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Appendix S1 Motivation of our algorithm for sampling species7

We explain here in detail why Eqs. (3) and (4) are plausible approximations for sampling the interaction8

strengths of new species entering our model community.9

Under quite general conditions it is possible to approximate the dependence of attack rates on the10

traits of consumers and resources in the form (Rossberg et al., 2010; Nagelkerke & Rossberg, 2014;11

Rossberg, 2013, Ch. 8):12

ajk ≈ a0 exp

[
v
(j)
0 + f

(k)
0 −

D∑
k=1

σk
2

(
v
(j)
k − f

(k)
k

)2]
, (S1)

withD denoting the dimensionality of trophic niche space and v
(j)
0 , . . . , v

(j)
D and f

(k)
0 , . . . , f

(k)
D vulnerability-13

and foraging traits of resources and consumers, respectively, which can be computed as functions of14

observable biological traits (Nagelkerke & Rossberg, 2014). A similar representation has been proposed15

by Rohr et al. (2010). The constant a0 has dimensions of attack rates and σk = ±1. There is some16

ambiguity in how to chose a0, σk and the functions mapping observed traits to trophic traits. However,17

when imposing a condition the mean of (v
(j)
0 )2 over the entire resource pool j is minimised, these18

ambiguities are resolved up to rigid geometric transformations of the vectors v(j) = (v
(j)
1 , . . . , v

(j)
D ) and19

f (k) = (f
(j)
1 , . . . , f

(j)
D ) (Rossberg, 2013, Ch. 8). With the mean of (v

(j)
0 )2 minimised, we shall approximate20

v
(j)
0 = 0.21

For large D and sufficient statistical independence of the components of v(j) and f (k) (Rossberg,22

2013, Ch. 11), one can approximate the sum in Eq. (S1) for randomly sampled consumer-resource pairs23

(j, k) by a normal distribution. Denoting the mean of this normal distribution by µ and its variance by24

σ2, and defining ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (4).25

All traits of consumers and resources can undergo mutations. However, compared to the evolution26

of foraging traits f
(k)
0 , . . . , f

(k)
D , the resulting evolution of vulnerability traits v

(j)
0 , . . . , v

(j)
D is known to27

be slow (Rossberg et al., 2006; Bersier & Kehrli, 2008; Eklöf & Stouffer, 2016)—a median of 25 times28

slower in an analysis of Rossberg et al. (2006). It shall here be disregarded.29

Mutations of any observable biological traits will affect several foraging traits f
(k)
0 , . . . , f

(k)
D . The30

question whether this increases of decreases short-term fitness (Goodnight et al., 2008) in a given31

community depends not only on all traits f
(k)
0 , . . . , f

(k)
D of the focal consumer k but also on the sets of32

resources and competitors in the community. Even when a mutation leads to an increase in short-term33
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fitness, the change in f
(k)
0 associated with this mutation might be positive or negative, provided niche34

space dimensionality D is not too low, since the associated change in f
(k)
0 is just one of many random35

contributions to the change in short-term fitness. As a result, mutants arriving at the focal patch from36

a source patch may have f
(k)
0 values that can be higher or lower than the f

(k)
0 of the propagule that37

founded the population in the source patch. Because smaller f
(k)
0 correspond to consumers that, overall,38

forage less effectively than consumers with larger f
(k)
0 , and low effectiveness is mechanically easier to39

achieve than high effectiveness, one must plausibly assume that degeneration of traits through mutations40

(Pomiankowski et al., 1991) leads to a decay of f
(k)
0 on average unless this is counteracted by selection41

pressure. Recalling that ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (3).42

We assume that the relevant species pools are large and diverse, such that different patches have in43

effect statistically independent, typically non-overlapping species compositions. The random variables44

ξjk in Eq. (4) are therefore sampled anew as a propagule arrives at the focal patch, independent of45

a consumer’s interactions with the residents of its source patch. Only the inheritance of ak must be46

accounted of.47

As a caveat, we note that in reality vulnerability traits do not cover the D-dimensional trophic traits48

space evenly, e.g. because these traits carry phylogenetic signal (related species have similar consumers,49

Bersier & Kehrli 2008). Then foraging traits other than f
(k)
0 might contribute to long-term fitness as50

well. For simplicity, we disregard this complication in our model.51
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Appendix S2 Derivation of the sub-models of the deconstructed52

formulation53

We provide the rationale and outline the derivation of the four criteria Eqs. (5-9) driving invasions and54

extirpations in the deconstructed model formulation.55

The invadability criterion, Eq. (5), predicts invadability when disregarding the presence of all but56

the focal consumer in the dimensionless full model, Eq. (2). Formally, it is obtained by computing the57

equilibrium state of Eq. (2) for SC = 1 and BC
k = 0 (with k = 1), which is BR

j = 1 for 1 ≤ j ≤ SR, and58

then extracting the condition that, by Eq. (2b), this equilibrium is unstable such that the consumer can59

invade:
∑SR

j=1HjkB
R
j − 1 =

∑SR

j=1Hjk − 1 > 0.60

The condition for the overexploitation of resource j during the expansion phase of an invading61

consumer k, Eq. (7), is obtained by analysing the dimensionless full model, Eq. (2), for the case of62

only one consumer and one resource: SC = 1, SR = 1 (with j = k = 1). We consider again the situation63

where the consumer is initially absent BC
k = 0 and the resource at equilibrium BR

j = 1, dBR
j /dt = 0. Then64

the consumer invades at low abundance. To estimate the minimum of BR
j attained during the consumer65

invasion, i.e. during the transient before a new equilibrium is reached, we approximate dynamics by66

disregarding the density dependence of resource production expressed by the term −BR
j in Eq. (2a).67

This approximation is justified because we are interested in situations where BR
j falls below Mmin � 1.68

It reduces the model to the classical Lotka-Volterra predator-prey equations69

dBR
j

dt
= s

[
1−HjkB

C
k

]
BR
j , (S2a)

dBC
k

dt
= ρk

[
HjkB

R
j − 1

]
BC
k . (S2b)

Evaluating the conservation law known for this system (Lotka, 1920) for the initial conditions BR
j = 1,70

dBR
j /dt = 0, one finds that at its minimum BR

j satisfies ln(BR
j ) = −Hjk(1 − BR

j ) (Rossberg, 2013,71

Sec. 20.3.3). Since we are interested in situations where the minimum is deep (BR
j < Mmin � 1), this72

condition can be approximated as ln(BR
j ) = −Hjk. It follows that BR

j falls below Mmin during consumer73

k’s invasion if ln(Mmin) > −Hjk, which is equivalent to Eq. (7).74

The conditions for consumer-mediated competitive exclusion, for exploitative competitive exclusion75

and for Pyrrhic competition all derive directly from exact equilibrium solutions of the dynamic model.76

The general multispecies model, Eq. (2), is well studied (MacArthur, 1970, 1972; Case & Casten, 1979;77

Chesson, 1990). To write down its equilibrium solution, let H be the matrix with entries Hjk and define78

the competition matrix as the matrix with entries79

Ckl =

SR∑
j=1

HjkHjl, that is C = HTH. (S3)

Denote by s the vector of intrinsic consumer growth rates80

sk = Rk − 1, (S4)

with Rk =
∑SR

j=1Hjk defined as in the main text. The vector bC of consumer population biomasses BC
j81

at equilibrium is then given by82

bC = C−1s. (S5)
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and that of resource population biomasses BR
j by83

bR = 1−HBC. (S6)

In the case of only one consumer (SC = 1, k = 1), the biomass of the resource j is therefore BR
j =84

1 − Hjk(Ckk)−1sk. The resource with the lowest biomass is that with the largest Hjk, i.e., the main85

resource of k. Its biomass is negative, implying resource extinction (Holt, 1977), if86

Ckk < Hjksk. (S7)

The criterion for consumer-mediated competitive exclusion, Eq. (8), spells out this condition.87

For the two-consumer (Sc = 2) problem, we have, with k = 1 and l = 2,88

C−1 =
1

CkkCll − C2
kl

(
Cll −Ckl
−Ckl Ckk

)
. (S8)

Combining Eqs. (S5) and (S8), we find that (for Sc = 2) BCk < 0 if89

Cllsk − Cklsl < 0 (S9)

or equivalently90

sk <
Cklsl
Cll

. (S10)

Our criterion of exploitative competitive exclusion, Eq. (6) spells out this condition.91

Now, assume that Eq. (S10) and the corresponding condition with l’s and k’s role reversed both fail92

to be satisfied. This alone does not guarantee coexistence of all species. Combining Eqs. (S5), (S6)93

and (S8), one can see that the equilibrium abundance of resource BR
i is predicted to be negative if94

1 < Hik
Cllsk − Cklsl
CkkCll − C2

kl

+Hil
Ckksl − Cklsk
CkkCll − C2

kl

. (S11)

This can be re-arranged to95

CkkCll − C2
kl < sk (HikCll −HilCkl) + sl (HilCkk −HikCkl) , (S12)

and our condition for Pyrrhic competition, Eq. (9), spells out this inequality.96

We now outline how these conditions can efficiently be evaluated for large SR and SC. The most time97

consuming step is the computation of C in Eq. (S3), as (for practical purposes) the number of operations98

this requires increases as O(S2
CSR) with system size. All remaining calculations can be done using just99

O(S2
C) or O(SCSR) operations.100

Denote, for any square matrix A, by diag(A) the vector formed by its diagonal elements, and by101

Diag(v), for any vector v, the diagonal matrix with v on the diagonal. We can evaluate the SC × SC102

matrix Φ with entries Φkl given by the left hand side of Eq. (S9) as103

Φ = s diag(C)T −C Diag(s). (S13)

To test for extirpations, set the diagonal of Φ to exactly zero to remove small numerical errors. Extirpation104

of consumer k by our (simplified) criterion follows if row k of Φ constrains negative elements.105
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The SC×SC matrix D with entriesDkl = CkkCll−C2
kl, containing the determinants of all two-consumer106

competition problems (the denominators in Eqs. (S8), (S11)), can be computed as107

D = diag(C) diag(C)T −C ◦C, (S14)

with ◦ denoting elementwise multiplication. After finding for each consumer k the index m(k) of its108

main resource, one can constructed the SC × SC matrix M with entries109

Mkl = Hm(k)l. (S15)

Using this, we obtain the SC × SC matrix ∆ with entries given by the difference between left and right110

hand side of Eq. (S12) for the main resource of each consumer k as111

∆ = D−Diag(diag(M))Φ−M ◦ΦT . (S16)

To test for extirpations, set the diagonal of ∆ to exactly zero to remove small numerical errors.112

Extirpation of the main resource of consumer k by our (simplified) criterion follows if row k of ∆113

contains negative elements.114

By striking a new balance between code complexity, speed, and accuracy in the multi-objective115

optimisation problem of finding fast, simple and accurate models, our deconstructed formulation carves116

out emergent properties (sensu Rossberg, 2007) of the full model, Eq. (2), e.g., those shown in Figs. 2117

and 3.118
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Appendix S3 The evolutionary steady-state condition including119

mutation bias120

We derive the evolutionary steady state condition for base attack rate, Eq. (11).121

To understand the effect of mutation bias, we invoke the Price equation (Price, 1972). It predicts122

that the expected rate of evolutionary change of the a trait q is given by123

dEq/dt = cov[f(q), q] + Eq̇, (S17)

with f(q) denoting the invasion fitness (for a given environment) of lineages of type q, and the last124

term representing the mutation bias (the mean inherent rate of change of traits). For trait values q∗125

corresponding to evolutionary steady states, both sides of Eq. (S17) must evaluate to zero. Following126

Page & Nowak (2002), we expand f(q) to first order at q = q∗. Combined with the population-dynamical127

equilibrium condition f(q∗) = 0, this leads to 0 = f ′(q∗) var q + Eq̇, or equivalently128

f ′(q∗) = − Eq̇

var q
. (S18)

This condition generalises the conventional criterion for evolutionary singular strategies, f ′(q∗) = 0, to129

situations with mutation bias.130

To apply Eq. (S18) to our models, we set q = ln a and131

Eq̇ =
ln γ0
L∗

, (S19)

where L∗ is the mean lifetime of populations in the community. With time measured in units of consumer132

additions and considering that consumer richness remains approximately constant in the steady state,133

L∗ = S−1C . The standing mutational variance var q = var(ln a) is obtained from the distribution of a over134

the simulation steady state.135

We approximate steady-state invasion fitness, i.e. the mean inherent rate of increase (f(q) > 0) or136

decrease (f(q) < 0) of the number of populations of type q in the simulation steady state, as f(q) ≈137

ln[R(a)]/L(a), where R(a) is the mean number of populations that inherit their base attack rate via138

Eq. (3) from a population with base attack rate a (the “mean lifetime reproductive success”), and L(a)139

is the mean lifetime of populations with base attack rate a. With a∗ representing the geometric mean140

of a over the simulation steady state, such that ln a∗ is the arithmetic mean of ln a, we expect that141

R(a∗) = 1. This leads to142

f ′(q∗) ≈ d{ln[R(a)]/L(a)}
d ln a

∣∣∣∣
a=a∗

=
1

L(a)

d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

≈ 1

L∗
d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

. (S20)

Putting Eqs. (S19) and (S20) into Eq. (S18) and multiplying both sides with L∗ yields Eq. (11).143
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Appendix S4 Mechanisms determining “birth rate”144

To derive an analytic representation of the dependence of birth rate b(a) of a resident consumer on base145

attack rate a, we must account for three elements common to both model formulations:146

1. The mutation step, Eq. (3), determining the new consumer’s based attack rate from that of the147

resident.148

2. The sampling of the new consumer’s attack rates according to Eq. (4), and the test whether it can149

invade.150

3. The fact that time is measured in numbers of successful consumer invasions.151

Crucial is the probability of successful invasion in 2. We begin with an analysis of this element, adding152

subsequently considerations of 1 and 3.153

Competitive exclusion by a resident consumer according to Eq. (6) always implies an inability to154

invade according to Eq. (5), so that (for SC > 0) only Eq. (6) needs to be considered. However, Eq. (5)155

can be understood as a correction of the invadability criterion, Eq. (5). To see this, re-arrange Eq. (6)156

as157

SR∑
j=1

Hjk

[
1−Hjl

∑SR

i=1Hil − 1∑SR

i=1H
2
il

]
− 1 < 0. (S21)

The term in square brackets represents the population biomass (in units of K) that resource j would158

have if l was the only extant consumer. The deconstructed formulation ensures that, at the end of a159

model iteration, no extant resource satisfies the criterion for consumer-mediated competitive exclusion,160

Eq. (8) and all extant consumers satisfy the simple invadability criterion, Eq. (5). These loop invariants161

guarantees that the value of the expression in brackets in Eq. (S21) lies between 0 and 1 for all k and l.162

Satisfaction of Eq. (S21) therefore implies violation of Eq. (5).163

Because there is no mechanism active in the model that would favours values of the expression in164

square brackets that are particularly close to zero (see also Fig. S1), most of the variation in the terms165

of the sum over j is due to the log-normal distribution of the invader’s attack rates Hjk. The presence166

of competitors merely moderates the effect of this variation. It can be represented by substituting the167

square bracket by a suitable constant 0 < β < 1: the fitting parameter introduced in the main text.168

The sum over j in Eq. (S21) can then be written as α0akβ
∑SR

j=1 e
σξjk . The distribution of the169

sum in this last expression is, for a given number of resources SR, often well approximated by a single170

log-normal distribution with suitable choices for mean µSR ≈ σ
√

2 lnSR and standard deviation σSR ≈171

σ/
√

1 + 2 lnSR of the logarithm (Rossberg et al., 2011). (We estimated µSR and σSR numerically form172

10,000 samples of log-normal sums, which is more accurate.)173

From this log-normal approximation, the invasion probability for species with given base attack rate174

ak is obtained as175

Pinv(ak) = Φ

(
ln(α0βak) + µSR

σSR

)
, (S22)

with Φ(x) denoting the cumulative standard normal distribution function. For the full model, the same176

functional form as in Eq. (S22) can be chosen based on the same rationale: compared to the variation177

in of link strengths, the variation in resource biomasses is small.178

Denote by P ∗inv(ar) the probability for the “offspring” of resident species r to invade successfully. The179

log-normal approximation for the sum in α0akβ
∑SR

j=1 e
σξjk used above combines seamlessly with the180

log-normal distribution of ak resulting from the mutation of base attack rate ar of the resident “parent”181

7



BR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure S1: Histogram of resource biomasses BR in the steady state of the full model, sampled from community
snapshots after every 200 consumer additions. Neither values close to zero nor values close to one are very
frequent.

species as per Eq. (3). We can therefore obtained P ∗inv(ar) from Eq. (S22) by correcting µ∗SR
= µSR

+ln γ0182

and σ∗SR
= [σ2

SR
+ (ln γ1)2]1/2 to account for mutational variance and bias. Hence183

P ∗inv(ar) = Φ

(
ln(α0βar) + µ∗SR

σ∗SR

)
. (S23)

Because we measure time in units of consumer invasions, and both variants of our model attempt184

consumer invasions from random resident species until one succeeds, the probability for offspring of185

resident consumer r to invade in a given time step is P ∗inv(ar)/
∑SC

k=1 P
∗
inv(ak) (guaranteeing that the186

probability for offspring of some consumer k to invade evaluates to 1). Since species richness and the187

distribution of ar fluctuate somewhat through time, we calculated the “birth” rate in Fig. 3c,g as the188

average of this probability for a given base attack rate a over the model steady states:189

b(a) = Average through time of
P ∗inv(a)∑SC

k=1 P
∗
inv(ak)

. (S24)
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Appendix S5 Serial extinction190

We derive Eq. (15) for the consumer’s intrinsic growth rate after serial extinction191

Note first that, because resources are successively removed in decreasing order of the consumer’s192

attack rate in the deconstructed model formulation (and also in the simplified model, Box 2), the193

distribution of attack rates after serial extinction is the same as before, except for being truncated194

from above at the point where Eq. (8) becomes violated. In situations where the sums in Eq. (8) are not195

dominated by just a few resources, the central limit theorem can be invoked and the sums approximated196

by their expectation values, which then permits analytic computation of the truncation threshold H∗197

and other properties of the end state.198

The calculations simplify by first approximating the relevant section of the upper tail of the log-normal199

attack-rate distribution, Eq. (4), by a Pareto distribution, which can be derived in the limit of high200

resource richness SR (Rossberg et al., 2011; Rossberg, 2013). By this approximation, the consumer has201

on average Z resources with Hjk larger then some “observation threshold” H0, and for these202

P [Hjk ≤ x] ≈ 1−
(
H0

x

)ν
, (S25)

with ν = σ−1
√

2 lnSR. Empirically, typical values for ν are in the range 0.5 to 0.6 (Rossberg et al.,203

2011; Rossberg, 2013). Values ν ≥ 1 would correspond to extreme omnivory where the proportional204

contribution of each resource species to a consumer’s diet scales as 1/SR, i.e. no resource makes a sizeable205

contribution to the diet. We are unaware of such a situation occurring in nature, and therefore assume206

0 < ν < 1 in this study. The value of the link density Z is chosen to control the typical strengths Hmax207

of the strongest attack rate before serial extinction, specifically the exp(−1)-quantile of the distribution208

of maxj Hjk. In the limit of large Z, this leads to the condition209

exp(−1) = (P [Hjk ≤ Hmax])
Z

=

[
1−

(
H0

Hmax

)ν]Z
≈ exp

[
−
(

H0

Hmax

)ν
Z

]
(S26)

and so210

Z ≈
(
Hmax

H0

)ν
. (S27)

It goes without saying that Hmax is proportional to base attack rate ak and can therefore be use as a211

proxy for the latter.212

With this preparation, we can now take expectation values on both sides of Eq. (8) for the case of213

truncation at H∗, the largest threshold where it is not violated, to approximate214

E

Hjk≤H∗∑
j

Hjk − 1

 =H−1∗ E

Hjk≤H∗∑
j

H2
jk

 (S28)

as [
Z

ˆ H∗

H0

p(x)xdx− 1

]
=H−1∗ Z

ˆ H∗

H0

p(x)x2dx, (S29)

where p(x) = −(d/dx)P [Hjk ≤ x] is the probability density of the untruncated attack rate distribution.215

Evaluation of the integrals after inserting Eq. (S25) leads to216

ZνH−ν∗ (H∗H
ν
0 −Hν

∗H0)

1− ν
− 1 =H−1∗

ZνH−ν∗
(
H2
∗H

ν
0 −Hν

∗H
2
0

)
2− ν

(S30)
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Figure S2: Dependence of intrinsic growth rate C = 1 −
∑
j Hjk on base attack rate in the course

of repeated serial extinction and resource turnover. Panel (a) shows geometric means of C over 106

replicated runs of the model of Box 2 over 104 iterations, panel (b) arithmetic means. For high base attack
rates ak (dark lines), both geometric and arithmetic means approach the same value ≈ 0.86 (indicating
a near-deterministic outcome) after the first iteration of consumer-mediated competitive exclusion, largely
independent of base attack rate, as predicted by the analytic theory. The value is different from the analytic
prediction 1− σ−1

√
2 logSR ≈ 0.14 valid for large because SR, because SR = 224 is not sufficiently large.

and, after inserting Eq. (S27) and taking the limit of low observation threshold (H0 → 0),

H−ν∗ [νH∗H
ν
max −Hν

∗ (1− ν)]

1− ν
=
νH1−ν
∗ Hν

max

2− ν
. (S31)

This equation can be solved for H∗, yielding217

H∗ =

[
(1− ν)(2− ν)

νHν
max

]1/(1−ν)
. (S32)

The expected intrinsic growth rate of the consumer after serial extinction equals the left hand sides of218

Eqs. (S28)-(S31). When putting Eq. (S32) into the left hand side of Eq. (S31) it simplifies considerably,219

leading to the final result220

E

[
Hki≤H∗∑

k

Hki − 1

]
= 1− ν. (S33)
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With 0 < ν < 1, this result implies that E
∑Hjk≤H∗
j Hjk attains values between 1 and 2. On the other221

hand, the upper cutoff H∗ declines with increasing Hmax (or base attack rates ai) as H
−ν/(1−ν)
max by222

Eq. (S32). For large base attack rates the sum
∑Hjk≤H∗
j Hjk therefore has contributions from many223

small terms, justifying our application of the central limit theorem to approximate of the sums entering224

Eq. (8) by their expectation values. Figure S2b qualitatively confirms this result.225

Interestingly, above considerations imply that, despite having the same niche width in terms of the226

spread σ of the log-normal attack-rate distribution, invaders with higher base attack rate will have more227

diverse diets post Impact than those with lower attack rates. This might explain why invasive alien228

consumers are often found to be ’generalists’.229
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Box 1 Algorithm of the evolutionary metapopulation model.

The model state is given by N patches which are either empty of
occupied by a population with base attack rate ai (1 ≤ i ≤ N).
The model is simulated as follows:

1. Occupy a proportion p of patches with populations with identical
initial base attack rates ai.

2. Select an occupied source patch r for dispersal. Sample the base
attack rate ak of a propagule according to Eq. (3).

3. Sample a target patch l.

4. If patch l is occupied:

(a) If al < ak, replace the new population of patch l with one that
has base attack rate ak, otherwise do nothing.

5. If patch l is not occupied:

(a) With invasion probability Pinv(ak), establish in patch l a
new population with base attack rates ak and then remove
the population from another occupied patch m, sampled at

random from all occupied patches with probability proportional
to 1/L(am). Pinv(a) is our approximation of invasion
probability for the deconstructed community model, Eq. (S22)
with β = 0.45 and SR = 224 (corresponding to the
mean equilibrium richness in Fig. 2), and L(a) the polynomial
fit to mean population life time in Fig. 3h (log10 L =

−0.04105026(log10 a)
2−0.78404937 log10 a−0.77341520).

6. Continue from Step 2 for a predetermined number of interactions.

The values of γ0, γ1, and σ are as in Tab. 1.

The algorithm can be reformulated in such a way that only the list of
ai value of occupied patches i is kept in memory. In each iteration,
Step 3a is then executed with probability p and otherwise Step 4a.
When invasion is successful in Step 4a, the new ak value is stored in
the memory location where am was previously stored. This formulation
permits us to take the limit p→ 0 while keeping the number of occupied
patches pN fixed.

Appendix S6 The limited impact of cheaters230

Cheaters exploit benefits offered by more altruistic conspecifics to their advantage, thus potentially231

counteracting the evolution of altruism. To obtain a bound on the impact of cheaters on prudent232

predation, we devised a simple evolutionary metapopulation model. The model describes a landscape of233

N patches that are either occupied by the focal species or not. The population occupying patch i has234

an associated base attack rate ai.235

In our metapopulation model we assume that cheating occurs if a population of the focal species236

disperses to a patch that is already occupied, and the propagule’s base attack rate is larger than that of237

the resident in that patch. The propagule then replaces the resident population. This model disregards238

that conspecific propagules will not only differ in their base attack rates from residents, but also in239

other foraging traits (Appendix Appendix S1), and therefore have, on average, a reduced likelihood of240

establishment success. Our metapopulation model is therefore biased to overestimates the likelihood of241

cheating. We shall see that the predicted impact of cheating remains limited despite this.242

Contrasting conventional stochastic patch occupancy models in the tradition of Levins (1969), patch243

occupancy p, i.e., the proportion of occupied patches, is a parameter in our model. The reason is evidence244

that species richness both at patch level (α) and at landscape level (γ) is regulated through ecological245

structural stability limits (O’Sullivan et al., 2019), which our metapopulation model cannot explicitly246

represent. Mean occupancy is uniquely determined by α and γ as p = α/γ. By fixing p we represent247

these limits implicitly.248

The model is detailed in Box 1. We chose pN = 1000 over a range of p values, evaluated the algorithm249

over 4 · 107 iterations, and sampled base attack rates from the last 3/4 of each run to characterise the250

steady state (which was reached after less then a 10th of iterations).251

In the limit p → 0, where cheating does not occur, the model attained a steady state with mean252

logarithmic base attack rate log10 a = −5.14, close to the value obtained with the deconstructed model,253

and an approximately normal distribution of log10 a in the steady state similar to that in Fig. 3e. These254

results further confirm our reconstruction of the fitness landscape in Fig. 3.255

As shown in Fig. S3, log10 a increases linearly with p for low p. An occupancy of p = 0.3, for256

example, leads to an approximate 3-fold increase in geometric mean base attack rates. Hence, cheating257

makes consumers somewhat less prudent, but does not fundamentally undermine the evolution of prudent258

predation.259
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Figure S3: The impact of cheaters on evolutionary stable base attack rate a. Simulation results from
the meta-population model described in Box 1. The higher the occupancy p of patches by the metapopulation,
the larger the probability that occupied patches are overtaken by invading cheaters with higher base attack
rates. This effect increases steady state base attack rates, but does not prevent a steady state from being
reached.
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Appendix S7 Steepness and basic reproduction number260

We derive the relation between basic reproduction number and the steepness of stock recruitment261

relations given in Eq. (17).262

Consider first the following caricature model of a fish stock feeding on a single resource:263

dBR

dt
=

[
s

(
1− BR

K

)
− aSSB

]
BR, (S34a)

dSSB

dt
= εaBRSSB− ρSSB− F SSB. (S34b)

The parameter F denotes the fishing mortality rate, otherwise model structure and parameterization are264

as in Eq. (1). If one assumes, for simplicity, that (i) all mature individuals have the same body mass m,265

(ii) recruits are produced instantaneously, and (iii) the parameter ρ is dominated by natural mortality266

rather than respiration, then recruitment is given by the first term on the right-hand side of Eq. (S34b):267

mRec = εaBRSSB = εaK SSB− εa2K

s
SSB2. (S35)

In the second step we eliminatedBR by solving Eq. (S34a) with dBR/dt = 0 forBR > 0. Stock-recruitment268

relations of this quadratic form are frequently used in fisheries science and named after Schaefer (1954).269

Virgin (F = 0) equilibrium SSB evaluates to270

SSB0 = s
εaK − ρ
εa2K

. (S36)

From Eqs. (16), (S35) and (S36) one obtains the steepness271

h =
1

25

(
1 +

4εaK

ρ

)
. (S37)

The basic reproduction number R is defined as recruitment per mature individual (of which there are272

SSB/m) in units of ρ, in the limit SSB→ 0, which evaluates to273

R = lim
SSB→0

mRec

SSB ρ
=
εaK

ρ
. (S38)

Hence Eq. (S37) implies Eq. (17).274

We now verify that Eq. (17) remains valid if one generalises Eq. (S34) to a situation with multiple275

resources. We assume that the fish stock is initially fully established at SSB0, such that resources276

that would not withstand its consumption have been extirpated. By Eq. (S6), the biomass of each277

resource is then a linear function of consumer biomass, here SSB. With the linear functional response of278

Lotka-Volterra models, this implies279

mRec = (c1 − c2 SSB) SSB (S39)

with some positive constants c1 and c2. As above, we can evaluate280

R = lim
SSB→0

mRec

SSB ρ
=
c1
ρ
, (S40)

yielding c1 = ρR. Furthermore, recruitment balances mortality for the unfish stocks with SSB = SSB0.281

So mRec(SSB0) = ρSSB0, which implies282
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c2 = ρ
R− 1

SSB0
. (S41)

With these values for c1, c2, plugging Eq. (S39) into the definition of steepness, Eq. (16), yields again283

Eq. (17).284
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Figure S4: Activation frequency of consumer extirpation mechanisms The classification relates to
different steps in the deconstructed model formulation (Box 1). Exploitative competition refers to Step 5;
Pyrrhic competition to failure to meet the invadability condition by a consumer losing its main resource, or
by the competitor causing this, in Steps 6, 7; Bust after boom refers to Step 3d; and Invadability criterion to
failure to satisfy Eq. (5) at any other point in the algorithm. Extirpations through Pyrrhic competition are
very rare, and those through bust after boom contribute just a few percent of cases.
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