solvent by a classical force field, also called Molecular Mechanics. This cuts down the computer effort for a given solute/solvent configuration drastically, as the solvent generally interacts with the solute only through electrostatics and van der Waals forces. However, solutions are highly flexible systems, and the calculations, even for a fixed solute geometry, require extensive sampling of the configuration space to yield accurate entropic quantities, most importantly free energies. The sampling can be performed by Monte Carlo (MC) simulation or by molecular dynamics (MD). MD is more popular but MC simulations have advantages: they do not need energy gradients, and it is easier to avoid being trapped in a local region in MC. 
The number of MC configurations needed to yield reasonable accurate free energy for a given fixed solute geometry is generally a few million for a smaller solute.[endnoteRef:1] A fitting name for this type of simulation is Multiple Environment – Single System (MESS).[endnoteRef:2] Carrying out millions of first-principles calculations is expensive even if an individual calculation for a small solute takes only minutes. Mapping an effective free energy potential curve is even more expensive by 1-2 orders of magnitude, and mapping a two-dimensional surface, for instance a surface for an amino acid residue as a function of two Ramachandran angles is practically impossible without further drastic approximations.  [1:  W. L. Jorgensen, J. Tirado-Rives, J. Comput. Chem. 2005, 26, 1689.]  [2:  A. Sodt, A.;Y.  Mei, G. König, P. Tao, R. P. Steele, B. R. Brooks, Y. Shao, J. Phys. Chem. A 2015, 119, 1511.] 

[bookmark: _Ref63962735]Various strategies have been devised to improve the efficiency of such calculations, such as fitting the parameters of semiempirical calculations to first-principles ones, or carrying out the MC configuration selection at a lower level of accuracy. These strategies are reviewed briefly in Ref. [endnoteRef:3] but all of them sacrifice accuracy for efficiency. Our method, Ultrafast QM/MM,3 is based on the fact that the interaction between the QM and the MM system, with the exception of the highly local van der Waals term, is essentially electrostatic. The van der Waals term is generally treated by an empirical potential. The electrostatic energy consists of first, second, and higher order interaction energies. The first-order energy is the interaction of (distributed) charges in the solute with the electrostatic potential of the solvent (often modelled by point charges). This requires only a single wavefunction evaluation of the solute, independently of the number of the solvent configurations, and is thus efficient. The second order terms constitute the polarization energy of the solute by the solvent, and, if a polarizable solvent model is used, the polarization energy of the solvent molecules by the solute and each other. Evaluation of the polarization energy of the solute seemingly requires a wavefunction calculation for each of the millions of solvent configurations, and it is this expensive term we address here. We assume a non-polarizable solvent model, although our Ultrafast QM/MM program can use polarizable solvents at reduced efficiency. We have found that higher order (hyperpolarizability) terms are generally negligible in solution simulations.  [3:  T. Janowski, K. Wolinski, P. Pulay, Chem. Phys. Lett. 2012. 530, 1.] 

First we summarize our Ultrafast QM/MM method.3 The expensive recalculation of the solute wavefunction for each solvent configuration can be avoided by precalculation the polarizabilities of the solute before running the MC simulation. The problem with this approach is that the electric field of the solvent, unlike macroscopic fields, is highly non-uniform. Therefore we need to use generalized polarizabilities which allow the calculation of the polarization energy in an arbitrary electric field.[endnoteRef:4] We expand the electrostatic potential of the solvent within the volume occupied by the solute in a set of potential expansion functions {uk(r)}.  [4:  P. Pulay and T. Janowski, Intern. J. Quantum Chem. 2009, 109, 2113. ] 

                                                                      (1) 
The energy of the solute molecule in the electrostatic potential U(r) can be written as a power series in the coefficients ck in Eq. (1):
                                (2)
Here E0 is the energy of the solute without an external electric potential, E1 represents the interaction of the (fixed) charge distribution of the molecule with the potential U, E2 is the (second-order) polarization energy, etc. The essence of our Ultrafast QM/MM method is that we precalculate the generalized polarizabilities 
                                                                                      (3)
at c=0  before the simulation phase, and omit hyperpolarizability terms in Eq. (2). This way the energy calculation, Eq. (2), requires no quantum calculations on the solute, only some linear algebra, and is speeded up by about 4 orders of magnitude for DFT simulations (more for higher level, say MP2, and for larger systems).3 The accuracy of the energies is generally within a few hundredth of kcal/mol for solutes of 20-30 atoms.
There are several plausible choices for the potential expansion functions uk(r): 
(a) Delta functions (r – r0), where r0 ranges over all points in the molecular volume, are the most intuitive quantities but are the least practical, due to their singular nature and uncountably infinite number. 
[bookmark: _Ref60958963](b) Polynomials of the distance to the center of the molecule, x, y, z, and 
(c) regular solid spherical harmonics expanded around the molecular center. These are linear combinations of the polynomials under (b) but are somewhat more compact (see below). They are traditional for small molecules but neither they nor the polynomial expansion are useful for larger systems because of they converge slowly or diverge.[endnoteRef:5] [5:  A. J. Stone, The Theory of Intermolecular Forces, 2nd edition, Oxford University Press, Oxford, United Kingdom, 2013, p. 122.] 

[bookmark: _Ref64647087](d) Atom-centered solid spherical harmonics with multiple origins, as advocated by Stone in his distributed polarizability model.[endnoteRef:6] This requires the division of the molecule to smaller subunits which is a somewhat arbitrary procedure. [6:  A. J. Stone, Mol. Phys. 1985, 56, 1065.] 

(e) A similar method uses expansion functions generated by differentiating localized functions, say Gaussians around the centers of the fragments.[endnoteRef:7] These give a point multipole field at large distances but avoid the singularities. They have been used to give a compact description of the molecular charge distribution[endnoteRef:8] but not, to our knowledge, for polarizabilities. [7:  R. J. Wheatley and J. B. O. Mitchell, J. Comput. Chem. 1994, 15, 1187.]  [8:  D. M. Elking, G. A. Cisneros, J.-P. Piquemal, T. A. Darden, and L. G. Pedersen, J. Chem. Theory Comput. 2010, 6, 190.] 

(e) Plane waves, i.e., a Fourier expansion of the potential in a box encompassing the molecule, have been used in several theoretical treatments of dispersion.[endnoteRef:9],[endnoteRef:10] [9:  P. W. Langhoff, Chem. Phys. Lett. 1973, 20, 33.]  [10:  N. Jacobi and Gy. Csanak, Chem. Phys. Lett. 1975, 30, 367.] 

(f) A natural choice is to expand the potential in inverse distance coordinates |r-ri|-1 around a set of centers {ri} surrounding the molecule.[endnoteRef:11],[endnoteRef:12] Unfortunately, these expansions tend to be numerically highly unstable. In spite of this, they may be useful because our objective is not to obtain the coefficients ck or a reasonable physical model but the second-order energy which is much more stable. However, unstable expansions tend to produce large cancelling contributions which ultimately have large numerical errors. Work using inverse distance expansion is being conducted in the laboratory of one of us (K.W.) [11:  N. Celebi, J. G. Ángyán, F. Dehez, C. Millot, and C. Chipot, J. Chem. Phys. 2000, 112, 2709.]  [12:  G. J. Williams and A. J. Stone, J. Chem. Phys. 2003, 119, 4620.] 

(g) Generalized polarizabilities were probably first used by Koide;[endnoteRef:13] his expansion functions were spherical waves, a natural choice for atoms. [13:  A. Koide, J. Phys. B: Atom. Molec. Phys. 1976, 9, 197.] 

We have chosen plane waves as expansion functions for the potential. They have the advantage of being simple, uniform, and well-conditioned, depending only on a single parameter, the maximum spatial frequency. However, the distributed polarizability representation is more compact because the plane wave representation describes potentially each volume element, even if there are no electrons there. This is analogous to the relation between atom-centered basis sets and plane waves in electronic structure theory. 
If the expansion functions are solid spherical harmonics around a single center, one gets the traditional multipole expansion. The negative signs in Eq. (2) make it compatible with the usual definition of multipole moments.The traditional multipole expansion is only useful for molecules which are small on the scale of the changes in the potential, such as fields generated by macroscopic electrodes. It is not useful for molecular interactions at close range.5  If the expansion functions are restricted to the the functions {x, y, z} with the origin at the center of the molecule (i.e., x, y, z) then the three first derivatives in Eq. (2) are the dipole moment components, and the 6 second derivatives are the (dipole) polarizabilities. When general expansion functions uk are used, the first derivatives are generalized moments, and the second derivatives are generalized polarizabilities. As pointed out above, the latter can be precalculated before the simulation. Calculating the components of the generalized polarizability matrix (the second derivatives in Eq. (2)) is somewhat demanding for a large expansion in Eq. (1) but it is independent of the number of solvent configurations.
The delta function expansion gives the density response function, also called charge density susceptibility5 or electronic susceptibility (r,r’), and the second order energy
                                           (4)
where the sum in the third term of Eq. (2) is replaced by an integral. The density response function (r,r’) can be visualized as the change of the charge density at r caused by a delta function potential perturbation at r’, or vice versa. It is the zero-frequency component of the frequency-dependent density response function or susceptibility (r,r’,) which plays a prominent role in several largely intuitive physics-based theories of larger systems and solid-state matter. The frequency-dependent form was introduced by McLachlan,[endnoteRef:14] Maaskant and Oosterhoff,[endnoteRef:15] and Longuet-Higgins;[endnoteRef:16] see Hunt[endnoteRef:17] and Stone6 for a systematic exposition.  Our plane-wave polarizabilities represent the discrete Fourier transform components of the density response function at zero frequency. The latter can be reconstructed from its components to a limited resolution, determined by the highest spatial frequency of the plane wave expansion.[endnoteRef:18] The role of the density response function in conceptual DFT and for defining qualitative chemical characteristics like aromaticity was emphasized by Geerling and coworkers.[endnoteRef:19] [14:  A. D. McLachlan, Proc. Roy. Soc. London Ser. A, 1963, 271, 387.]  [15:  W. J. Maaskant and L. J. Oosterhoff, Mol. Phys. 1964, 8, 319.]  [16:  H. C. Longuet-Higgins, Disc. Faraday Soc.. 1965, 40, 7.]  [17:  K. L. C. Hunt, J. Chem. Phys. 1983, 78, 6149.]  [18:  T. Janowski, K. Wolinski, P. Pulay, Theor. Chem. Acc. 2016, 135, 1.]  [19:  P. Geerlings. S. Fias, Z. Boisdenghien, and F. De Proft, Chem. Soc. Rev. 2014, 43, 4989.] 

 An  electric potential  originating from an external charge distribution satisfies the Poisson equation 2U = 0. It is therefore sufficient to use only expansion functions u(r) having this property, like the solid spherical harmonics (c), or the  inverse distanc functions (f). The other expansion functions do not exclude the Poisson-violating components, and are thus somewhat redundant.
As explained in Ref. 3, the first-order energy, which is generally the dominant term, is calculated directly, not by generalized moments, to get full accuracy. The most expensive part, the polarization energy is evaluated by calculating the potential of the solvent on a grid in a box containing the solute. A weighted least-squares fit of the expansion to the grid values yields the coefficients ck. The fit can be calculated efficiently because the left-hand side of the normal equations is independent of the solvent configuration, and can be evaluated and inverted before the simulation.3 The coefficients of the expansion functions {ck} are obtained from the solution of the normal equations by 
c = [(ATWA)-1ATW]V                                                           (5)
where Agi=ui(xg,yg,zg) is the value of the i-th expansion function ui at grid point g (g=1..G), W is a diagonal weight matrix, the choice of which is discussed in Ref. 3, and Vg is the value of the external potential at grid point g. The number of fitting points G should obviously exceed the number of fitting functions N.
The matrix in the square bracket in Eq. (5) does not depend on the electric potential V and can thus be also precomputed before the simulation. We determine the polarization energy numerically, by calculating the potential values {Vg} on a grid inside the solute molecule, and from this the cofficients c in Eq. (5). The second-order (polarization) energy in Eq. (2) is then
E2 = - ½ cTc                                                       (6)
which is the discretized form of Eq. (4). The computational significant steps in this procedure are 
(a) the calculation of the potential on the grid which is proportional to the number of grid points G and thus, at a fixed resolution, to the molecular volume, 
(b) the matrix-vector multiplication in Eq. (5) which is proportional to GN where N is the number of expansion functions {uk(r)} in Eq. (1), and 
(c) the calculation of the polarization energy, Eq. (6), which scales like O(N2). 
For most simulations, only one solvent molecule is changed at a time, and the linearly scaling term (a) is not very important. Both (b) and (c) scale quadratically with the molecular size. However, G should be significantly larger than N for stability, and thus (b) is the computationally most significant term.
We will show that it is possible to reduce the number of expansion functions for the potential in Eq. (1) by employing suitable linear combinations of the expansion functions, speeding up the simulations. Beyond this technical use, these functions are important because they describe the most important polarization modes of a molecule. They may be useful to construct or constrain empirical models of polarization.




2 | CONVERGENCE OF THE POLARIZATION EXPANSION

An obvious idea to reduce the quadratically scaling terms (b) and (c) above is transforming the generalized polarizability matrix  to diagonal form and omitting small eigenvalues and the corresponding eigenvectors. Alternatively, the Singular Value Decomposition (SVD) technique may be used to approximate  in a compressed form. 
By using the spectral form of the NN matrix 
 = XdXT                                                               (7)
where d is diagonal, truncating d to its largest n elements (giving d’) and X to the corresponding colums (giving X’), we can rewrite Eq. (6) as
E2 = - ½ (c’)Td’c’                                                       (8)
where 
c’ = X’Tc = X’T[(ATWA)-1ATW]V      .                                         (9)
The nN matrix X’T[(ATWA)-1ATW] is independent of the solvent configuration and thus can be precalculated. This leads to a reduction in the numerical effort of (n/N) for Eq. (9) versus Eq. (5), and (n/N)2 for Eq. (8) versus  Eq. (6). 
[bookmark: _Ref68618391][bookmark: _Ref68618432][bookmark: _Ref68618434]The possibility of compressing generalized polarizabilities by diagonalization has been recognized by previous workers in plane-wave based solid-state modeling, both for related dielectric matrix[endnoteRef:20],[endnoteRef:21] and for the susceptibility.[endnoteRef:22],[endnoteRef:23] Eigenfunctions of the electronic susceptibility also arise in the formal theory of density functional reactivity.[endnoteRef:24]  We use these eigenvalues and eigenfunctions in most of this paper for compatibility with previous results. However, as we show below, they give an overly pessimistic estimate of the convergence behavior of generalized polarizability. [20:  D. Lu, F. Gygi, G. Galli, Phys. Rev. Lett. 2008, 100, 147601.]  [21:  H. F. Wilson,F. Gygi. G. Galli, Phys. Rev. B 2008, 78, 113303.]  [22:  A. Scherrer, V. Verschinin, D. Sebastiani, J. Chem. Theory Comput. 2012, 8, 106.]  [23:  C. Dressler, A. Scherrer, P. Ahlert, and D. Sebastiani, J. Comput. Chem. 2019, 40, 2712.]  [24:  S. Liu, T. Li, and P. W. Ayers, J. Chem. Phys. 2009, 131, 114106.] 

The expansion we use to represent the solvent electrostatic potential is a  set of sine functions in an LxLyLz  box surrounding the molecule, augmented with a constant. In the x direction, they are sin[kx(x – x0)/Lx] where x0 is -Lx/2, and the molecule is centered at the origin. This expansion produces a periodic function while the actual electrostatic potential is non-periodic. Therefore the box used for the trigonometric expansion must be significantly larger than the box encompassing the molecule; only the potential in the inner box is used for the fitting. If the amplitude of the  trigonometric expansion functions for the potential is constant, the root-mean-square electric field of these functions is proportional to the magnitude of the wave vector k=[(kx/Lx)2+(ky/Ly) 2+(kz/Lz) 2]½ . For a better comparison of the importance of the potential expansion functions, they should be scaled by 1/k or 1/k2 (each row and column multiplied by the scale factor). Indeed, without scaling, the atomic units of our generalized polarizabilities are e2/Eh, not the usual polarizability units, e2a02/Eh. Only after scaling the rows and columns of the generalized polarizability matrix do they have the units of polarizability. (Note that the correct atomic unit for density response function e2/[Eh a06].) If the rows and columns of the general polarizability are scaled with k-2, its atomic unit is e2a04/Eh.
The argument for the 1/k2 scaling is that the Fourier integral form of the potential of a unit point charge at R is
                                            (11)
i.e. its Fourier components decrease as the inverse square of the wave vector. 
We will first investigate the convergence of the eigenvalues of generalized polarizability for some systems, ranging from very simple to moderately complex. A simple measure of convergence of the eigenfunction expansion is provided by the eigenvales of the generalized polarizability matrix, .  Figure 1 shows the largest eigenvalues of the general polarizability matrix for the Ar atom using a moderately large plane wave expansion (959 functions), without scaling, and with k-1 and k-2 scaling. The wavefunction was calculated at the B3LYP/aug-cc-PVQZ-g level (the aug-cc-PVQZ basis without g functions). Only the relative values of the polarizability eigenvalues are relevant here. For better comparison, the eigenvalues of the scaled polarizability matrices were plotted on a scale which makes the traces of the matrices equal. Values are plotted until their sum adds up to 99 % of the the trace of the polarizability matrix. This threshold  is considered sufficient, as the polarization energy E2 is in general significantly smaller than the electrostatic energy E1 for molecules with permanent multipoles. 
As Figure 1 shows, scaling improves the convergence of the expansion only slightly. At 99 % threshold, scaling with k-1 has litle effect, scaling with k-2 decreases the expansion length from 50 to 45. However, truncation to the principal values, whether performed on the scaled or unscaled polarizabilities, leads to significant speedups. With the k-2 scaling, N/n=959/45=21.3, i.e., savings by more than an order of magnitude. 
Figure 2 shows the eigenvalues of the generalized polarizability matrix for carbon monoxide at the PBE0/aug-cc-pVTZ level. Its convergence pattern is similar to the Ar atom. Figure 3 shows all-trans octatetraene at the B3LYP/6-311G(d,p) level, with a modest potential basis (699 trigonometric expansion functions). Calculations on other molecules (H2, propene, chlorobenzene, 9,10-anthraquinone) with large or moderately large basis sets for both the electronic calculations and for the expansion of the potential all give convergence patterns similar to the examples above. 
It should be straightforward to implement the truncation of the general polarizability matrix to its dominant diagonal elements in our Ultrafast Monte Carlo QM/MM simulation program, and we are working on it. It is estimated that it would bring more than an order of magnitude speed-up with negligible loss of accuracy.
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FIGURE 1 Largest eigenvalues of the generalized polarizability matrix for the Ar atom with various scalings. Values were multiplied by factors which make the traces of the scaled matrices equal to the unscaled trace.  The potential expansion used 959 expansion functions.
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FIGURE 2 Largest eigenvalues of the generalized polarizability matrix for CO with various scalings.
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FIGURE 3 Largest eigenvalues of the generalized polarizability matrix for all-trans octatetraene (C8H10) with various scalings. The potential expansion had 699 expansion functions.
3 | NATURAL POLARIZATION POTENTIALS
 
The eigenvectors of the generalized polarizability matrix define the natural polarization potentials of the system as
  .                                         (10)
One would assume that the first n natural polarization potentials describe the most important polarization effects if the eigenvalues are ordered by decreasing magnitude. This is, however, valid only if the spectral form of the potential is white, i.e. all spatial frequencies are equally probable. As discussed above, this is not the case, and the scaled polarizability matrix gives a better measure of the importance of the eigenfunctions. Our goal was to improve the efficiency of the Ultrafast QM/MM method. However, these potentials may serve to develop improved models for distributed polarizabilities, or removing some of the arbitrariness in these models, and therefore are of interest by themselves.
Figure 4 shows the first few natural polarization potentials of the He and Ar atoms from the unscaled general polarizability matrix, calculated at the B3LYP/aug-cc-pvqz-g level. The dominant natural polarization potentials are the lower multipoles (up to octopole) and the (redundant) radial polarization. The quadrupole eigenvalues for Ar are not strictly degenerate (see Figure 1) because the trigonometric expansion in a reactangular box breaks the spherical symmetry. Figure 5 shows the first natural polarization potentials after 1/k2 scaling for Ar. Scaling does not change the qualitative character of the potentials: 1-3 correspond obviously to dipole polarization, 4 to a radial one, 5-9 to quadrupole polarization, 10-16 to octopole.
Figure 6 displays most important the natural polarization potentials of H2 (B3LYP/aug-cc-pVQZ; 1274 trigonometric expansion functions for the potential). Without scaling, 60 eigenfunctions are needed to account for 99 % of the trace of the polarizability matrix; with 1/k2 scaling, 40 terms suffice.
Figure 7 shows the natural polarization potentials of carbon monoxide (PBE0/aug-cc-pVTZ; 1040 potential expansion functions). The natural polarization potentials provide support for Stone’s distributed polarization model.[endnoteRef:25] The largest component is a charge shift between C and O but the perpendicular components 2,3 and 4,5 are clearly atomic. [25:  Reference 5, pp. 168,175.] 

Figure 8 displays the first natural polarizability potentials of all-E octatetraene with 1/k2 scaling. The calculation was described in the previous section.The polarizability of this conjugated molecule is dominated by charge flow along the long axis of the molecule. The second in-plane component is (eigenvalue 3) is much less important, and the first out-of-plane component is the seventh eigenvalue.

4 | SUMMARY AND CONCLUSIONS
Generalized polarizabilities are the discretized version of the static Density Response Function (Electronic Susceptibility). We have shown that to describe the polarization behavior molecules in  solution, they can be truncated to a relatively small number of dominant eigenfunctions. This is projected to bring an order of magnitude or more speed-up in calculating the polarization energy in accurate QM/MM solution simulations, with negligible loss of accuracy. If the electric potential is described by a plane wave expansion, as usual in solid state simulations and in our Ultrafast QM/MM code, we recommend scaling the generalized matrix elements by the inverse magnitude of the wave vector, or even with the squared inverse magnitude. The convergence behavior of the eigenvalues of general polarizability is similar for systems of widely different sizes. The eigenfunctions of the general polarizability matrix are the natural polarization potentials. We show a few examples of natural polarization potentials for small systems but also for a larger molecule out of a much larger collection of data.  We anticipate that they will be useful for constructing efficient polarizability models for molecules in solution or polar environments. They offer a non-arbitrary alternative to distributed atomic polarizabilities.
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FIGURE 4 Natural polarizability potentials of He and Ar without scaling (1756 and 959 term expansions, resp.). Only one or a few members of a degenerate set are shown.
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FIGURE 5 Natural polarizability potentials of Ar with 1/k2 scaling (959-term expansion). Only one member of a degenerate set is shown. 1-3 represent dipole, 4 radial and 5-9 quadrupole polarizability.



[image: Logo, company name

Description automatically generated]
FIGURE 6 Dominant natural polarizability potentials of  H2 with the eigenvalues.
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FIGURE 7 Dominant natural polarizability potentials of  carbon monoxide, with eigenvalues 
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FIGURE 8 Eigenfunctions 1-5 and 7 of the generalized polarizability matrix of all-E octatetraene with eigenvalues. The dominantly radial sixth eigenfunction (eigenvalue 47.4 a.u.) has been omitted and the first perpendicular polarizability potential (eigenfunction 7) is shown instead.
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