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Abstract

Recent field experiments showed that predators influence the prey population not only by direct
consumption but also by stimulating various defensive strategies. The cost of these defensive strate-
gies can include energetic investment in defensive structures, reduced energy income, lower mating
success, and emigration which ultimately reduces the reproduction of prey. To explore the effect of
these defensive strategies (anti-predator behaviors), a modified Leslie-Gower predator-prey model
with the cost of fear has been considered. Gestation delay is also incorporated in the system for a
more realistic formulation. Boundedness, equilibria and stability analysis of the temporal model are
studied. By considering gestation delay as a bifurcation parameter, the existence of Hopf-bifurcation
around the interior equilibrium point is discussed together with the direction, stability and period of
bifurcating solutions arising through Hopf-bifurcation. The spatial extension of the proposed model
incorporating density-dependent cross-diffusion is also investigated and the conditions for diffusion-
driven instability are obtained. To illustrate the analytical findings, detailed numerical simulations
are performed. Biologically realistic Turing patterns as hexagonal spots, spots and stripes mixture,
and labyrinthine type patterns are identified. It is found that the fear level has a stabilizing impact
on delay induced destabilization and both stabilizing and destabilizing effects on Turing instability.
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1. Introduction

Predation is a central component of ecological communities. In predator-prey interactions, the
main attention has been given to the lethal effects of predators, while the nonlethal effects of preda-
tors have received much less attention [1, 2]. In the presence of predators, prey exhibits various
behavioral responses to predation risk including changes in habitat use [3, 4], movement patterns
[5, 6], vigilance [7, 8], escape distance [9], and foraging behavior [10, 11]. These responses lead to a
lot of energy investment in defensive structures, reduction in energy income, lower mating success
and make them more vulnerable towards the other predators [12]. The most clear demonstration
of these effects is a substantial impact on prey reproduction and population demography caused by
predators. These processes occur on a large time scale and traditionally, it has been mistaken that
these processes are the result of a shortage of food or parasitic infection [13].

Recent experimental developments have shown that nonlethal effects (risk effects) can be as
large or even larger than the lethal effects (direct effects) [6, 14, 12]. Schmitz et al. [6] have
demonstrated that risk spiders caused the same level of grasshopper (Melanoplus femurrubrum)
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mortality as normal lethal spiders (Pisurina mira). The demography of mayflies without predators
(stoneflies) and with nonlethal or untreated predators (gluing together their mouthparts) have been
compared by Peckarsky et al. [15]. They have reported that nonlethal predators affect the variety
of species and from meta-analysis of existing literature, they have suggested that ‘intimidation’ by
predators can impact the prey demography more strongly than direct predation [12, 13]. Pangle et
al. [14] have conducted an experiment on predatory spiny water fleas (Bythotrephes longimanus)
and on three species of zooplankton in Lake Michigan and Lake Erie. They have found that over
six combinations of location and depth, risk effects on population growth rates were more than
seven times larger than the direct effects of predation. Zanette et al. [16] have performed a field
experiment on song sparrows by actively preventing the direct predation using the electric fences
and seines throughout the entire breeding season of 130 days. They have managed the predator
risk by using the predator call playbacks and reported a 40% reduction in the number of offspring
produced per year by wild free-living female song sparrows.

Based on the above field demonstrations, fear effect in the mathematical model of predator-
prey interactions was first incorporated by Wang et al. [17]. After that various studies such as
fear effect with prey refuge, adaptive avoidance of predators, multiple Allee effects, fear-induced
trophic cascade, pattern formation with the cost of anti-predator behaviors, and fearful prey in a
spatiotemporal system [18, 19, 20, 21, 22, 23, 24] have been carried out.

Time delays are ubiquitous in all biological situations as various biological processes such as
digestion, gestation, maturation, and incubation are not instantaneous. However, species require
some time in order to complete these biological activities. Time delay models are much more realistic
in nature. In this work, we have assumed that the reproduction of predators after consuming the
prey is not instantaneous, however, it is mediated by some time lag, called gestation delay. Predator-
prey models with gestation delays have been studied by many researchers [25, 26, 27, 28]. Recently,
the effect of delay on the population model with the cost of indirect effects has received the attention
of many researchers. Panday et al. [29] have shown the stability switching behavior and chaos in a
population model with delay and fear effect. Fear effects in a predator-prey model with gestation
delay and prey refuse have been studied by Kumar and Dubey [30]. Duan et al. [31] have discussed
the delayed diffusive model with fear effect.

Predator species have natural proclivity to move and catch the prey species while prey species
have natural tendency to move away from predator species to avoid predation. Also, the movement of
predator species depends on many factors like the presence, absence, abundance and scarcity of prey
species and vice-versa. This identifiable information is called cross-diffusion which was first proposed
by Kerner [32, 33] and used by Shigesada et al. [34] in a competitive population system. After this
pioneer work, many researchers have studied the spatiotemporal dynamics of a predator-prey system
with linear and nonlinear cross-diffusion terms [35, 36, 37, 38]. All these studies considered only the
direct effects of predators. Recently, [39] have investigated a predator-prey model with linear cross-
diffusion and fear effects. They have studied the cross-diffusion-driven Turing instability, pattern
formation and pattern selection using the amplitude equations. Han et al. [40] have discussed
the cross-diffusion-induced pattern formation and pattern selection in a modified Leslie-Gower(LG)
model with fear effect. In this work, we have explored the dynamics of a predator-prey system with
fear effects and nonlinear cross-diffusion.

In the present work, we have analyzed how fear influences the temporal, delayed, and the spa-
tiotemporal dynamics of a two species predator-prey model with Crowley-Martin functional response.
The cost of defensive strategies (due to fear of predators) is incorporated by multiplying the growth
term of prey by the factor 1

1+ky . It is found that the fear level k has a stabilizing effect on the
temporal dynamics as well as on delay induced destabilization. The fear level k has both stabiliz-
ing and destabilizing effects on Turing instability. Hexagonal hot and cold spot patterns appear
which changes to mixture of spots and stripes, and then to Labyrinthine patterns with change in
the cross-diffusion coefficient of prey. Paper is organized as follows: In Section 2, we have presented
the formulation of temporal and delay model systems incorporating the cost of defensive strategies
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due to fear. Analysis of the temporal model system is carried out with boundedness, equilibria
and stability analysis in Section 3. In section 4, linear stability analysis of the delay system via
Hopf-bifurcation has been studied. The formulae for direction and stability of bifurcating periodic
solutions arising through Hopf-bifurcation are also derived. The spatially explicit model system
is discussed in the next section 5. Stability analysis and cross-diffusion induced Turing instability
conditions are obtained. In Section 6, analytical results are validated through numerical simula-
tions. Discussions and conclusions on the analytical and numerical findings are presented in the last
section.

2. Model formulation

In the present work, we have considered a modified Leslie–Gower type predator-prey model with
Crowley-Martin functional response [41]

dx

dt
= ax− dx2 − wxy

(1 + αx)(1 + βy)
,

dy

dt
= sy − hy2

x+ b
,

(1)

where x(t) and y(t) denote the population densities of prey and predator respectively at any time t,
a, d, w, α, β, s, h, b are positive constants and their biological meanings are given in Table 1.
The underlying assumptions of above model formulation are as follows:

(i) In the absence of predator y, prey x is growing logistically with intrinsic growth rate a and
carrying capacity a/d such that dx

dt = ax− dx2 = ax(1− x
a/d ).

(ii) The predator y is of generalist type whose most favourite food is prey x. Predator y is
consuming prey x with Crowley-Martin (C-M) functional response. C-M functional response
is a predator dependent functional response and per capita feeding rate of predator y in this
formulation is wxy

(1+αx)(1+βy) .

(iii) The predator y does not follow the “mass conservation” principle, however introduce a modified
Leslie-Gower term hy

x+b .

Recent field experiments [16] have demonstrated that the fear may influence the prey reproduc-
tion. To incorporate the impact of fear, we modify the model system (1) by multiplying the growth
term ax of prey by the factor F (k; y) = 1

1+ky , which incorporates the cost of defensive strategies due

to fear. The parameter k reflects the level of fear which drives the anti-predator behaviors (defensive
behaviors) in prey. It is assumed that scared prey forage less and left their newborn less protected,
which in turn reduces the growth rate of prey. Under above assumptions the model system (1) takes
the following form:

dx

dt
=

ax

1 + ky
− dx2 − wxy

(1 + αx)(1 + βy)
,

dy

dt
= sy − hy2

x+ b
.

(2)

The function F (k; y) = 1
1+ky is biologically suitable to incorporate the cost of anti-predator be-

haviours due to fear as it satisfies the following:

(a) F (0; y) = 1 : If fear level k = 0 i.e., no defensive strategies then no reduction in the prey
reproduction.
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(b) F (k; 0) = 1 : In the absence of predator, no reduction in prey reproduction due to defensive
strategies.

(c) limk→∞ F (k, y) = 0 : If fear level is very high then prey production reduces to zero due to
costly defensive strategies.

(d) limy→∞ F (k, y) = 0 : If predator density is very high then foraging activities of prey are almost
zero thus prey production reduces to zero.

(e) ∂F (k,S)
∂k < 0 : The production of prey decreases with an increase costly defensive strategies.

(f) ∂F (k,S)
∂y < 0 :The production of prey decreases with an increase in the predator population size

due to impaired foraging activities.

The reproduction of the predator population after predating the prey is not a simultaneous process,
however, it is mediated by some constant time lag τ > 0 required for the gestation of predator. Now,
incorporating the delay τ into the model system (2), we obtain the following system of DDEs:

dx

dt
=

ax

1 + ky
− dx2 − wxy

(1 + αx)(1 + βy)
,

dy

dt
= sy − hy2(t− τ)

x(t− τ) + b
.

(3)

3. Analysis of the temporal model

3.1. Boundedness and positivity

Boundedness and positivity of the model system (2) have been studied in this subsection.

Theorem 3.1. The solution of the model system (2) are positive and eventually bounded i.e. there
exist T ≥ 0 such that x(t) < M1 and y(t) < M2, ∀t ≥ T.

Proof. The phase diagram of the system (2) is presented in Fig. 1. For the system (2), nullclines

are C1 : y =
−q±
√
q2−4pr

2p , p = wk + dβkx(1 + αx), q = w + β(dx − a)(1 + αx) + dkx(1 + αx),

r = (dx− a)(1 + αx) on which dx
dt = 0; and C2 : y = s(x+b)

h , on which dy
dt = 0. C1 and C2 partition

the first quadrant into four parts D1, D2, D3, and D4. The intersection of C1 and C2 is the
unique interior equilibrium point E∗(x∗, y∗). Set L1 = {(x, y) | x = M1, 0 ≤ y ≤ M2} and L2 =
{(x, y) | 0 ≤ x ≤M1, y = M2}. The rectangular region consisting of L1, L2, y − axis and x− axis
as boundaries is denoted by D (= D1 ∪ D2 ∪ D3 ∪ D4). It is clear that D is an invariant set and
attracts any trajectory starting in the first quadrant. Thus, solution of the system (2) are eventually
bounded.

Next, we have discussed the positivity of the solution of the system (2). For this, we have shown
that any trajectory starting in first quadrant cannot reach the y-axis. To this end, we only need to
prove that trajectory cannot arrive the y-axis in D2. From a given point (x0, y0) ∈ D2, the time of a
trajectory running from (x0, y0) to C1 is denoted by T1 and T2(N) is the time of trajectory running
from (x0, y0) to x0

N , N ∈ N, N ≥ 2. We estimate the times T1 and T2.

T1 ≤
∫ 0.6

y0

dy

y
(
s− hy

(x+b)

) ≤ ∫ y0

0.6

dy

y
(

hy
(x0+b) − s

) =
1

s
ln

(
3h− 3s(x0+b)

y0

3h− 5s(x0 + b)

)
. (4)
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Hence T1 is finite. Now,

T2(N) =

∫ x0/N

x0

dx
ax

1+ky − dx2 − wxy
(1+αx)(1+βy)

=

∫ x0

x0/N

dx(
− ax

1+ky + dx2 + wxy
(1+αx)(1+βy)

)
≥
∫ x0

x0/N

dx

x(− a
1+ky0

+ dx+ w
β )

=
1(

− a
1+ky0

+ w
β

) ln
dx0 +N

(
− a

1+ky0
+ w

β

)
− a

1+ky0
+ dx0 + w

β

 .

(5)

Since

lim
N→∞

1(
− a

1+ky0
+ w

β

) ln
dx0 +N

(
− a

1+ky0
+ w

β

)
− a

1+ky0
+ dx0 + w

β

 =∞, (6)

therefore ∃ some N0 ∈ N such that

1(
− a

1+ky0
+ w

β

) ln
dx0 +N0

(
− a

1+ky0
+ w

β

)
− a

1+ky0
+ dx0 + w

β

 >
1

s
ln

(
3h− 3s(x0+b)

y0

3h− 5s(x0 + b)

)
. (7)

Hence T2(N0) > T1. Thus, time of trajectory to reach the y-axis is far longer than that to C1, i.e.,
trajectory runs into D3 before reaching to the y-axis. From the properties of vector field shown in
Fig. 1, the trajectory cannot reach the y-axis in D3. Therefore, any trajectory starting in the first
quadrant cannot reach the y-axis.From the above discussion, we know that there is no homoclinic
or heteroclinic orbit in the domain D. Hence, it is proved.

3.2. Equilibria and stability analysis

The equilibrium points of system (2) include trivial equilibrium E0(0, 0), predator free equilibrium
E1(ad , 0), prey free equilibrium E2(0, bsh ) and interior equilibrium E∗(x∗, y∗). E∗(x∗, y∗) is obtained
by solving the system

a

1 + ky
− dx− wy

(1 + αx)(1 + βy)
= 0,

s− hy

(x+ b)
= 0.

(8)

Solving second equation of the above system for y, we have y = s(x+b)
h . Now, putting the above

value of y in the first equation of the system (8) and after simple calculations, x∗ is given by the
following equation

P4x
4 + P3x

3 + P2x
2 + P1x+ P0 = 0, (9)

where

P4 = dks2αβ,

P3 = ds(ks(1 + 2bα)β + hα(k + β)),

P2 = s(ksw − ahαβ) + d(h2α+ bks2(2 + bα)β + hs(1 + bα)(k + β)),

P1 = 2bks2w − ah2α+ d(h+ bks)(h+ bsβ) + hs(w − a(1 + bα)β),

P0 = bs(h+ bks)w − ah(h+ bsβ).

Clearly, P4 and P3 are positive. Thus, the number of possible positive real roots of the Eq. (9) can
be decided on the basis of the signs of P2, P1 and P0. Various possibilities of positive real roots of
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Eq. (9) are investigated by applying the Descartes rule of signs. All these possibilities are tabulated
in Table 2. From Table 2, we can conclude that the Eq. (9) has unique positive real root x∗ if any

of the cases 4, 6, 8 hold. For this value of x∗, y∗ is given by y∗ = s(x∗+b)
h . Thus, system (2) has a

unique equilibrium point E∗(x∗, y∗).

Example 3.1. Next, we numerically discuss the existence of the E∗(x∗, y∗). The value of the
parameters are taken as a = 1.4, k = 0.01, d = 0.8, w = 2.29, α = 0.09, β = 0.6, s = 0.2, h =
0.15, b = 0.3. For this set of parameter values P4 = 0.000017 > 0, P3 = 0.001519 > 0, P2 =
0.01542 > 0, P1 = 0.062943 > 0, P0 = −0.018367 < 0, thus case 4 holds. Four equilibrium
points E0(0, 0), E1(1.75, 0), E2(0.0.4) and E∗(0.273052, 0.764069) obtained. Therefore, system (2)
has unique interior equilibrium point E∗(0.273052, 0.764069) for the given set of parameter values.

The Jacobian matrix J of the system (2) is given as

J =

(
a

1+ky − 2dx− wy
(1+αx)2(1+βy)

−akx
(1+ky)2 −

wx
(1+αx)(1+βy)2

hy2

(b+x)2 s− 2hy
b+x

)
.

The stability conditions of E0, E1, E2 and E∗ are discussed in following lemmas:
Lemma 1: Trivial equilibrium E0(0, 0) is always unstable, as both the eigenvalues λ1 = a and
λ2 = s of the Jacobian matrix JE0

are always positive, where

JE0
=

(
a 0
0 s

)
. (10)

Lemma 2: Predator free axial equilibrium point E1(ad , 0) is a saddle point (unstable), as eigenvalues
λ1 = −a < 0 and λ2 = s > 0 of JE1

, where

JE1 =

(
−a −ka

2

d −
wa
aα+d

0 s

)
. (11)

Lemma 3: The Jacobian matrix JE2
of the system (2) around the prey free axial equilibrium

E2(0, bsh ) is given by

JE2
=

(
ah

h+bsk −
bsw
h+bsβ 0

s2

bh −s

)
. (12)

The eigenvalues λ1 = ah
h+bsk −

bsw
h+bsβ and λ2 = −s of the Jacobian matrix JE2

are negative, provided

ah

h+ bsk
<

bsw

h+ bsβ
. (13)

E2 is locally asymptotically stable (LAS) if the condition (13) holds and a saddle point otherwise.
Lemma 4: Jacobian matrix JE∗ about interior equilibrium point E∗(x∗, y∗) is given by

JE∗ =

(
−dx∗ + wαx∗y∗

(1+αx∗)2(1+βy∗) − akx∗

(1+ky∗)2 −
wx∗

(1+αx∗)(1+βy∗)2

hy∗2

(b+x∗)2 − hy∗

(b+x∗)

)
=

(
a11 a12

a21 a22

)
.

The characteristic equation of the Jacobian matrix JE∗ is given by

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0. (14)

By Routh-Hurwitz criterion, system (2) is LAS around the interior equilibrium point E∗(x∗, y∗) if
−(a11 + a22) > 0 and (a11a22 − a12a21) > 0.
Straight forward calculations show that E∗(x∗, y∗) is LAS provided condition

dx∗ >
wαx∗y∗

(1 + αx∗)2(1 + βy∗)
(15)

holds.
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4. Analysis of delayed model system

4.1. Local stability analysis and Hopf-bifurcation

Let x̄ = x − x∗, ȳ = y − y∗ be the perturbed variables about E∗(x∗, y∗). Then the linearized
form of the system (3) is given by (bar sign is dropped for simplicity)

d

dt

(
x(t)

y(t)

)
= A1

(
x(t)

y(t)

)
+A2

(
x(t− τ)

y(t− τ)

)
, (16)

where

A1 =

(
−dx∗ + wαx∗y∗

(1+αx∗)2(1+βy∗) − akx∗

(1+ky∗)2 −
wx∗

(1+αx∗)(1+βy∗)2

0 s

)
=

(
a11 a12

0 s

)
,

A2 =

(
0 0

hy∗2

(b+x∗)2 − 2hy∗

(b+x∗)

)
=

(
0 0
b21 b22

)
.

The characteristic equation of the linearized system (16) is given by

det(A1 + e−λτA2 − λI2) = 0, (17)

where I2 is the identity matrix of order 2. In the simplified form, Eq. (17) can be rewritten as

λ2 +B1λ+B0 + e−λτ (C1λ+ C0) = 0, (18)

where B1 = −(a11 + s), B0 = a11s, C1 = −b22, C0 = a11b22 − a12b21.
Eq. (18) has a pair of imaginary roots ±iω (ω > 0) if and only if ω satisfies

−ω2 +B1iω +B0 + (cosωτ − i sinωτ)(C1iω + C0) = 0. (19)

Separating the real and imaginary parts, we have

ω2 −B0 = C0 cosωτ + C1ω sinωτ, (20)

B1ω = C0 sinωτ − C1ω cosωτ. (21)

Squaring and adding Eqs. (20) and (21), we get

ω4 + (B2
1 − 2B0 − C2

1 )ω2 + (B2
0 − C2

0 ) = 0. (22)

Eq. (22) has a unique positive root ω0, which is given by

ω0 =

√
−(B2

1 − 2B0 − C2
1 ) +

√
(B2

1 − 2B0 − C2
1 )2 − 4(B2

0 − C2
0 )

2
. (23)

Now, for the existence of unique positive root of the equation (22), it is necessary that the values
(B2

1 − 2B0 −C2
1 ) and (B2

0 −C2
0 ) cannot be positive at the same time and also the sign of (B2

0 −C2
0 )

must be negative.
Substituting ω0, we obtained the corresponding critical value of time delay τj as

τj =
1

ω0

{
arccos

(
C0(ω2

0 −B0)−B1C1ω
2
0

C2
0 + C2

1ω
2
0

)
+ 2jπ

}
, j = 0, 1, 2, · · · . (24)

According to Butler’s lemma [42], the interior equilibrium point E∗(x∗, y∗) remains stable for τ < τ0,
where τ0 = min{τj}, j = 0, 1, 2, · · · and E∗(x∗, y∗) becomes unstable when the value of τ exceeds
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the critical value τ0 (τ > τ0), provided the transversality condition is satisfied.

Here, we will drive the transversality condition
[
d(Re(λ(τ)))

dτ

]
τ=τ0

6= 0. For this, we consider, λ(τ) =

ζ(τ) + iω(τ) be a root of the Eq. (18) such that ζ(τ0) = 0, ω(τ0) = ω0. Using this substitution in
Eq. (18) and taking the derivative with respect to τ , we get[

dλ

dτ

]−1

=
(2λ+B1)eλτ

λ(C1λ+ C0)
+

C1

λ(C1λ+ C0)
− τ

λ
. (25)

Now ([
d(Re(λ))

dτ

]−1
)
λ=iω0

=
2ω2

0 + (B2
1 − 2B0 − C2

1 )

C2
1ω

2
0 + C2

0

, (26)

which shows that [
d(Re(λ(τ)))

dτ

]
τ=τ0

6= 0, if 2ω2
0 + (B2

1 − 2B0 − C2
1 ) 6= 0. (27)

Thus, the transversality condition is satisfied. Therefore, Hopf-bifurcation occurs at τ = τ0.

Theorem 4.1. Let us consider that the interior equilibrium point E∗(x∗, y∗) exists and is LAS for
a non-delay system (2).

(i) Then there exists τ = τ0 such that the interior equilibrium point E∗(x∗, y∗) of the delay system
(3) remains LAS for τ ∈ [0, τ0) and becomes unstable for τ > τ0.

(ii) The system (3) undergoes the Hopf-bifurcation at τ = τ0, if the transversality condition holds
i.e., 2ω2

0 + (B2
1 − 2B0 − C2

1 ) 6= 0.

4.2. Direction and stability of Hopf-bifurcation

In the above discussion, we have observed that at τ = τ0, the system (3) undergoes the Hopf-
bifurcation under certain condition. That is, a family of periodic solutions bifurcate from the interior
equilibrium point E∗. Here, we have analyzed the direction, stability and period of the bifurcating
periodic solutions arises through Hopf-bifurcation by using the center manifold theorem and normal
form theory given by Hassard et al. [43].

Let τ = τ0 + µ, µ ∈ R, so that µ = 0 is a Hopf-bifurcation value for the model system (3). Let
us consider the transformation X1 = x − x∗, X2 = y − y∗ and µ = τ − τ0. We normalize the time
delay with the scaling t→ t

τ . Now, the system (3) transforms to the following functional differential
equation in C (C = C ([−1, 0),R2) be the space of continuous real-valued functions) as

dX

dt
= Lµ(Xt) + f(µ,Xt), (28)

where X(t) = (X1(t), X2(t))T ∈ R2, Xt(θ) = X(t+ θ), θ ∈ [−1, 0] and Lµ : C → R, f : R× C → R
are given by

Lµ(φ) = (τ0 + µ)[J1φ(0) + J2φ(−1)], (29)

such that

J1 =

(
−dx∗ + wαx∗y∗

(1+αx∗)2(1+βy∗) − akx∗

(1+ky∗)2 −
wx∗

(1+αx∗)(1+βy∗)2

0 s

)
=

(
a11 a12

0 s

)
,

J2 =

(
0 0

hy∗2

(x∗+b)2 − 2hy∗

(x∗+b)

)
=

(
0 0
b21 b22

)
,
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and

f(µ, φ) = (τ0 + µ)

(
p1φ

2
1(0) + p2φ1(0)φ2(0) + p3φ

2
2(0)

p4φ
2
1(−1) + p5φ1(−1)φ2(−1) + p6φ

2
2(−1)

)
,

where φ(θ) = (φ1(θ), φ2(θ))T ∈ C and values of pi, i = 1, 2, · · · , 6 are given in Appendix.
By the Reisz representation theorem, ∃ a function η(θ, µ) whose components are of bounded

variation for θ ∈ [−1, 0] such that

Lµφ =

∫ 0

−1

φ(θ)dη(θ, µ) for φ ∈ C . (30)

We choose
η(θ, µ) = (τ0 + µ)[J1δ(θ) + J2δ(θ + 1)], (31)

where δ(θ) is the Dirac delta function. For φ ∈ C 1([−1, 0],R2), define

A(µ)φ =


dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
φ(σ)dη(σ, µ) θ = 0,

and

R(µ)φ =


0 θ ∈ [−1, 0),

f(θ, µ) θ = 0.

Now, the system (28) can be written as

Ẋt = A(µ)Xt +R(µ)Xt, (32)

where Xt(θ) = X(t+ θ) for θ ∈ [−1, 0]. For ψ ∈ C 1([0, 1], (R2)∗), define

A∗ψ(σ) =


−dψ(σ)

dσ , σ ∈ (0, 1],∫ 0

−1
ψ(−t)dηT (t, 0), σ = 0,

and a bilinear inner product

< ψ, φ >= ψ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (33)

where η(θ) = η(θ, 0). Denote A(0) by A and A∗ are adjoint operators. Since ±iω0τ0 are the
eigenvalues of A and A∗, respectively. Next, we calculate the eigenvectors of A and A∗ corresponding
to eigenvalues +iω0τ0 and −iω0τ0, respectively. Let q(θ) = (α1, α2)T eiω0τ0θ be the eigenvector of A
corresponding to eigenvalue +iω0τ0, then

Aq(θ) = iω0τ0q(θ), (34)

putting θ = 0, we get

τ0

(
iω0 − a11 −a12

−b21e
−iω0τ0 iω0 − s− b22e

−iω0τ0

)
q(0) =

(
0
0

)
.

By choosing α1 = 1, we obtain

α2 =
iω0 − a11

a12
.
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Similarly, let q∗(σ) = N(α∗1, α
∗
2)T eiω0τ0σ be the eigenvector of A∗ corresponding to −iω0τ0, we have

A∗q∗(σ) = −iω0τ0q
∗(σ), where α∗1 = 1, α∗2 = − (iω0+a11)

b21e−iω0τ0
.

Now, we select the value of N using the conditions 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q(θ)〉 = 0.

〈q∗(s), q(θ)〉

= N̄(1, ᾱ∗2)(1, α2)T −
∫ 0

θ=−1

∫ θ

ξ=0

N̄(1, ᾱ∗2)e−iω0τ0(ξ−θ)dη(θ)× (1, α2)T eiω0τ0ξdξ

= N̄
{

1 + α2ᾱ∗2 + τ0(b1 + b2α2)ᾱ∗2e
−iω0τ0

}
,

which gives

N̄ =
1

1 + α2ᾱ∗2 + τ0(b1 + b2α2)ᾱ∗2e
−iω0τ0

.

Now, to derive the center manifold C0 at µ = 0, we need to compute its coordinates. Let, Xt is the
solution of Eq. (32) when µ = 0.

Define

z(t) = 〈q∗, Xt〉, W (t, θ) = Xt(θ)− 2Re{z(t)q(θ)}. (35)

On the center manifold C0, we have

W (t, θ) = W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2!
+W30(θ)

z3

3!
+ · · · , (36)

where z and z̄ are the local coordinates of the center manifold C0 in the direction of q∗ and q̄∗. We
now consider only the real solution Xt ∈ C0 of Eq. (32), which gives

ż = iω0τ0z + q̄∗f(0,W (z, z̄, 0) + 2Re{zq(θ)})
= iω0τ0z + g(z, z̄),

(37)

where

g(z, z̄) = q̄∗(0)f0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

(38)

From Eqs. (35) and (36) we have

Xt(θ) = W (z, z̄, θ) + 2Re{zq(θ)}

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ z(1, α2)T eiω0τ0θ

+ z̄(1, ᾱ2)T e−iω0τ0θ + · · · ,

(39)

so that

X1t(0) = z + z̄ +W 1
20(0)

z2

2
+W 1

11(0)zz̄ +W 1
02(0)

z̄2

2
+ · · · ,

X2t(0) = α2z + ᾱ2z̄ +W 2
20(0)

z2

2
+W 2

11(0)zz̄ +W 2
02(0)

z̄2

2
+ · · · ,

X1t(−1) = ze−iω0τ0 + z̄eiω0τ0 +W 1
20(−1)

z2

2
+W 1

11(−1)zz̄ +W 1
02(−1)

z̄2

2
+ · · · ,

X2t(−1) = α2ze
−iω0τ0 + ᾱ2z̄e

iω0τ0 +W 2
20(−1)

z2

2
+W 2

11(−1)zz̄ +W 2
02(−1)

z̄2

2
+ · · · .
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g(z, z̄) = τ0N̄(1, ᾱ∗2)× f0(z, z̄)

= τ0N̄(1, ᾱ∗2)

(
p1X

2
1t(0) + p2X1t(0)X2t(0) + p3X

2
2t(0)

p4X
2
1t(−1) + p5X1t(−1)X2t(−1) + p6X

2
2t(−1)

)
= τ0N̄

[
z2
{
p1 + p2α2 + p3α

2
2 + e−2iω0τ0 ᾱ∗2(p4 + p5α2 + p6α

2
2)
}

+ zz̄ {2p1

+2p2Re(α2) + 2p3ᾱ2α2 + 2p4ᾱ∗2 + 2p5ᾱ∗2Re(α2) + 2p6ᾱ∗2ᾱ2α2

}
+z̄2

{
p1 + p2ᾱ2 + p3ᾱ

2
2 + e2iω0τ0 ᾱ∗2(p4 + p5ᾱ2 + p6ᾱ

2
2)
}

+z2z̄

{
p1W

1
20(0) +

1

2
p2ᾱ2W

1
20(0) + 2p1W

1
11(0) +

1

2
p2W

2
20(0)

+p3ᾱ2W
2
20(0) + p2W

2
11(0) + p2W

1
11(0)α2 + 2p3W

2
11(0)α2

+eiω0τ0 ᾱ∗2

(
p4W

1
20(−1) +

1

2
p5ᾱ2W

1
20(−1) +

1

2
p5W

2
20(−1)

+p6ᾱ2W
2
20(−1)

)
+ e−iω0τ0 ᾱ∗2

(
2p4W

1
11(−1) + p5W

2
11(−1)

+p5W
1
11(−1)α2 + 2p6W

2
11(−1)α2

)}]
.

Comparing the coefficient with (38), we have

g20 =2τ0N̄
{
p1 + p2α2 + p3α

2
2 + e−2iω0τ0 ᾱ∗2(p4 + p5α2 + p6α

2
2)
}
,

g11 =τ0N̄
{

2p1 + 2p2Re(α2) + 2p3ᾱ2α2 + 2p4ᾱ∗2 + 2p5ᾱ∗2Re(α2) + 2p6ᾱ∗2ᾱ2α2

}
,

g02 =2τ0N̄
{
p1 + p2ᾱ2 + p3ᾱ

2
2 + e2iω0τ0 ᾱ∗2(p4 + p5ᾱ2 + p6ᾱ

2
2)
}
,

g21 =

{
p1W

1
20(0) +

1

2
p2ᾱ2W

1
20(0) + 2p1W

1
11(0) +

1

2
p2W

2
20(0) + p3ᾱ2W

2
20(0)

+p2W
2
11(0) + p2W

1
11(0)α2 + 2p3W

2
11(0)α2

+eiω0τ0 ᾱ∗2

(
p4W

1
20(−1) +

1

2
p5ᾱ2W

1
20(−1) +

1

2
p5W

2
20(−1) + p6ᾱ2W

2
20(−1)

)
+e−iω0τ0 ᾱ∗2

(
2p4W

1
11(−1) + p5W

2
11(−1) + p5W

1
11(−1)α2 + 2p6W

2
11(−1)α2

)}
.

(40)

The expression of g21 depends on the values of W i
20(θ) and W i

11(θ), where i = 1, 2. Therefore, we
need to compute these values.
From Eqs. (35) and (37), we have

Ẇ = Ẋt − żq − ˙̄zq̄

=

{
AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0,

(41)

= AW +H(z, z̄, θ) (42)

with

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (43)

Also on C0, using the chain rule, we get

Ẇ = Wz ż +Wz̄ ˙̄z. (44)
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It follows from Eqs. (38), (42) and (44)

(A− 2iω0τ0)W20 =−H20, (45)

AW11 =−H11. (46)

Now, for θ ∈ [−1, 0), we have

H(z, z̄, θ) = −2Re{q̄∗(0)f0q(θ)}
= −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= − (g20q(θ) + ḡ02q̄(θ))
z2

2
− (g11q(θ) + ḡ11q̄(θ)) zz̄ + · · · ,

(47)

which on comparing the coefficients with Eq. (43) gives

H20(θ) = − (g20q(θ) + ḡ02q̄(θ)) , (48)

H11(θ) = − (g11q(θ) + ḡ11q̄(θ)) . (49)

From Eqs. (45), (48) and the definition of A, we have

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ), (50)

Note that q(θ) = q(0)eiω0τ0θ, we have

W20(θ) =
ig20

ω0τ0
q(θ) +

iḡ02

3ω0τ0
q̄(θ) + E1e

2iω0τ0θ. (51)

Similarly from (46), (49) and using the definition of A, we have

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ),

W11(θ) = − ig11

ω0τ0
q(θ) +

iḡ11

ω0τ0
q̄(θ) + E2,

(52)

where E1 = (E
(1)
1 , E

(2)
1 ), E2 = (E

(1)
2 , E

(2)
2 ) ∈ R2 are constant vectors. Next, we will determine the

values of E1 and E2, which is given in Appendix.
Thus, we can obtain W20(θ) and W11(θ) from Eqs. (51) and (52). Also, g21 in Eq. (41) can be
expressed in terms of parameters and delay. Now, we calculate to followings values:

C1(0) =
i

2ω0τ0

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+
g21

2
,

µ2 = −Re{C1(0)}
Re{λ′(τ0)}

,

β2 = 2Re{C1(0)},

T2 = − Im{C1(0)}+ µ2Im{λ′(τ0)}
ω0τ0

,

(53)

which determines the properties of bifurcating periodic solutions in the center manifold at the critical
value τ0.

Theorem 4.2. The sign of µ2, β2 and T2 determine the direction of Hopf-bifurcation, stability of
the bifurcating periodic solutions and the period of the bifurcating periodic solutions respectively. If
µ2 > 0 (< 0), then the Hopf-bifurcation is supercritical (subcritical) and the bifurcating periodic
solutions exist for τ > τ0 (τ < τ0). The bifurcating periodic solutions are stable if β2 < 0 and are
unstable if β2 > 0. Furthermore, the period of the bifurcating periodic solutions increases if T2 > 0
and decreases if T2 < 0.
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5. Spatially explicit model system

In this section, we have incorporated the spatial component of ecological interactions into the
temporal system (2) by extending the ODEs system to PDEs system using the reaction-diffusion
equations. At any position (U, V ) ∈ Ω and time t, the population densities of prey and predator
are given by x(t, U, V ) and y(t, U, V ), respectively, where Ω ⊂ R2 is a bounded domain with smooth
boundary ∂Ω. Then the spatiotemporal model corresponding to the temporal model (2) is given by
the following reaction-diffusion system:

∂x

∂t
=

ax

1 + ky
− dx2 − wxy

(1 + αx)(1 + βy)
+ d1∆x,

∂y

∂t
= sy − hy2

x+ b
+ d2∆y,

(54)

subjected to non-negative initial conditions and zero-flux boundary conditions

x(0, U, V ) ≥ 0, y(0, U, V ) ≥ 0, (U, V ) ∈ Ω,

∂x

∂ν
=
∂y

∂ν
= 0, (U, V ) ∈ ∂Ω, t > 0,

(55)

where d1 and d2 are self-diffusion coefficients of prey and predator respectively, ν is the outward

unit normal to ∂Ω and the Laplace operator ∆ = ∂2

∂U2 + ∂2

∂V 2 .
In the above model formulation (54), we have taken care of only the self-diffusion terms [23, 24].

However, in realistic ecological framework, the movement of prey individuals is highly influenced
by the presence, absence, abundance and scarcity of predator population and vice-versa. This
phenomenon is termed as cross-diffusion [32, 33, 34] and it cannot be captured in spatiotemporal
predator-prey model with self-diffusion terms only. Very few works [39, 40] have been done taking
cross-diffusion along with self-diffusion in predator-prey model with the fear effect. Now, including
the cross-diffusion terms, the system (54) takes the following form:

∂x

∂t
=

ax

1 + ky
− dx2 − wxy

(1 + αx)(1 + βy)
+ ∆(d1x+ d12xy),

∂y

∂t
= sy − hy2

x+ b
+ ∆(d2y + d21xy),

(56)

where d12 and d21 are cross-diffusion coefficients of prey and predator populations, respectively. We
have assumed that both d12 and d21 are positive constants. d12 > 0 implies that prey is moving
towards the lower concentration of predators and d21 > 0 signifies that predator species prefer to
hunt prey from the lower groups of prey population to avoid the group defense by larger groups. We
take the same initial and boundary conditions as given in Eq. (55).

5.1. Stability analysis of the spatial model system

In order to discuss the linear stability analysis of the model system (56) about the spatially
homogeneous steady state E∗(x∗, y∗), we linearize this system using the transformations

x(t, U, V ) = x∗ + x̂(t, U, V ),

y(t, U, V ) = y∗ + ŷ(t, U, V ),
(57)

where x̂(t, U, V ) and ŷ(t, U, V ) are small time and space perturbations. Conventionally, x̂ and ŷ are
taken as

x̂(t, U, V ) = ε1exp (λKt+ i(KUU +KV V )) ,

ŷ(t, U, V ) = ε2exp (λKt+ i(KUU +KV V )) ,
(58)
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where 0 < ε1, ε2 � 1 and λK is the wavelength. Also, K = (KU ,KV ) is the wave number vector
and K = |K| is the wave number.
Substituting (57) and (58) in the spatial system (56), we have

∂x̂

∂t
= a11x̂+ a12ŷ −K2(d1 + d12y

∗)x̂−K2(d12x
∗)ŷ,

∂ŷ

∂t
= a21x̂+ a22ŷ −K2(d21y

∗)x̂−K2(d2 + d21x
∗)ŷ,

(59)

where
a11 = −dx∗ + wαx∗y∗

(1+αx∗)2(1+βy∗) , a12 = − akx∗

(1+ky∗)2 −
wx∗

(1+αx∗)(1+βy∗)2 ,

a21 = hy∗2

(b+x∗)2 , a22 = − hy∗

(b+x∗) .

The characteristic equation of the linearized system (59) is given by

det(JK − λI2) = 0, (60)

where

JK =

(
a11 − (d1 + d12y

∗)K2 a12 − d12x
∗K2

a21 − d21y
∗K2 a22 − (d2 + d21x

∗)K2

)
.

In simplified form, the characteristic Eq. (60) can be rewritten as

λ2 + g(K2)λ+ h(K2) = 0, (61)

where

g(K2) = −(a11 + a22) +K2(d1 + d12y
∗ + d2 + d21x

∗),

h(K2) = q1K
4 + q2K

2 + q3,

q1 = d1d2 + d2d12y
∗ + d1d21x

∗ > 0,

q2 = a12d21y
∗ + a21d12x

∗ − a22(d1 + d12y
∗)− a11(d2 + d21x

∗),

q3 = a11a22 − a12a21.

Eq. (61) yield the following dispersion relation

2λ(K2) = −g(K2)±
√

(g(K2))2 − 4h(K2). (62)

According to Routh-Hurwitz criterion for stability Re(λ) < 0 if and only if

g(K2) > 0 and h(K2) > 0. (63)

Theorem 5.1. Suppose that the interior equilibrium point E∗(x∗, y∗) is LAS for the temporal sys-
tem. Then E∗(x∗, y∗) is LAS for the spatiotemporal system (56) iff the condition (63) holds.

5.2. Turing instability

If the homogeneous equilibrium E∗(x∗, y∗) is linearly stable in the absence of diffusion and
becomes unstable in the presence of diffusion then these instabilities are called Turing instability.
i.e.,

Re(λ(K2 6= 0)) > 0 for some K 6= 0 and Re(λ(K2 = 0)) < 0. (64)

Therefore, for this instability to occurs in the spatial system (56), it is necessary that the condition
(63) fails to exist. g(K2) > 0 for all K 6= 0, as diffusion coefficients are positive and −(a11 +a22) > 0
from the stability of homogeneous steady state E∗. Thus, for diffusive instability we require that
h(K2) < 0 for some K 6= 0. Since h(K2) is a quadratic function of K2, therefore for h(K2) to

14



be negative for some K 6= 0, its minimum must be negative. The minimum of h(K2) reached at
K2 = K2

cr = −q2
2q1

.
We required

q2 =
hy∗

(b+ x∗)
d1 +

(
dx∗ − wαx∗y∗

(1 + αx∗)2(1 + βy∗)

)
d2 +

hy∗2(b+ 2x∗)

(b+ x∗)2
d12

+

(
dx∗2 − akx∗y∗

(1 + ky∗)2
− wx∗y∗(1 + 2αx∗ + αβx∗y∗)

(1 + αx∗)2(1 + βy∗)2

)
d21 < 0.

(65)

for feasible Turing threshold since Kcr is a real number. Also, h(K2
cr) < 0 provided

(a12d21y
∗ + a21d12x

∗ − a22(d1 + d12y
∗)− a11(d2 + d21x

∗))
2

− 4(d1d2 + d2d12y
∗ + d1d21x

∗)(a11a22 − a12a21) > 0.
(66)

i.e.,(
hy∗

(b+ x∗)
d1 +

(
dx∗ − wαx∗y∗

(1 + αx∗)2(1 + βy∗)

)
d2 +

hy∗2(b+ 2x∗)

(b+ x∗)2
d12 +

(
dx∗2 − akx∗y∗

(1 + ky∗)2

−wx
∗y∗(1 + 2αx∗ + αβx∗y∗)

(1 + αx∗)2(1 + βy∗)2

)
d21

)2

− 4(d1d2 + d2d12y
∗ + d1d21x

∗)det(JE∗) > 0.

(67)

Theorem 5.2. The necessary conditions for the occurrence of Turing instability of the system (56)
around E∗(x∗, y∗) are the followings:

dx∗ > wαx∗y∗

(1+αx∗)2(1+βy∗) ,

hy∗d1
(b+x∗) +

(
dx∗ − wαx∗y∗

(1+αx∗)2(1+βy∗)

)
d2 + hy∗2(b+2x∗)d12

(b+x∗)2 +
(
dx∗2 − akx∗y∗

(1+ky∗)2

−wx
∗y∗(1+2αx∗+αβx∗y∗)
(1+αx∗)2(1+βy∗)2

)
d21 < 0(

wαx∗y∗

(1+αx∗)2(1+βy∗)

)
d2 +

(
akx∗y∗

(1+ky∗)2 + wx∗y∗(1+2αx∗+αβx∗y∗)
(1+αx∗)2(1+βy∗)2

)
d21

> hy∗

(b+x∗)d1 + dx∗d2 + hy∗2(b+2x∗)
(b+x∗)2 d12 + dx∗2d21 + 2

√
(d1d2 + d2d12y∗ + d1d21x∗)det(JE∗).

(68)

We have considered d21 as bifurcation parameter, whose critical value d21 = dcr21 can be obtained
numerically by solving the condition h(K2

cr) = 0. The explicit expression of dcr21 is obtained as

dcr21 =
1

(a2
11x
∗2 − 2a11a12x∗y∗ + a2

12y
∗2)

(
a11a22d1x

∗ − 2a12a21d1x
∗ − a2

11d2x
∗

+a11a21d12x
∗2 + a12a22d1y

∗ + a11a12d2y
∗ − a12a21d12x

∗y∗ − a11a22d12x
∗y∗

+a12a22d12y
∗2 +

((
2a12a21d1x

∗ − a11a22d1x
∗ + a2

11d2x
∗ − a11a21d12x

∗2

−a12a22d1y
∗ − a11a12d2y

∗ + a12a21d12x
∗y∗ + a11a22d12x

∗y∗ − a12a22d12y
∗2)2

−(a2
11x
∗2 − 2a11a12x

∗y∗ + a2
12y
∗2)(a2

22d
2
1 + 4a12a21d1d2 − 2a11a22d1d2 + a2

11d
2
2

−2a21a22d1d12x
∗ − 2a11a21d12d2x

∗ + a2
21d

2
12x
∗2 + 2a2

22d1d12y
∗ + 4a12a21d12d2y

∗

−2a11a22d12d2y
∗ − 2a21a22d

2
12x
∗y∗ + a2

22d
2
12y
∗2)
) 1

2

)
.

(69)

Turing instability conditions in term of cross-diffusion coefficient d21 are summarized in the propo-
sition below.

15



Proposition 1. The homogeneous equilibrium E∗(x∗, y∗) remains stable for small amplitude hetero-
geneous perturbations if −(a11 + a22) > 0, a11a22 − a12a21 > 0 and d21 < dcr21 and becomes unstable
if −(a11 + a22) > 0, a11a22 − a12a21 > 0 and d21 > dcr21.

Example 5.1. In this example, we have explored the above phenomenon numerically. Parameter
values are taken as

a = 1.4, k = 0.01, d = 0.8, w = 2.29, α = 0.09, β = 0.6, s = 0.2,

h = 0.15, b = 0.3, d1 = 1, d12 = 1, d2 = 1.
(70)

The critical value of d21 is obtained as dcr21 = 12.782416897982463. At this value dx∗ = 0.218442 >
wαx∗y∗

(1+αx∗)2(1+βy∗) = 0.0280853, d1d2 + d1d
cr
21x
∗ + d12d2y

∗ = 5.25433 > 0,

hy∗d1
(b+x∗)+

(
dx∗ − wαx∗y∗

(1+αx∗)2(1+βy∗)

)
d2+hy∗2(b+2x∗)d12

(b+x∗)2 +
(
dx∗2 − akx∗y∗

(1+ky∗)2 −
wx∗y∗(1+2αx∗+αβx∗y∗)

(1+αx∗)2(1+βy∗)2

)
d21 =

−1.55863 < 0 and
(

wαx∗y∗

(1+αx∗)2(1+βy∗)

)
d2+

(
akx∗y∗

(1+ky∗)2 + wx∗y∗(1+2αx∗+αβx∗y∗)
(1+αx∗)2(1+βy∗)2

)
d21 = 2.96512 = hy∗

(b+x∗)d1+

dx∗d2+hy∗2(b+2x∗)
(b+x∗)2 d12+dx∗2d21+2

√
(d1d2 + d2d12y∗ + d1d21x∗)det(JE∗). We have shown Re(λ(K2))

vs. K plot and h(K2) vs. K plot for d21 = 11, 12.782417 and 13.5 (cf. Figs. 2(a) and 2(b)). When
d21 = 11 < dcr21, Re(λ(K2)) < 0 and h(K2) > 0 for all K 6= 0, thus stable homogeneous steady
state E∗(x∗, y∗) = (0.273052, 0.764069) of the system (56) remains stable. When d21 = 13.5 > dcr21,
Re(λ(K2)) > 0 and h(K2) < 0 for some K 6= 0. Thus, cross-diffusion-driven instability occurs for
d21 = 13.5 > dcr21.

Example 5.2. In this example, we have illustrated the effect of fear on the cross-diffusion induced
instability. For this, we have taken d21 = 12.8 > dcr21 form the instability region and other parameters
are same as given in Example 5.1, except the level of fear k. At k = 0.3, Re(λ(K2)) > 0 and
h(K2) < 0 for some values of K 6= 0 i.e., system remains unstable (cf. Figs. 3(a) and 3(b)).
Increasing the value of k to 0.5 and 1, it is observed that at k = 1, Re(λ(K2)) < 0 and h(K2) > 0
for all K i.e., system becomes stable (cf. Figs. 3(a) and Figs. 3(b)). Thus, increasing the value of
k, cross-diffusive induced instabilities goes to stable dynamics. Thus, level of fear k has a stabilizing
effect on the spatial dynamics of the system (56).

Again, we have plotted λ(K2)) vs. K and h(K2) vs. K plots for three different level of fear
k = 0.001, 0.05, 0.1 (cf. Figs. 3(c) and 3(d)). Initially at k = 0.001, Re(λ(K2)) < 0 and
h(K2) > 0 for all values of K, i.e., system (56) is stable . Increasing the value of k to 0.05 and
0.1, Re(λ(K2)) > 0 and h(K2) < 0 for some values of K (cf. Figs. 3(c) and 3(d)) i.e., system is
unstable. This implies that stable dynamics of system goes to diffusive instability state with increase
in the level of fear k. Therefore, level of fear k has a destabilizing effect on the spatial dynamics of
the system (56).

From numerical experiment, we have obtained that k = kcr = 0.22 is the critical value of k.
For k > kcr, increasing value of k has stabilizing effect and for k < kcr, increasing value of k has
destabilizing effect.

Remark 1. In our previous works with self-diffusion [24] and linear cross-diffusion [39], we have
shown that fear level k has stabilizing impact on the spatial dynamics. Whereas, here with nonlinear
cross-diffusion, we have found that fear level k has both stabilizing and destabilizing impact on the
spatial dynamics.

6. Numerical simulations

6.1. Simulation results for the temporal system

In this subsection, we have performed the numerical simulations to better understand the system
dynamics. Simulation experiments are carried out using the Matlab (R2013a) and Matcont toolbox
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for the parameter values

a = 1.4, k = 0.01, d = 0.8, w = 2.29, α = 0.09, β = 0.6, s = 0.2, h = 0.15, b = 0.3, (71)

at which the model system (2) exhibits the stable dynamics (cf. Figs. 4(a) and 4(b)).
Next, we change the values of α (handling time of prey by the predators) and β (value of mutual

interference among the predators) to α = 2.4 and β = 0.002, other parameters remain unaltered.
Now, the system (2) is unstable showing the periodic oscillations (cf. Figs. 5(a) and 5(b)). In Fig.
6(a), we have presented the bifurcation diagram of the system (2) taking k as control parameter.
In Figs. 6(b) and 6(c), we have shown the prey and predator population densities with change
in the value of fear level k. It is observed that oscillatory dynamics settle down to stable state via
supercritical Hopf-bifurcation as first Lyapunov coefficient =−6.750548e−1 < 0. Also, the population
density of prey x and predator y is decreasing with increase in fear level k.

Remark 2. Periodic oscillations of the system (2) goes to stable dynamics with increase in fear level
k. Thus, fear level k has a stabilizing effect on the temporal dynamics. Also, population densities
of prey and predator decreases with an increase in the value of level of fear k. Biologically, as
level of fear k increases, it stimulates the costly defensive strategies in prey which ultimately cost
its production. As prey is the most favourite food of predator so predator population density also
decreases correspondingly.

6.2. Simulation results for the delay system

System (3) exhibits the stable dynamics around the interior equilibrium E∗(0.273052, 0.764069)
in the absence of delay (cf. Figs. 4(a) and 4(b)). Now, we will investigate the effect of gestation delay
τ and fear level k on the dynamics of delayed system (3). In the analysis section, we have shown that
delayed model (3) undergoes Hopf-bifurcation at τ = τ0 = 1.89157, calculated using the formula
given in Section 4. We have presented the time series and phase portrait taking τ = 1.82 < τ0 and
τ = 1.94 > τ0 (cf. Figs. 7(a),(b) and 7(c),(d)). Figs. 7(a) and 7(b) show that the system (3) is stable
for τ = 1.82 < τ0 = 1.89157 and becomes unstable (shows limit cycles) for τ = 1.94 > τ0 = 1.89157

(cf. Figs. 7(c) and (7)(d)). The transversality condition
[
d(Re(λ(τ)))

dτ

]
τ=τ0=1.89157

= 0.178004 6= 0

is satisfied. Next, we have plotted the bifurcation diagram with respect to gestation delay τ in the
interval τ ∈ [1.5, 2.25] (cf. Fig. 8). It is found that if the gestation delay τ increases gradually,
then the interior equilibrium E∗ loses its stability at τ = τ0 = 1.89157 and system experiences the
Hopf-bifurcation.

The formulae to determine the direction, stability, and period of bifurcating period solutions
arises through Hopf-bifurcation at τ = τ0 = 1.89157 are derived in the analysis section. Here,
we have numerically calculated these values as C1(0) = −8.2875 − 6.82186i, µ2 = 46.5579 > 0,
β2 = −16.575 < 0 and T2 = 8.13517 > 0, at τ0 = 1.89157. µ2 = 46.5579 > 0, implies that
Hopf-bifurcation is supercritical. β2 < 0, ensues the stability of limit cycles arising through Hopf-
bifurcation and their period increases as T2 = 8.13517 > 0. In Fig. 9, we have shown the two
solution trajectories of the system (3) starting with different initial conditions. It is observed that
they are converging to the same limit cycle, which indicates that the bifurcating periodic solutions
are stable for τ = 1.94 > τ0.

Next, to illustrate the effect of fear on the delay system (3), we have plotted the bifurcation
diagrams taking level of fear (k) as control parameter (cf. Figs. 10(a) and 10(b)). Other parameter
values are same as given in (71) with time delay τ = 1.98 > τ0. We have observes that the oscillatory
behaviour of the system (3) is settled down to the stable dynamics with increase in the value of fear
level (k). Time series and phase diagrams are also plotted taking fear level k = 0.5 and k = 0.7
(Figs. 11(a) and 11(b)). At k = 0.5, τ = 1.98 > τ0, system (3) exhibits a limit cycle (unstable) and
increasing fear level k to k = 0.7, τ = 1.98 > τ0 system (3) becomes stable.
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Remark 3. With increase in fear level (k), the oscillatory behaviour of the system (3) induced by
gestation delay settle down to stable dynamics. Thus, the fear level (k) has a stabilizing impact on
the delay induced destabilization.

6.3. Simulation results for the spatiotemporal system

In this subsection, we have presented the series of numerical simulations to explore the spa-
tiotemporal dynamics of the system (56). Temporal part of the model system (56) is solved by using
Euler’s methods and five-point stencil finite difference scheme is used for diffusion part. All the
numerical simulations employ the zero-flux boundary conditions on the domain of size 100 × 100.
Space step and time step are taken as ∆h = 1 and ∆t = 0.01. Initial conditions are taken as small
heterogeneous perturbations around the homogeneous steady state E∗. In all patterns, red color
denotes the high population density and the blue color denotes the low population density of species.
In these simulations, we have taken sufficiently large time to ensure the stationary patterns. We
have verified the obtained spatial structures with different ∆h and ∆t.

In Example 5.1, we have shown that cross-diffusion induced Turing instability occurs in the
system (56) for d21 = 13.5 > dcr21. Here, we investigate the spatial patterns due to Turing instability
in the spatial system (56). At d21 = 13.5, remaining parameters are same as given in Example
5.1, hexagonal hot spot and cold spot patterns are observed (cf. Figs. 12(a) and 12(b)). This
represent that, high density of prey species lies on the isolated hexagonal regions and remaining
domain consists low density of prey species, whereas high density of predator species lies on the
whole domain except the isolated hexagonal patches of low density.

Remark 4. In these patterns high density regions of prey correspond to low density regions of
predator. Thus, both populations are negatively correlated.

In Fig. 13, we present the evolution process of hexagonal hot spot patterns shown in Fig. 12(a)
taking time t = 0, 100, 300, 420, 460, 1000 days. Firstly, at t = 300 days, some hot spots appear
in domain (cf. Fig. 13(c)) whose number increase at t = 420 days (cf. Fig. 13(d)). At t = 460
days, almost half domain is occupied with hexagonal hot spot patterns (cf. Fig. 13(e)) and finally
at t = 1000 days hexagonal hot spot patterns spread over the entire domain (cf. Fig. 13(f)).

The effect of cross-diffusion coefficient of prey d12 on the pattern dynamics has been investigated
in Fig. 14. For this, we have taken d2 = 0.01 and d21 = 13.5., other system parameters are same as
given in Example 5.1. At d12 = 0.8, hexagonal hot and cold spots appear (cf. Figs. 14(a) and (b)).
These patterns goes to spots and stripes mixture at d12 = 0.01 (cf. Figs. 14(c) and (d)). Further,
decreasing d12 to 0.001, labyrinthine patterns are obtained (cf. Figs. 14(e) and (f)).

7. Discussions and conclusions

It has been observed that predation threat significantly impact the phenotype and fitness of
animals [44, 45, 13]. McCauley et al. [46] have reported that dragonflies survivorship reduced
remarkably due to the mere presence of piscine predators [46]. Zanette et al. [16] have reported
the 40% reduction in the number of offspring of song sparrows due to fear of predator alone. These
experimental works suggested that fear is a crucial drive for changes in nature and elicits a vast array
of responses spanning the physiology, morphology, and behavior of scared organisms [47, 48, 12, 49].

The cost of fear in the mathematical model of predator-prey interactions is first introduced
by Wang et al. [17]. After this work, various studies have been carried out to understand the
impact of fear on the predator-prey interactions and its trophic cascades on the lower trophic levels
[20, 23, 39, 30, 29, 40]. In the present work, we have incorporated the cost of fear in the modified
LG model with C-M functional response. We have studied the boundedness, equilibria, and stability
analysis of the proposed system. It is found that periodic solutions of the temporal system go to
a stable state with an increase in the fear level k. Also, prey and predator population densities
decrease with an increase in the value of k.
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We have incorporated the gestation delay in the proposed system for a more realistic formulation.
The local stability of the delayed system is examined via Hopf-bifurcation. A critical value of
gestation delay (τ) is obtained as τ0 = 1.89157. The system is stable if τ < τ0, Hopf-bifurcation
occurs at τ = τ0 and system becomes unstable and remain unstable if τ > τ0 (cf. Figs. 7 and
8). We have also derived the formulae for direction, stability, and period of bifurcation periodic
solutions. It is obtained that Hopf-bifurcation occurring at τ = τ0 = 1.89157 is supercritical (as
µ2 > 0), bifurcating periodic solutions arising through Hopf-bifurcation are stable (as β2 < 0) and
their period increases with time (as T2 > 0). To explore the impact of fear, we have plotted the
bifurcation diagram with respect to the level of fear k, taking τ = 1.98 from its instability region
(cf. Fig. 10). With the increase in the value of k, the unstable dynamics of the system go to the
stable state. Thus, fear level k has a stabilizing impact on the delay induced destabilization.

In this work, we have also studied the spatiotemporal extension of the proposed system (2)
incorporating the self and nonlinear cross-diffusion terms. Turing instability conditions are derived
and explored in Example 5.1. Analytical expression of Turing bifurcation threshold dcr21 is obtained,
whose numerical value is calculated as dcr21 = 12.782417. Hexagonal hot and cold spot patterns
appear for d21 = 13.5 > dcr21 (12). The evolution process of these patterns is shown in Fig. 13. It is
found that the cross-diffusion coefficient of prey d12 also has a significant effect on pattern dynamics.
Hexagonal spot patterns go to spots and stripes mixture and then to labyrinthine patterns with the
change in the value of d12 (cf. Fig. 14). It is noticed that high-density regions of the prey population
correspond to low-density regions of the predator population, this exhibits the negative correlation
between the species. Another important observation is that fear level k has both stabilizing and
destabilizing impact on nonlinear cross-diffusion induced Turing instability.

In this work, we have explored the effect of fear on temporal, delayed, and spatiotemporal
dynamics of the predator-prey system. Nonlinear cross-diffusion is incorporated which is rarely
investigated in the predator-prey model with fear effect. Our results may enrich the understanding
of predator-prey system with the cost of fear.
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Appendix

p1 = −d+ wαy∗

(1+αx∗)3(1+βy∗) , p2 = − ak
(1+ky∗)2 −

w
(1+αx∗)2(1+βy∗)2 ,

p3 = ak2x∗

(1+ky∗)3 + wβx∗

(1+αx∗)(1+βy∗)3 , p4 = − hy∗2

(x∗+b)3 , p5 = 2hy∗

(x∗+b)2 , p6 = − h
(x∗+b) .

Determination of values of E1 and E2

From the definition of A and Eqs. (45), (46) that∫ 0

−1

W20(θ)dη(θ) = 2iω0τ0W20(0)−H20(0), (72)

and ∫ 0

−1

W11(θ)dη(θ) = −H11(0), (73)

where η(θ) = η(0, θ). From Eqs. (41) and (43), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ0

(
p1 + p2α2 + p3α

2
2

(p4 + p5α2 + p6α
2
2)e−2iω0τ0

)
(74)

and

H11(0) = −g11q(0)− ḡ11q̄(0) + τ0

(
2p1 + 2p2Re(α2) + 2p3ᾱ2α2

2p4 + 2p5Re(α2) + 2p6ᾱ2α2

)
. (75)
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Using Eqs. (51) and (74) in Eq. (72) and noticing that{
iω0τ0I −

∫ 0

−1

eiω0τ0θdη(θ)

}
q(0) = 0, (76)

and {
−iω0τ0I −

∫ 0

−1

e−iω0τ0θdη(θ)

}
q̄(0) = 0, (77)

we obtained that{
2iω0τ0I −

∫ 0

−1

e2iω0τ0θdη(θ)

}
E1 = 2τ0

(
p1 + p2α2 + p3α

2
2

(p4 + p5α2 + p6α
2
2)e−2iω0τ0

)
, (78)

This leads to(
2iω0 − a1 −a2

−b1e−iω0τ0 2iω0 − s− b2e−iω0τ0

)
E1 = 2

(
p1 + p2α2 + p3α

2
2

(p4 + p5α2 + p6α
2
2)e−2iω0τ0

)
, (79)

Solving above system for E1, we obtain

E
(1)
1 =

2

Ã

∣∣∣∣∣ p1 + p2α2 + p3α
2
2 −a12

(p4 + p5α2 + p6α
2
2)e−2iω0τ0 2iω0 − s− b22e

−iω0τ0

∣∣∣∣∣ ,

E
(2)
1 =

2

Ã

∣∣∣∣∣ 2iω0 − a11 p1 + p2α2 + p3α
2
2

−b21e
−iω0τ0 (p4 + p5α2 + p6α

2
2)e−2iω0τ0

∣∣∣∣∣ ,
where

Ã =

∣∣∣∣∣ 2iω0 − a11 −a12

−b21e
−iω0τ0 2iω0 − s− b22e

−iω0τ0

∣∣∣∣∣ .
Similarly, substituting Eqs. (52) and (75) in Eq. (72), we obtain(

−a11 −a12

−b21e
−iω0τ0 −s− b22e

−iω0τ0

)
E2 =

(
2p1 + 2p2Re(α2) + 2p3ᾱ2α2

2p4 + 2p5Re(α2) + 2p6ᾱ2α2

)
,

and hence

E
(1)
2 =

2

B̃

∣∣∣∣∣p1 + p2Re(α2) + p3ᾱ2α2 −a12

p4 + p5Re(α2) + p6ᾱ2α2 −s− b22e
−iω0τ0

∣∣∣∣∣ ,

E
(2)
2 =

2

B̃

∣∣∣∣∣ −a11 p1 + p2Re(α2) + p3ᾱ2α2

−b21e
−iω0τ0 p4 + p5Re(α2) + p6ᾱ2α2

∣∣∣∣∣ ,
where

B̃ =

∣∣∣∣∣ −a11 −a12

−b21e
−iω0τ0 −s− b22e

−iω0τ0

∣∣∣∣∣ .

Tables and Figures
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Table 1: Biological meanings of the parameters used in the system (1).

Parameters Definitions

a Intrinsic growth rate of prey population
d Death rate of prey due to intra-specific competition
w Effect of capture rate
α Handling time of prey by the predator
β The magnitude of interference among predators
s Growth rate of predator y
h Maximum value which per capita reduction rate of y can attain
b Extent to which the environment provides protection to species y

Table 2: Number of possible positive real roots of Eq. (9)

Cases P4 P3 P2 P1 P0 Number
of sign
changes

Number of possible
positive real roots
(E∗)

1 + + + + + 0 0

2 + + − + + 2 0, 2

3 + + + − + 2 0, 2

4 + + + + − 1 1

5 + + − − + 2 0, 2

6 + + + − − 1 1

7 + + − + − 3 1, 3

8 + + − − − 1 1
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Figure 1: Phase portrait of the system (2) in x − y plane with parameter set a = 1.4, k = 0.01, d = 0.8, w =
2.36, α = 1, β = 0.02, s = 0.1, h = 0.15, b = 0.3.
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Figure 2: (a) Re(λ(K2)) vs. K plot. (b) h(K2) vs. K plot for different d21. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Figure 3: (a) Graph of Re(λ(K2)) vs. K. (b) h(K2) vs. K for k = 0.3, 0.5, 1. (c) Graph of Re(λ(K2)) vs. K. (d)
h(K2) vs. K for k = 0.001, 0.05, 0.1. d21 = 12.8 and other parameters remain same as given in Example 5.1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 4: (a) Time series plot for prey and predator populations, (b) phase portrait in xy-plane for the system (2).
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Figure 5: (a) Time series at α = 2.4 and β = 0.002, periodic oscillations. (b) Phase diagram at α = 2.4 and β = 0.002,
limit cycle. Other parameter are same as given in (71).
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Figure 6: (a) Bifurcation diagram of the system (2) taking level of fear k as a control parameter. (b),(c) Prey and
predator biomass as a function of fear level k.
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Figure 7: Time series and phase diagram of the system (3) at (a),(b) τ = 1.82 < τ0 = 1.89157, stable focus, (c),(d)
τ = 1.94 > τ0 = 1.89157, limit cycle. System parameters are same as given in (71).
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Figure 8: Bifurcation diagram of system (3) w.r.t. gestation delay τ in the range τ ∈ [1.5, 2.25]. Showing that
the system (3) is stable for τ < τ0 = 1.89157 and unstable for τ > τ0 = 1.89157. Hopf-bifurcation occurs at
τ = τ0 = 1.89157.

28



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Prey

P
re

d
a
to

r

Figure 9: Two solution trajectories starting with different initial conditions for τ = 1.94, other parameter values are
same as given in (71).
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Figure 10: Bifurcation diagram of prey x and predator y w.r.t. fear level (k) in the range k ∈ [0, 0.9], taking gestation
delay τ = 1.98 > τ0.
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Figure 11: (a),(b) Time series, phase plot of the system (3) at k = 0.5 τ = 1.98, showing oscillatory behaviour. (c),(d)
Time series, phase plot of the system (3) at k = 0.7, showing stable dynamics. Other parameters are same as taken
in (71).
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Figure 12: (a),(b)Snapshots of Turing patterns for parameters (70) with d21 = 13.5 at 2000 days.
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Figure 13: Snapshots of contour pictures of the time evolution of prey species at (a) t = 0 (b) t = 100 (c) t = 300 (d)
t = 420 (e) t = 460 (f) t = 1000 days. For system parameters (70) with d21 = 13.5.
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Figure 14: Snapshots of Turing patterns for different values of d12 at 1500 days (a) d12 = 0.8 (b) d12 = 0.01 (c)
d12 = 0.001. Here d2 = 0.01, d21 = 13.5 and remaing paraameters are same as given in Example 5.1.
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