References
- J.A. Figueroa, A. Reidy, L. Mirandola,
K. Trotter, N. Suvorava, A. Figueroa, V. Konala, A. Aulakh, L.
Littlefield, F. Grizzi, R.L. Rahman, M.R. Jenkins, B. Musgrove, S.
Radhi, N. D’Cunha, L.N. D’Cunha, P.L. Hermonat, E. Cobos, M.
Chiriva-Internati, Chimeric antigen receptor engineering: a right step
in the evolution of adoptive cellular immunotherapy, Int. Rev.
Immunol. 34 (2015) 154-187.
https://doi.org/10.3109/
08830185.2015.1018419.
- V. Hillerdal, M. Essand, Chimeric
antigen receptor-engineered T cells for the treatment of metastatic
prostate cancer, Biodrugs 29 (2015) 75-89.
https://doi.org/10.1007/
s40259-015-0122-9.
- W. Zhang, CAR T-cell therapy:
opportunities and challenges, Immunotherapy 8 (2016) 245-247.
https://doi.org/10.2217/imt.15.129.
- C.H. June, R.S. O’Connor, O.U.
Kawalekar, S. Ghassemi, M.C. Milone, CAR T cell immunotherapy for
human cancer, Science 359 (2018) 1361-1365.
https://doi.org/
10.1126/science.aar6711.
- D.W. Lee, J.N. Kochenderfer, M.
Stetler-Stevenson, Y.K. Cui, C. Delbrook, S.A. Feldman, T.J. Fry, R.
Orentas, M. Sabatino, N.N. Shah, S.M. Steinberg, D. Stroncek, N.
Tschernia, C. Yuan, H. Zhang, L. Zhang, S.A. Rosenberg, A.S. Wayne,
C.L. Mackall, T cells expressing CD19 chimeric antigen receptors for
acute lymphoblastic leukaemia in children and young adults: a phase 1
dose-escalation trial, Lancet 385 (2015) 517-528.
https://doi.org/10.1016/s0140-6736(14)61403-3.
- J. Liu, J.F. Zhong, X. Zhang, C. Zhang,
Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic
stem cell transplantation in B cell malignancies, J. Hematol. Oncol.
10 (2017) 35. https://doi.org/10.1186/s13045-017-0405-3.
- S. Stoiber, B.L. Cadilha, M.-R.
Benmebarek, S. Lesch, S. Endres, S. Kobold, Limitations in the Design
of Chimeric Antigen Receptors for Cancer Therapy, Cells 8 (2019).
https://doi.org/10.3390/cells8050472.
- T.T. Byrd, K. Fousek, A. Pignata, C.
Szot, H. Samaha, S. Seaman, L. Dobrolecki, V.S. Salsman, H.Z. Oo, K.
Bielamowicz, D. Landi, N. Rainusso, J. Hicks, S. Powell, M.L. Baker,
W.S. Wels, J. Koch, P.H. Sorensen, B. Deneen, M.J. Ellis, M.T. Lewis,
M. Hegde, B.S. Fletcher, B. St Croix, N. Ahmed, TEM8/ANTXR1-Specific
CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer,
Cancer Res. 78 (2018) 489-500.
https://doi.org/10.1158/0008-5472.Can-16-1911.
- H. Du, K. Hirabayashi, S. Ahn, N.P.
Kren, S.A. Montgomery, X. Wang, K. Tiruthani, B. Mirlekar, D. Michaud,
K. Greene, S.G. Herrera, Y. Xu, C. Sun, Y. Chen, X. Ma, C.R. Ferrone,
Y. Pylayeva-Gupta, J.J. Yeh, R. Liu, B. Savoldo, S. Ferrone, G. Dotti,
Antitumor Responses in the Absence of Toxicity in Solid Tumors by
Targeting B7-H3 via Chimeric Antigen Receptor T Cells, Cancer Cell 35
(2019) 221-237 e228.
https://doi.org/10.1016/j.ccell.2019.01.002.
- M.C. Ramello, I. Benzaïd, B.M. Kuenzi,
M. Lienlaf-Moreno, W.M. Kandell, D.N. Santiago, M. Pabón-Saldaña, L.
Darville, B. Fang, U. Rix, S. Yoder, A. Berglund, J.M. Koomen, E.B.
Haura, D. Abate-Daga, An immunoproteomic approach to characterize the
CAR interactome and signalosome, Science Signaling 12 (2019) eaap9777.
https://doi.org/10.1126/scisignal.aap9777.
- C. Sun, P. Shou, H. Du, K.
Hirabayashi, Y. Chen, L.E. Herring, S. Ahn, Y. Xu, K. Suzuki, G. Li,
O. Tsahouridis, L. Su, B. Savoldo, G. Dotti, THEMIS-SHP1 Recruitment
by 4-1BB Tunes LCK-Mediated Priming of Chimeric Antigen
Receptor-Redirected T Cells, Cancer Cell 37 (2020) 216-225.e6.
https://doi.org/10.1016/j.ccell.2019.12.014.
- J. Feucht, M. Sadelain, Function and
evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen
receptors, Immuno-Oncology Technology 8 (2020) 2-11. .
- S. Guedan, A.D. Posey, Jr., C. Shaw,
A. Wing, T. Da, P.R. Patel, S.E. McGettigan, V. Casado-Medrano, O.U.
Kawalekar, M. Uribe-Herranz, D. Song, J.J. Melenhorst, S.F. Lacey, J.
Scholler, B. Keith, R.M. Young, C.H. June, Enhancing CAR T cell
persistence through ICOS and 4-1BB costimulation, JCI Insight 3 (2018)
e96976. https://doi.org/10.1172/jci.insight.96976.
- S.J. Priceman, E.A. Gerdts, D.
Tilakawardane, K.T. Kennewick, J.P. Murad, A.K. Park, B. Jeang, Y.
Yamaguchi, X. Yang, R. Urak, L. Weng, W.-C. Chang, S. Wright, S. Pal,
R.E. Reiter, A.M. Wu, C.E. Brown, S.J. Forman, Co-stimulatory
signaling determines tumor antigen sensitivity and persistence of CAR
T cells targeting PSCA+ metastatic prostate cancer, Oncoimmunology 7
(2017) e1380764-e1380764.
https://doi.org/
10.1080/2162402X.2017.1380764.
- S.R. Wiley, K. Schooley, P.J. Smolak,
W.S. Din, C.P. Huang, J.K. Nicholl, G.R. Sutherland, T.D. Smith, C.
Rauch, C.A. Smith, et al., Identification and characterization of a
new member of the TNF family that induces apoptosis, Immunity 3 (1995)
673-682. https://doi.org/10.1016/1074-7613(95)90057-8.
- D.I. Radke, Q. Ling, R. Häsler, G.
Alp, H. Ungefroren, A. Trauzold, Downregulation of TRAIL-Receptor 1
Increases TGFβ Type II Receptor Expression and TGFβ Signalling Via
MicroRNA-370-3p in Pancreatic Cancer Cells, Cancers (Basel) 10 (2018)
399. https://doi.org/10.3390/cancers10110399.
- A.W. Tolcher, M. Mita, N.J. Meropol,
M. von Mehren, A. Patnaik, K. Padavic, M. Hill, T. Mays, T. McCoy,
N.L. Fox, W. Halpern, A. Corey, R.B. Cohen, Phase I pharmacokinetic
and biologic correlative study of mapatumumab, a fully human
monoclonal antibody with agonist activity to tumor necrosis
factor-related apoptosis-inducing ligand receptor-1, J. Clin. Oncol.
25 (2007) 1390-1395. .
- J. Shi, J. Li, Z. Xu, L. Chen, R. Luo,
C. Zhang, F. Gao, J. Zhang, C. Fu, Celastrol: A Review of Useful
Strategies Overcoming its Limitation in Anticancer Application, Front.
Pharmacol. 11 (2020) 558741.
https://doi.org/10.3389/fphar.2020.558741.
- A. Jin, T. Ozawa, K. Tajiri, Z. Lin,
T. Obata, I. Ishida, H. Kishi, A. Muraguchi, Generation of
TRAIL-receptor 1-specific human monoclonal Ab by a combination of
immunospot array assay on a chip and human Ab-producing mice, Eur. J.
Immunol. 40 (2010) 3591-3593.
https://doi.org/10.1002/eji.201040551.
- S. Kaveri, T. Ozawa, X. Piao, E.
Kobayashi, Y. Zhou, H. Sakurai, T. Andoh, A. Jin, H. Kishi, A.
Muraguchi, A Novel Rabbit Immunospot Array Assay on a Chip Allows for
the Rapid Generation of Rabbit Monoclonal Antibodies with High
Affinity, PLoS ONE 7 (2012) e52383.
https://doi.org/10.1371/journal.pone.0052383.
- Z. Hao, X. Han, X. Sun, M. Shen, J.
Huang, Y. Li, T. Ozawa, D. Pang, S. Jin, H. Kishi, A. Muraguchi, A.
Jin, Fully human monoclonal antibodies to TRAIL-R1 enhance
TRAIL-induced apoptosis via activation of caspase-8 pathway, Biochem.
Biophys. Res. Commun. 475 (2016) 238-244.
https://doi.org/10.1016/j.bbrc.2016.05.089.
- H. Wajant, D. Moosmayer, T. Wüest, T.
Bartke, E. Gerlach, U. Schönherr, N. Peters, P. Scheurich, K.
Pfizenmaier, Differential activation of TRAIL-R1 and -2 by soluble and
membrane TRAIL allows selective surface antigen-directed activation of
TRAIL-R2 by a soluble TRAIL derivative, Oncogene 20 (2001) 4101-4106.
https://doi.org/10.1038/
sj.onc.1204558.
- F. Dufour, T. Rattier, A.A.
Constantinescu, L. Zischler, A. Morlé, H. Ben Mabrouk, E. Humblin, G.
Jacquemin, E. Szegezdi, F. Delacote, N. Marrakchi, G. Guichard, C.
Pellat-Deceunynck, P. Vacher, P. Legembre, C. Garrido, O. Micheau,
TRAIL receptor gene editing unveils TRAIL-R1 as a master player of
apoptosis induced by TRAIL and ER stress, Oncotarget 8 (2017)
9974-9985. https://doi.org/10.18632/oncotarget.14285.
- G. Gross, T. Waks, Z. Eshhar,
Expression of immunoglobulin-T-cell receptor chimeric molecules as
functional receptors with antibody-type specificity, Proc. Natl. Acad.
Sci. U. S. A. 86 (1989) 10024-10028.
https://doi.org/10.1073/pnas.86.24.10024.
- B.A. Irving, A. Weiss, The cytoplasmic
domain of the T-cellreceptor zeta-chain is sufficient to couple to
receptor-associated singal transduction pathways, Cell 64 (1991)
891-901. https://doi.org/10.1016/0092-8674(91)90314-o.
- B. Jonsson, G. Liminga, K. Csoka, H.
Fridborg, S. Dhar, P. Nygren, R. Larsson, Cytotoxic activity of
calcein acetoxymethyl ester (Calcein/AM) on primary cultures of human
haematological and solid tumours, Eur. J. Cancer 32a (1996) 883-887.
https://doi.org/10.1016/0959-8049(96)00015-9.
- M. Bilandzic, A. Rainczuk, E. Green,
N. Fairweather, T.W. Jobling, M. Plebanski, A.N. Stephens, Keratin-14
(KRT14) Positive Leader Cells Mediate Mesothelial Clearance and
Invasion by Ovarian Cancer Cells, Cancers (Basel) 11 (2019) 1228.
https://doi.org/10.3390/cancers11091228.
- P. Schneider, J.L. Bodmer, M. Thome,
K. Hofmann, N. Holler, J. Tschopp, Characterization of two receptors
for TRAIL, FEBS Lett. 416 (1997) 329-334.
https://doi.org/10.1016/s0014-5793(97)01231-3.
- S.-Y. Park, H.-H. Park, S.-Y. Park,
S.M. Hong, S. Yoon, M.J. Morgan, Y.-S. Kim, Reduction in MLKL-mediated
endosomal trafficking enhances the TRAIL-DR4/5 signal to increase
cancer cell death, Cell Death. Dis. 11 (2020) 744-744.
https://doi.org/
10.1038/s41419-020-02941-9.
- D. Wang, Y. Shao, X. Zhang, G. Lu, B.
Liu, IL-23 and PSMA-targeted duo-CAR T cells in Prostate Cancer
Eradication in a preclinical model, J. Transl. Med. 18 (2020) 23-23.
https://doi.org/10.1186/s12967-019-02206-w.
- R. Saleh, S.M. Toor, D. Al-Ali, V.
Sasidharan Nair, E. Elkord, Blockade of PD-1, PD-L1, and TIM-3 Altered
Distinct Immune- and Cancer-Related Signaling Pathways in the
Transcriptome of Human Breast Cancer Explants, Genes (Basel) 11 (2020)
703. https://doi.org/10.3390/genes11060703.
- M. Siegemund, O. Seifert, M. Zarani,
T. Džinić, V. De Leo, D. Göttsch, S. Münkel, M. Hutt, K. Pfizenmaier,
R.E. Kontermann, An optimized antibody-single-chain TRAIL fusion
protein for cancer therapy, MAbs 8 (2016) 879-891.
https://doi.org/10.1080/
19420862.2016.1172163.
- S. Rafiq, O.O. Yeku, H.J. Jackson,
T.J. Purdon, D.G. van Leeuwen, D.J. Drakes, M. Song, M.M. Miele, Z.
Li, P. Wang, S. Yan, J. Xiang, X. Ma, V.E. Seshan, R.C. Hendrickson,
C. Liu, R.J. Brentjens, Targeted delivery of a PD-1-blocking scFv by
CAR-T cells enhances anti-tumor efficacy in vivo, Nat. Biotechnol. 36
(2018) 847-856. https://doi.org/10.1038/nbt.4195.
- C. Tong, Y. Zhang, Y. Liu, X. Ji, W.
Zhang, Y. Guo, X. Han, D. Ti, H. Dai, C. Wang, Q. Yang, W. Liu, Y.
Wang, Z. Wu, W. Han, Optimized tandem CD19/CD20 CAR-engineered T cells
in refractory/relapsed B-cell lymphoma, Blood 136 (2020) 1632-1644.
https://doi.org/10.1182/blood.2020005278.
- K. Adachi, Y. Kano, T. Nagai, N.
Okuyama, Y. Sakoda, K. Tamada, IL-7 and CCL19 expression in CAR-T
cells improves immune cell infiltration and CAR-T cell survival in the
tumor, Nat. Biotechnol. 36 (2018) 346-351.
https://doi.org/10.1038/nbt.4086.
- S. Voigt, S. Philipp, P. Davarnia, S.
Winoto-Morbach, C. Röder, C. Arenz, A. Trauzold, D. Kabelitz, S.
Schütze, H. Kalthoff, D. Adam, TRAIL-induced programmed necrosis as a
novel approach to eliminate tumor cells, BMC Cancer 14 (2014) 74.
https://doi.org/
10.1186/1471-2407-14-74.
- A.C. Boroughs, R.C. Larson, B.D. Choi,
A.A. Bouffard, L.S. Riley, E. Schiferle, A.S. Kulkarni, C.L. Cetrulo,
D. Ting, B.R. Blazar, S. Demehri, M.V. Maus, Chimeric antigen receptor
costimulation domains modulate human regulatory T cell function, JCI
insight 5 (2019) e126194.
https://doi.org/10.1172/jci.insight.126194 .
- X. Meng, R. Jing, L. Qian, C. Zhou, J.
Sun, Engineering Cytoplasmic Signaling of CD28ζ CARs for Improved
Therapeutic Functions, Front. Immunol. 11 (2020) 1046.
https://doi.org/10.3389/fimmu.2020.01046.
- S. Guedan, A.D. Posey, Jr., C. Shaw,
A. Wing, T. Da, P.R. Patel, S.E. McGettigan, V. Casado-Medrano, O.U.
Kawalekar, M. Uribe-Herranz, D. Song, J.J. Melenhorst, S.F. Lacey, J.
Scholler, B. Keith, R.M. Young, C.H. June, Enhancing CAR T cell
persistence through ICOS and 4-1BB costimulation, JCI insight 3 (2018)
e96976. https://doi.org/10.1172/jci.insight.96976.
- G. Li, J.C. Boucher, H. Kotani, K.
Park, Y. Zhang, B. Shrestha, X. Wang, L. Guan, N. Beatty, D.
Abate-Daga, M.L. Davila, 4-1BB enhancement of CAR T function requires
NF-κB and TRAFs, JCI insight 3 (2018) e121322.
https://doi.org/10.1172/
jci.insight.121322.