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Abstract19

Prudent predators catch sufficient prey to sustain their populations but not as much as to20

undermine their populations’ survival. The idea that predators evolve to be prudent has been21

dismissed in the 1970s, but the blunt arguments invoked then are untenable in light of modern22

evolution theory. Evolution of prudent predation has repeatedly been demonstrated in two-species23

predator-prey metacommunity models. However, the vigorous population fluctuations that these24

models predict are not widely observed. Here we show that in complex model food-webs prudent25

predation evolves by a different mechanism. We make testable predictions for empirical signatures26

of this mechanism and its outcomes. Then we discuss how these predictions are borne out across27

freshwater, marine, and terrestrial ecosystems. Demonstrating explanatory power of evolved prudent28

predation well beyond the question of predator-prey coexistence, the predicted signatures explain29

unexpected declines of invasive alien species, the shape of stock-recruitment relations of fish, and the30

clearance rates of pelagic consumers across the latitudinal gradient and 15 orders of magnitude in31

body mass. Specific research to further test and mobilise the utility of this theory is proposed.32
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Figure 1: Comparison of current and new theories of selection for prudent predation. Arrows point
from consumer to resource, arrow width indicates attack rate. According to both theories, consumers that are
either too inefficient (top row) or imprudently aggressive—approaching Darwinian Daemons (bottom row),
easily get extirpated. Prudent consumers (middle row) persist for longer. Contrasting the prevailing theory,
our model predicts that imprudent consumers feeding on multiple resources “hang on” after extirpating their
most important resources, feeding on less suitable resources that persist. This, however, leaves them in a weak
position. Any subsequent change in community structure, e.g., spread of a disease (symbolised by flies), can
push them over the edge, leading to extirpation. The resulting separation of the ultimate and the proximate
cause of extirpation, seen similarly for invasive alien consumers, is a signature of the new theory. Illustration:
Rebecca Gelernter/Near Bird Studios

1 Introduction33

Altruism, the display of traits that are detrimental to the fitness of individuals but benefit others (Nowak,34

2012), is observed throughout the living world, including plants (Dudley, 2015), non-human mammals35

(Schino & Aureli, 2010) and bacteria (Refardt et al., 2013). Controversial, however, remains whether it36

also occurs in the most relentless kind of ecological interaction, foraging on living resources. We shall call37

consumers (species feeding on living resources, e.g. predators, herbivores) prudent (Slobodkin, 1960) if38

they feed at a rate sufficient to sustain their populations but not so much that resource overexploitation39

would become detrimental to their populations’ persistence (Fig. 1). We will speak of evolved prudence40

(or similar) when prudence arises through the consumer’s adaptation to its native resource community41

by mutation and selection.42

The idea that consumers have evolved to be prudent was been proposed by Slobodkin (1960) based43

on observations that the ecological efficiencies of laboratory populations of Daphnia and Artemia nauplii44

(Slobodkin, 1964) that were experimentally harvested such as to maximise long-term biomass yield was45

numerically close to the efficiencies calculated by Lindeman (1942) and others form field observations.46

Slobodkin was soon criticised on the basis that evolution of prudence required group selection, and that47
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the conditions for group selection to operate were not typically satisfied in nature (Maynard Smith &48

Slatkin, 1973). Meanwhile, however, evolution of prudent predation has repeatedly been demonstrated49

in two-species consumer-resource metacommunity models (Fig. 1, left; Gilpin, 1975; Haraguchi & Sasaki,50

2000; Pels et al., 2002; Rauch et al., 2003; Messinger & Ostling, 2013), including individual-base models51

(Rand et al., 1995; Mitteldorf et al., 2002; Goodnight et al., 2008). This deserves repeating: prudent52

predation easily evolves in metacommunity models. The sceptics’ intuition that prudent predation can53

hardly evolve because it requires group selection is false.54

Moreover, it has become clear that the very distinction between “kin selection” (which has more55

sympathy in the scientific community) and “group selection” is not fundamentally one between processes56

but one between mathematical methods (Lion et al., 2011). For problems where both methods are57

applicable, they yield the exact same result (Jansen, 2011). A categorical dismissal of evolved prudent58

predation is therefore now more difficult—Slobodkin’s (2009) own later doubts notwithstanding.59

Furthermore, there is another, more profound issue indicating the need for some form of adaptation60

of consumer-resource interaction strengths, which has puzzled ecologists since Nicholson (1933) and61

Gause (1934): getting consumer and resource to coexist in simple model systems, both experimental and62

mathematical, requires careful adjustment of parameters. In the classical consumer-resource model of63

Rosenzweig & MacArthur (1963), for example, consumer-resource oscillations set in at values of attack64

rate a that are only (1+τ−1)-times larger than the value of a required for the consumer to eat enough to65

survive, with τ denoting the proportion of time consumers spend at population-dynamical equilibrium66

“handling” resources rather then “searching for” them in the behavioural model underlying the Type II67

functional response (Holling, 1959). With typical parameters, the range of oscillation-free coexistence68

therefore spans just an order of magnitude or so in a. Beyond this range, population minima reached69

by the resource during oscillations decline exponentially with a, soon leading to extinction of any finite70

resource population—and subsequent extinction of the consumer. In multi-resource models, the range in71

attack rates separating invadibility of consumers and extinction of resource through consumer-mediated72

(or “apparent” sensu Holt, 1977) competition is similarly constrained (Rossberg, 2013, Sec. 15.3). In73

general, the relevant dimensionless parameter is the product of assimilation efficiency, attack rate and74

resource carrying capacity (both in biomass units) divided by the consumer’s rate of biomass loss due75

to respiration and mortality (below respiration+mortality rate). To permit co-existence, it must lie76

between one and some tight, model-dependent upper limit. To assume that in nature this condition77

is regularly satisfied by pure chance would be implausible. Considering the large variety of known78

consumer strategies to locate, chase, trap and/or subdue resources, of resource strategies to hide, escape,79

and defend themselves, and of typical resource abundances, variation in the parameter over much more80

than two orders of magnitude would be expected. How then can consumers and resource coexist in the81

wild?82
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This problem has been intensely discussed amongst theorists during the 1970s, but without satisfactory83

resolution (Slatkin & Maynard Smith, 1979). Next to invocation of some form of altruism, two other84

important lines of thought were developed. Exploring the first, Schaffer & Rosenzweig (1978) evaluated85

the joint evolutionary dynamics of consumer and resource in the Rosenzweig-MacArthur model, to see86

under which conditions an evolutionary stable steady state with stable consumer-resource coexistence is87

reached. They found this to be possible when, measured on the relevant scale, the resource evolves faster88

than the consumer. Slobodkin (1974) had come to that same conclusion on intuitive grounds. He argued,89

less convincingly, that this condition should be satisfied because predators are torn between adaptation to90

a variety of different defence strategies by different prey (e.g. running vs. hiding), which results in slower91

adaptation to any particular defence, while prey stick with a single defence strategy. Another argument92

why consumers should evolve slower than their resource is the “Life-Dinner Principle” (Dawkins & Krebs,93

1979): for the resource it is about survival, for the consumer just a meal. The evidence, however, is to the94

contrary: studies of food-web topologies, in conjunction with phylogenetic data (Bersier & Kehrli, 2008;95

Eklöf & Stouffer, 2016) or on their own (Rossberg et al., 2006), consistently show that in a joint niche96

space in which consumer traits need to match resource traits to yield maximum attack rate (Rossberg97

et al., 2010), resources tend to evolve much slower than consumers.98

The second line of thought considers structured population models. Stage-structured population99

models (Maynard Smith & Slatkin, 1973; Slobodkin, 1974) can mitigate the problem of overexploitation,100

but do not appear to ultimately resolve it (Slatkin & Maynard Smith, 1979). More promising are101

spatially structured models (Hilborn, 1975; Hastings, 1977). In agreement with early intuition (Nicholson,102

1933; Nicholson & Bailey, 1935) and experiments pioneered by Huffaker (1958) and Pimentel et al.103

(1963), repeated recolonisation can permit metapopulations of consumers and resources to coexist even104

when consumers locally extirpate their resources. However, while this mechanism relaxes constraints on105

parameters for coexistence, it does not entirely eliminate them. Consumers still go extinct if their attack106

rates are too high or too low for a given dispersal rate (Mitteldorf et al., 2002) or their dispersal rates too107

high or too low for a given attack rate (Hilborn, 1975). Furthermore, if one permits the consumer’s attack108

rate to evolve in such models—and why not—it naturally adjusts itself at values permitting coexistence109

(Gilpin, 1975; Mitteldorf et al., 2002). Similar trends have been observed in experiments (Pimentel et al.,110

1963). Such metacommunity models therefore also hardly serve as alternatives to evolved prudence in111

explaining consumer-resource co-existence.112

Yet, scepticism about these metacommunity models of one consumer and one resource species, i.e.,113

with monophagous consumers is justified—with or without evolution of attack rate. The scenarios of114

local booms and busts or vigorous population oscillations they predict might describe pests raging across115

landscapes, but are not sufficiently common to support them as general explanations for consumer-resource116

coexistence in nature (Maynard Smith & Slatkin, 1973; Taylor, 1990). Detailed empirical reports of such117
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repeated boom-bust cycles for closely associated consumer-resource pairs present them as ecological118

curiosities rather than a generic phenomenon (Dempster, 1971; Eber & Brandl, 1994; Schöps, 2002;119

Johst & Schöps, 2003, further examples reviewed by Taylor 1991).120

This mismatch between predicted and observed phenomenology, not the perceived problem of group121

selection, should be the main reason for scepticism about evolved prudence. And persistent scepticism is122

evident, e.g., from recent proposals to compute attack rates from fundamental physical and physiological123

constraints (Pawar et al., 2012; Ho et al., 2019; Portalier et al., 2019; Hirt et al., 2020) and in the role124

that assumed physiological trade-offs or pleiotropy—indirectly constraining attack rates—continue to125

play in evolutionary models of consumer-resource interactions (van Velzen & Gaedke, 2017; Schreiber126

et al., 2018; Fleischer et al., 2018).127

A clue for resolving this mismatch in phenomenology comes from noting that, in a review by Roy128

& Chattopadhyay (2007) on the closely related “paradox of enrichment” (Rosenzweig, 1971), all cited129

experiments in which enrichment (i.e. increased resource carrying capacity) led to stronger oscillations130

used only one resource species, while all those where this was not observed involved multiple resources131

(excluding Kirk (1998), who artificially stabilised resource abundance). Instead of inducing oscillations,132

enrichment led to replacement of more suitable by less suitable resources (Persson et al., 2001).133

Here we show that a similar process can lead to selection for prudence (Fig. 1, bottom right) and134

overcome the mismatch between the predicted and observed phenomenology of its evolution. This135

requires taking into account that most consumers are polyphagous, feeding on multiple resource, and are136

parts of complex ecological communities that continuously turn over in species composition (Dornelas137

et al., 2014; Yoccoz et al., 2018; O’Sullivan et al., 2020). The resulting evolutionary mechanism (Fig. 1,138

right) does not depend on predator-prey oscillations (Rosenzweig, 1971) and aligns better with observations.139

Early studies demonstrating evolution of prudence in food webs employed a model (the PDMM,140

Rossberg et al., 2008; Rossberg, 2013, Sec. 22.3) that characterises species by body size and other141

evolving traits, which in turn jointly determine interactions and interaction strengths. Communities142

assembled by this model share key properties with marine food-webs (Fung et al., 2015). Feeding follows143

Type II functional responses with prey switching (van Leeuwen et al., 2013; Morozov & Petrovskii, 2013),144

which can lead to both stable population-dynamical equilibria (Fung et al., 2015) and complex oscillatory145

dynamics (Rossberg et al., 2008). The insight that prudence can evolve in such a detailed, realistic model146

is important—but many of these details are inessential. In simple two-layer food-web models with linear147

functional responses, studied since MacArthur (1969), the same phenomenon is observed (Rossberg,148

2013, Sec. 20.4). Using such a model, we address three questions:149

1. By what mechanism does prudence evolve in food-web assembly models?150

2. What kind of observations would provide evidence that this mechanism is active in nature?151
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3. To what extent has this evidence been observed?152

2 The two-level Lotka-Volterra food-web assembly model and153

its deconstruction154

2.1 The full model155

Our working model is a Lotka-Volterra-type model in which SC consumers forage on a community of SR156

living resources:157

dB̂R
j

dt
=

[
s

(
1−

B̂R
j

K

)
−

SC∑
k=1

ajkB̂
C
k

]
B̂R
j (1 ≤ j ≤ SR), (1a)

dB̂C
k

dt
=

[
ε

SR∑
j=1

ajkB̂
R
j − ρk

]
B̂C
k (1 ≤ k ≤ SC). (1b)

Here t is time, B̂R
j is the time-dependent population biomass (or biomass density) of the j-th resource, and158

B̂C
k that of the k-th consumer. For simplicity, we assume identical intrinsic growth rates s and carrying159

capacities K of resources, absence of direct competition between producers, and identical assimilation160

efficiencies ε for all consumers. The coefficient ajk ≥ 0 represents the attack rate of consumer k on161

resource j. Finally, ρk denotes the respiration+mortality rate (dimension 1/Time) of consumer k. In162

most cases, we assume identical ρk = ρ for all consumers.163

To simplify analytic calculations, we express attack rates by the dimensionless coefficients Hjk =164

α0kajk, with α0k = εK/ρk (abbreviated to α0 if all ρk = ρ), and measure resource biomass BR
j in units165

of K and consumer biomass BC
k in units of α0ks (Tab. 1), yielding the equivalent system166

dBR
j

dt
= s

[
1−BR

j −
SC∑
k=1

HjkB
C
k

]
BR
j (1 ≤ j ≤ SR), (2a)

dBC
k

dt
= ρk

[
SR∑
j=1

HjkB
R
j − 1

]
BC
k (1 ≤ k ≤ SC). (2b)

Model communities are assembled through iterative invasion of random species (Post & Pimm, 1983;167

Caldarelli et al., 1998). At each iteration, it is first decided at random, with equal probability, whether168

the newly invading species will be a consumer or a resource. Candidate species of the chosen type are169

then sampled at random as described below until one is found that can invade the community (i.e. for170

which the term in brackets in Eq. (2) is positive). After adding this species to the community with an171

initial biomass of Mmin, population dynamics are simulated until a new equilibrium is reached. Species172

whose populations fall below Mmin are removed as extirpated.173

Note that, for resources j in equilibrium that are not fed upon, BR
j = 1. Hence, by Eq. (2b), a174
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consumer k has population growth rate ρk

[∑SR

j=1Hjk − 1
]

if it does not share resources with other175

consumers and its own abundances BC
k is too low to affect its resource populations. This becomes176 ∑SR

j=1Hjk − 1 when measuring growth rate in units of ρk. In this expression, the sum
∑SR

j=1Hjk =177

εKρ−1k
∑SR

j=1 ajk corresponds to the dimensionless quantity identified as being constrained by prudence178

in Introduction. Indeed, defining Rk =
∑SR

j=1Hjk, the classical invadibility criterion (Grainger et al.,179

2019) implies that Rk > 1 is necessary for consumer-resource co-existence, and below we show that much180

larger Rk are detrimental.181

Traditional community models have often been formulated in terms of numerical population sizes182

rather then population biomasses. We would recover such a formulation here, e.g., by assuming that all183

individuals of species k have the same body mass mk and disregarding the contribution of respiration184

to ρk. Then Rk becomes the basic reproduction number (often denoted “R0”) of consumer k: the mean185

lifetime number of offspring at low consumer abundance and in absence of interspecific competition186

(reviewed by Lion & Metz, 2018). Since in the general case Rk plays an analogous role, we call Rk the187

basic reproduction number here.188

2.2 Sampling of new species189

In Appendix S1 (in Supporting Information) we motivate the following scheme for sampling the traits190

and interactions of newly invading species in our model. Each consumer k is associated with a so-called191

base attack rate trait ak that scales attack rates ajk. When a new consumer k is sampled, its base attack192

rate is chose as193

ak = γ0γ
ξ
1ar, (3)

where r is one of the SC resident consumers, sampled at random, ξ is a standard normally distributed194

random number (both sampled anew for each candidate consumer), and the two parameters γ0 > 0195

and γ1 > 1 control bias (sensu Pomiankowski et al., 1991) and size, respectively, of what we will call196

“mutations” of base attack rate in the model. We choose γ0 < 1 to represent degeneration of traits197

under insufficient selection. For our choices of model parameter (Tab. 1), about 20% of “mutations” raise198

attack rate (ak > ar), which is plenty in view of observed distributions of fitness effects of mutations199

(Eyre-Walker & Keightley, 2007; Castellano et al., 2019). This scheme to sample “mutants” is justified200

by an assumption that the distribution of base attack rates within the focal community is representative201

of the implicit metacommunity from which species invade.202

The attack rates ajk for newly invading consumers k or resources j are then sampled from log-normal203

distributions scaled by ak, i.e.,204

ajk = ake
σξjk or Hjk = α0ajk = α0ake

σξjk , (4)
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Table 1: List of symbols and model parameters

Symbol Description Value
A Resident’s growth rate term Rl − 1

a, ak Base attack rate (of consumer k) Eq. (3)
ajk Rate of attack rate of resource j by consumer k ake

σξjk

α0k Attack rate scaling factor Kερ−1k
B Resident l’s intraspecific competition term

∑
j H

2
jl

B̂R
j Resource biomass (density) in physical units KBR

j

B̂C
k Consumer biomass (density) in physical units α0ksB

C
k

BR
j Dimensionless resource biomass

BC
k Dimensionless consumer biomass
β Abundance scaling factor in birth probability formula 0.45
C Focal species’s growth rate term Rk − 1
Cm Maintenance food concentration ρk/(εajk)
D Interspecific competition term

∑
j HjkHjl

ε Assimilation efficiency 0.1
γ0 Mutation bias of base attack rate 0.81/2

γ1 Mutational variation of base attack rate 1.31/2

Hjk Dimensionless attack rate of resource j by consumer k α0kajk
K Resource carrying capacity in absence of consumers 1

L, L(a) Mean duration of species persistence in community
Mmin Dimensionless biomass extirpation threshold 10−5

Pinv(a) Invasion probability
ρ = ρk Rate of consumer biomass loss by respiration and mortality 0.1
R, R(a) Lifetime mean number of “offspring” populations
Rk Basic reproduction number of individuals of species k

∑
j Hjk

s Resource intrinsic per capita growth rate 1
SC Consumer species richness
SR Resource species richness

SSB Fish population standing stock biomass
Rec Fish population recruitment rate
σ Standard deviation of log attack rates 4
t Time

ξ, ξjk Standard normal random variates N (0, 1)

with independent standard-normally distributed ξjk (1 ≤ j ≤ SR). These log-normal distributions205

can be understood as resulting from trait matching between random consumers and resources in a206

high-dimensional trophic niche space (Appendix S1). The spread σ of the log-normal distribution is a207

measure of consumer specialisation (Rossberg et al., 2011) and kept fixed throughout the simulations.208

Using Eqs. (3) and (4), we avoid setting an inherent scale for attack rates. The magnitude of attack209

rates is controlled by ak, and evolution of ak according to Eq. (3) is scale free: it is invariant under210

multiplication of all ak, ar by a constant factor. Below we show that the evolutionary stable magnitude211

of ak is ultimately determined at the ecosystem level.212

2.3 The deconstructed model formulation213

To gain a better understanding of the processes operating during community assembly and turnover,214

we developed a novel deconstructed formulation of this model. Population dynamics are broken up into215

a sequence of phases that permit approximate analytic descriptions, thus avoiding simulation of the216
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system of ODEs (2). In Box 1, we named these in analogy to phases of ecological invasions (without217

claiming identity), as distinguished and discussed by Lockwood et al. (2013) and Reise et al. (2006).218

The analogies become clearest when interpreting our model as describing an island community that is219

occasionally colonised by species from other islands.220

Contrasting Law & Morton (1996), our deconstructed formulation does not aim to reproduce the221

dynamics of the full model in all detail, just its system-level phenomenology. For this, surprisingly coarse222

approximations are sufficient. These build on the observation that only few resources tend to contribute223

sizably to a consumer’s diet (Rossberg et al., 2011; Rossberg, 2013, Ch. 12), which we reproduce by224

our choice of model parameters (Tab. 1, see Rossberg, 2013, Chs. 11, 12 for detailed discussion). This225

justifies the simplifying assumption that at most one other consumer needs to be considered to determine226

a consumer’s persistence with a given set of resources. The full algorithm is described in Box 1. Its227

formulation highlights the role of the main resource of a consumer k, defined as that extant resource for228

which Hjk is largest over all j.229

2.4 Model steady states230

We compared simulations of full and deconstructed formulations with the same set of parameters (Tab. 1).231

As shown in Fig. 2a,b, the richness of consumers (SC) and resources (SR) reached in the steady state is232

similar for the two formulations, and so is the pattern of richness fluctuations.233

In Fig. 2c,d we compare time series of community mean logarithmic base attack rates log10 a for234

both formulations. The evolutionary steady state reached is independent of the ak value of the seeding235

community of consumers (Fig. 2c,d), and differs only slightly between model formulations.236

Accounting for the log-normal distribution of sampled attack rates, Eq. (4), steady state means237

reported in Fig. 2 imply that during establishment Rk =
∑SR

j Hjk is on average α0ake
σ2/2SR ≈ 17 (full)238

and ≈ 7 (deconstructed). This is evolved prudent predation. Through the adaptation of base attack239

rates, basic reproduction numbers Rk have stabilised at values greater but not much greater than 1.240

3 How prudence evolves in our model241

To uncover how prudence evolves in our model, we explore three layers of depth of model analysis. These242

relate to the evolutionary forces at work, the effect of base attack rate on consumer competitiveness, and243

the restructuring of resource communities by consumers. These analyses are followed by summary and244

discussion of the full mechanism in a non-technical language.245

10



Figure 2: Approaches of full and deconstructed model formulations to steady state. The richness
of resources SR (green) and consumers SC (red) reaches quasi-steady states (i.e. they fluctuate around a
constant mean) for both full (a) and deconstructed (b) formulation. Furthermore, the quasi-steady states of
both formulations display similar means and patterns of variation. Likewise, community mean base attack
rates log10(a) reaches a quasi-steady states for both (c) full and (d) deconstructed formulation, with steady
state values being independent of initial values (colour graduation). With the overline indicating averages, we
obtain from the model steady state (between 2·105 - 5·105 iterations), SR = 260, SC = 147, log10 a = −4.67
(full), SR = 224, SC = 125, log10 a = −4.96 (deconstructed).
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Figure 3: Meta-community level fitness landscape. Panels (a) and (e) display the distribution of
logarithmic base attack rate (log10 a) in simulations, with the dashed vertical line representing the simulation
mean (log10 a

∗). Panels (b) and (f) represent mean logarithmic reproductive output (log10R(a)), which
we use as a fitness proxy. The remaining panels display the decomposition of log10R(a) into the additive
contributions from logarithmic birth rate log10 b(a) (c), (g) and logarithmic mean lifetime log10 L(a)(d),
(h) according to Eq. (12). We obtained b(a) and L(a) from simulations and verified the decomposition in
panels (b) and (f) (red dashed lines). Observe that the curve for log10R(a) passes zero and is tangential to
the predicted mutation bias slope at a = a∗, confirming our interpretation of log10R(a) as a fitness proxy.
Results for the for the full model [(a)-(e)], Eq. (2), are semi-quantitatively reproduced by the deconstructed
formulation [(f)-(h)] (Sec. 2.3). All graphs are based on a single simulation with 5× 105 iterations for each
model formulation, initiated with base attack rates close to the steady state mean. The first 105 iterations
were discarded as burn-ins. Curves in (a) and (e) are obtained using the density function of the R statistical
software with standard parameters. The non-parametric curves in (b), (c), (d), (f), (g) and (h) were computed
by taking rolling means of R(a), b(a), L(a) for individual consumers and their log10 a values with a window
size equivalent to 1% of the total sample size. The parametric curves are quadratic least-square fits to the
rolling means on double-logarithmic axes. The predicted birth rates in (c) and (g) were calculated according
to Eq. (S24), the mutation bias slop according to Eq. (11) (converting from natural to decimal logarithms).
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Box 1 The deconstructed formulation of our community assembly model. Conditions (5)-(9) are derived
in Appendix S2.

1. Initialise the model community with a small set of randomly sampled
consumers and resources (SC = 10 and SR = 20). The subsequent
addition of species, resulting in community assembly and turnover,
occurs by:

2. Transport (i): Sample with equal probability whether the next
species to invade is a consumer or a resource.

3. If a consumer is to invade:

(a) Transport (ii): Sample the base attack rate and interaction
coefficients Hjk for a candidate invader k as described in
Sec. 2.2.

(b) Establishment: Test whether this consumer can invade using
first the criterion that the consumer should satisfy the
invadability criterion

SR∑
j

Hjk − 1 > 0 (5)

as a minimum requirement for consumer k to persist, and then
the (stronger but computationally more expensive) requirement
that it should not get extirpated through exploitative
competition from each of the resident consumers l according
to

SR∑
j

Hjk − 1 <

SR∑
j

HjkHjl

 ∑SR
j Hjl − 1∑SR

j H2
jl

. (6)

If consumer k cannot invade, repeat from Step 3a until a
consumer is sampled that can.

(c) Spread (within community): Remove all of the invading
consumer’s resources j that get overexploited during consumer
k’s early boom phase, which happens when

Hjk > − log (Mmin) . (7)

(d) Bust after boom: If the invading consumer now fails the
invadibility criterion, Eq. (5), remove it and continue with
Step 5.

(e) Impact (resource serial extirpations): If

SR∑
j

Hjk − 1 >

∑SR
j H2

jk

maxj(Hjk)
, (8)

indicating the extirpation of j’s main resource though
consumer-mediated (“apparent”) competition, remove that
resource and repeat Step 3e.

4. If a resource is to invade:

(a) Transport (ii): Sample the resource’s interaction coefficients
Hjk as described in Sec. 2.2 and add it to the community.

(b) Expansion & Impact: While there are consumers satisfying the
condition for consumer mediated resource extirpation, Eq. (8),
repeat the following:

i. Chose one of these consumers at random and call it l.

ii. Remove l’s main resource.

iii. Remove any consumers k that now fail to satisfy the
invadibility criterion, Eq. (5).

5. Adjustment (exploitative competition): Test which consumers k
satisfy the condition for exploitative competitive exclusion, Eq. (6),
by any other consumers l. Then remove all that do.

6. Adjustment (Pyrrhic competition): Test which consumers k satisfy
the condition for loss in Pyrrhic competition, Eq. (9) below, against
any other consumers l. Then remove the main resource of each k
that does.

7. Adjustment (starvation): Remove all consumers that now fail the
invadibility criterion, Eq. (5).

8. Repeat from Step 2 for a predetermined number of iterations.

In Step 6 Phyrric competition between consumers k and l (k 6= l) leads to extirpation of k’s main resource i if:

SR∑
j

H
2
jk

SR∑
j

H
2
jl

−
SR∑

j

HjkHjl

2

<

SR∑
j

Hjk − 1

Hik

SR∑
j

H
2
jl −Hil

SR∑
j

HjkHjl

 +

SR∑
j

Hjl − 1

Hil

SR∑
j

H
2
jk −Hik

SR∑
j

HjkHjl

 (9)

N.B.: In Appendix S2 we provide a simple algorithmic formulation of this condition.

3.1 Evolutionary forces246

To understand the evolutionary forces leading to prudent predation, we first reconstruct the relevant247

fitness landscape. Note that while we speak here of consumer species or populations as if these were248

units of selection, the precise formulation would be that the units of selection in our model are consumer249

individuals invading communities to form new resident populations. As common in theories for evolution250

of virulence of infectious diseases (see also Sec. 3.6), our theory does not describe the details of consumer251

evolution within communities (for diseases: pathogens within hosts). Because each community is252

different, such short-term adaptation is unlikely to have much bearing on the long-term evolution of253

base attack rates (Appendix S1).254

The approximate normal distribution of logarithmic base attack rates (ln a) in the model steady state255

(Figs. 3a,e) suggests an analysis in terms of ln a. We therefore reformulate our model for inheritance of256
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base attack rates, Eq. (3), as:257

ln ak = ln γ0 + ξ ln γ1 + ln ar. (10)

Hence ln γ0 represents the size of the mutation bias and (ln γ1)2 the mutational variance of ln a.258

We define R(a) as the mean number of populations that inherit their base attack rates via Eq. (3)259

from a given population with base attack rate a (the “mean lifetime reproductive success” of populations).260

Denoting by a∗ the geometric mean of a and by var(ln a) the variance of ln a in the evolutionary steady261

state, we derive in Appendix S3 the evolutionary steady state condition262

d lnR(a)

d ln a

∣∣∣∣
a=a∗

≈ − ln γ0
var(ln a)

. (11)

It describes a balance between a fitness gradient (left-hand-side) and the counteracting effect of mutation263

bias (right-hand-side). We verify this relation graphically in Fig. 3b and f. As expected, for both the264

full and the deconstructed model (i) the equilibrium condition for species richness, lnR(a∗) = 0 (i.e.,265

R(a∗) = 1), holds, and (ii) the straight line with slope −ln γ0/var(ln a) is tangential to the graph of266

lnR(a) against ln a at a = a∗, as predicted by Eq. (11). This confirms R(a) as a suitable fitness proxy.267

We proceed by disentangling the mechanisms determining R(a). Define L(a) as the mean time268

populations with base attack rate a remain in the community, and b(a) as the mean rate at which269

they generate new invaders. We can factorise R(a) = b(a)L(a) because the ancestors of candidates for270

consumer invasion are chosen randomly with equal probability in our model, implying that the rate at271

which a species with base attack rate a gives rise to a new invasion is independent of the lifetime of this272

species. Hence273

lnR(a) = ln b(a) + lnL(a). (12)

In Figs. 3c,d,g,h (black lines) we show these two additive components of lnR(a) for both model formulations,274

as determined numerically from the model steady states.275

The “birth” rate b(a) exhibits the increasing trend with base attack rate a that one would naively276

expect. In fact, the curve can be understood at an analytic level. We included in Figs. 3c,g two analytic277

approximations of b(a). The first is based on a log-normal approximation for the distribution of the sum278 ∑SR

j=1Hjk in the invadibility criterion, Eq. (5). The full calculation, taking into account the mutation279

bias and the fact that we measure time in units of consumer invasions, is presented in Appendix S4.280

The resulting dependence of b(a) on ln a has the functional form of a cumulative normal distribution.281

The second approximation accounts for competition between consumers by multiplying the sum above282

with a fitting parameter β, which represents an average mean scaled biomass of resources encountered283

by invading consumers. With β = 0.25 (full) and β = 0.45 (deconstructed), this reproduces the form of284
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b(a) found in our model (Fig. 3c,g). This analytic model implies that the graph of ln b(a) vs ln a always285

has a positive slope, is bending downwards, and reaches a plateau for large ln a. In the following, we286

explain why, somewhat counter-intuitively, the mean population “lifetime” L(a) declines with increasing287

base attack rate a.288

3.2 How base attack rate affects consumer competitiveness289

The deconstructed formulation separates different ecological processes with a clarity not offered by290

simulations of the full model, permitting us to gain insights into the mechanisms controlling population291

“lifetime” in the model. We consider it justified to rely on the deconstructed formulation for this, because292

it reproduces the full formulation’s phenomenology well (Figs. 2, 3).293

Because around 96% of consumer extirpations are triggered either by the competitive exclusion294

condition, Eq. (6), or by failure of the invadability condition, Eq. (5), which implies the former, and295

because this does not depend much on the base attack rate of the extirpated species (Fig. S4), we focus296

here on the drivers of competitive exclusion.297

The deconstructed formulation’s condition for competitive exclusion of a consumer k through exploitative298

competition with another consumer l, Eq. (6), can be written as C < D A/B, or299

log10 C− log10 D− log10 A + log10 B < 0, (13)

with the four named terms300

A =
∑
j

Hjl − 1, B =
∑
j

H2
jl, C =

∑
j

Hjk − 1, D =
∑
j

HjkHjl. (14)

Terms A and C can be written as A = Rl − 1 and C = Rk − 1, respectively, and represent the intrinsic301

growth rates of the two consumers in units of ρ. Term B quantifies intraspecific competition of l, Term D302

its competition with k (see also Appendix S2).303

For random pairs k, l of consumers sampled from the steady state of the deconstructed model304

formulation, the left-hand side of Eq. (13) follows an approximate truncated normal distribution. In305

Fig. 4a we show this distribution conditional to base attack rate ak lying within each of the four quartiles306

of the steady-state distribution of a (Fig. 3e). While the variance does not depend much on ak, the mean307

decreases with increasing ak, making competitive exclusion by Eq. (13) more likely, consistent with the308

decreasing trend for mean life time in Fig. 3h. This trend must be due to the dependencies of Terms C309

and D on ak, because A and B depend only on competitor l.310

Figures 4b,c show the corresponding distributions of the additive contributions log10 C and − log10 D.311

The mean of log10 C decreases slightly with increasing ak (linear regression ± s.e.: log10 C = (−0.200±312
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Figure 4: Components of the condition for consumer competitive in the deconstructed model
formulation. Panels (a) represents the distribution of the left-hand side of condition (13) for competitive
exclusion in the steady state of the deconstructed model formulation, panels (b) and (c) two additive
contributions defined in Eq. (14). Probability densities were computed using the density function of R
with bandwidth parameter set to 0.5. They were computed separately conditional to base attack rate a lying
in one of the four quartiles of its steady-state distribution (Q1-Q4, see legend). Panel (d) shows how the
geometric mean (106 replicates) of Terms C changes with each iteration of the serial resource extirpation
algorithm of Sec. 3.3, for different base attack rates of the consumer (see Appendix S5 for more detailed
results). These results reveal that serial extirpation generates an anomaly in the dependence of Term C (but
not D) on a, which makes extirpation of consumers more likely with larger base attack rate a.

0.002)× log10 ak+intercept). This is surprising. With attack rates sampled at random following Eq. (4),313

a linear increase of Rk with ak is expected, implying a slope > 1 for the regression. By contrast, the314

decline of − log10D with increasing ak (log10 D = (0.632± 0.006)× log10 a+ intercept) is mostly in line315

with expectations—for Hjk sampled at random according to Eq. (4), D =
∑
j HjkHjl increases linearly316

with ak. The key to understanding the surprising decline of mean consumer population lifetime L(a)317

with increasing a therefore lies in understanding the unexpected absence of an increase of Rk, and so of318

Term C, with ak, and why this is not reflected in Term D.319

Both Rk and Term D are sums of the attack rates of k over all resources. In Term D the sum contains320

what are effectively log-normally distributed random weighting factors Hjl. These can give prominence321

to resources j in the sum that contribute little to the unweighted sum Rk, and conversely reduce the322

weight of the resources that dominating in Rk. This suggests a central role of the main resources of k,323

hinting at consumer-mediated competitive exclusion by Eq. (8). We follow this lead.324
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Box 2 A simplified model of serial resource extirpation

The model simulates a single consumer k = 1 with base attack rate ak
in a community of SR = 300 resources. It is described by the following
algorithm:

1. Sample sets of SR scaled attack rates Hjk according to Eq. (4) until
one is found found that satisfies the invadability criterion, Eq. (5).
Continue with this set.

2. Record the initial value of C =
∑

j Hjk − 1 (marked “Invasion” in

Fig. 4d).

3. Impact: as long as the condition for consumer-mediated competitive
exclusion, Eq. (8), is satisfied, remove the resource of j with the
largest Hjk.

4. Record the value of C =
∑

j Hjk − 1.

5. Replace the resources removed in Step 3 with new ones, sampling
new values Hjk following Eq. (4). If no resource was removed in
Step 3, chose a random resource i and re-sample Hik, conditional
to satisfaction of the invadability criterion, Eq. (5).

6. Repeat from Step 3 for a predetermined number of iterations.

3.3 Restructuring of resource communities by consumers325

To understand how consumer-mediated competitive exclusion affects Rk and C, we devised a further326

simplification of the deconstructed model. In this model, only one consumer k is considered. It’s base327

attack rate ak is a model parameter, and the number of resource species is fixed. The model, detailed328

in Box 2, mimics gradual changes through time in a consumer’s resource set in the deconstructed model329

formulation, but suppresses the possibility of consumer extirpation.330

In Fig. 4d we show averages of sequences of C = Rk − 1 through time predicted by this algorithm for331

four different values of ak. While at the time of invasion (Step 2 in Box 2) C increases with ak in line332

with expectation, this order is reversed by the first iteration of consumer-mediated competitive exclusion333

(Step 3), which corresponds to the Impact phase of the deconstructed formulation. In subsequent334

iterations this reversal is maintained and eventually C becomes largely independent of ak (Fig. S2).335

The output of this model until the first execution of Step 3 (Impact) is accessible to mathematical336

analysis (Appendix S5). We considered the mathematical limit of large resource richness SR, while337

keeping the expected Gini-Simpson dietary diversity of consumers at the time of invasion fixed at a value338

0 < ν < 1 by adjusting the spread σ of the log-normal attack-rate distribution as σ = ν−1
√

2 lnSR339

(Rossberg et al., 2011; Rossberg, 2013, Ch. 11, 12). For large base attack rates ak, this leads to340

C = Rk − 1 =

SR∑
j

Hjk − 1 = 1− ν (15)

after Impact on average. Convergence of Rk − 1 to this value with increasing SR is very slow (of order341

O(1/ logSR) or slower), and so the quantitative prediction by Eq. (15) not borne out in practice. But342

the broader implication of Eq. (15) holds even for moderate SR: after Impact, C will be of the order of343

magnitude of one even when the consumer’s base attack rate is large (Fig. 4d).344

With the value of Term C thus constrained while that of Term D increases with base attack rate on345

average, the likelihood of competitive exclusion by other consumers increases with a consumer’s base346

attack rate according to Eq. (13). This explains why more aggressive consumers have a shorter mean347

time to extirpation L (Fig. 3h).348
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3.4 Summary of mechanism349

We can now put together the picture of how prudence evolves in our model. Crucial is that during the350

Impact phase imprudent consumers (those with high base attack rates) extirpate their main resources351

through consumers-mediated competitive exclusion. As a result, the basic reproduction number of352

extant consumers in the model depends only weakly on base attack rate, even though in the initial353

establishment phase it is proportional to base attack rate. The effect of resource extirpation on the354

strength of competition with other consumers is weaker, and so less prudent consumers are more likely355

to get competitively excluded by other consumers. Imprudence thus causes early extirpation on average.356

Characteristic of this process is the separation of the ultimate and proximate causes of extirpation357

of an imprudent consumer (Fig. 1). The ultimate cause is extirpation of its resources. This, on its own,358

however, does not extirpate the consumer. Some other event, the proximate cause, needs to push the359

consumer over the brink. In our model, this can be invasions of immediate competitors or indirect effects360

resulting from turnover of resource and/or consumer community, driven, e.g., by Pyrrhic competition361

(inspection of simulations shows that both cases occur). In reality, shifts in environmental conditions,362

arrival of predators or spread of diseases can equally play this role.363

Early extirpation of imprudent consumers interacts with other evolutionary forces (Fig. 3) as follows:364

ease of establishment in communities increases with increasing base attack rates, but with diminishing365

returns. Since high base attack rates are not beneficial for the subsequent long-term population survival,366

a moderate mutation bias can thus prevent attack rate evolution beyond values where invasions become367

likely. As a result, prudence evolves. As we demonstrate in Appendix S6, “cheaters”, who out-compete368

prudent conspecifics as they invade local communities, do not fundamentally undermined this outcome.369

The mechanism described above is essentially different from resource overexploitation through simple370

monophagous consumer-resource interactions. The latter occurs either during the initial Spread phase371

of invasions or—in models with non-linear functional responses (Rosenzweig, 1971)—in the course of372

predator-prey cycles, and is controlled by some lower cutoff for viable resource population biomass373

(Mmin in Eq. (7)). With our choice of Mmin such dynamic resource extirpations followed by extirpation374

of the consumer are rare (Fig. S4). By contrast, new mechanism does not depend on such a cutoff,375

because it operates in population-dynamical equilibrium.376

It is likely that the evolution of prudence previously observed in the size-structured food web models,377

which include real-world complications such as direct competition amongst producers, omnivory, food-web378

loops, and phylogenetic patterning (Rossberg et al., 2008; Rossberg, 2013, Sec. 22.3), is driven by the379

same mechanism. The key element of the new mechanisms, consumer-mediated competitive exclusion,380

operates in food webs despite all these complications as long as the approximation of linear functional381

responses applies (Rossberg, 2013, Sec. 15.3).382
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3.5 The role of the functional response383

How then does variation in functional responses affect the mechanism we described? Consumer-mediated384

competitive exclusion is robust with respect to the introduction of Type II functional responses (Grover385

& Holt, 1998; Křivan & Eisner, 2006). The phenomenon also persists with moderate adaptive foraging386

(van Leeuwen et al., 2007), although it disappears in the extreme case of optimal foraging (Křivan &387

Eisner, 2006).388

Predator-dependent functional responses, however, which describe a reduction of per-capita feeding389

rate with increasing consumer (predator) abundance (Tyutyunov & Titova, 2020), facilitate resource390

coexistence in situations where consumer-mediated competitive exclusion would otherwise occur (Coblentz391

& DeLong, 2020). Predator-dependence, which is is empirically well documented (Skalski & Gilliam,392

2001; DeLong & Vasseur, 2011; Arditi & Ginzburg, 2012; Stouffer & Novak, 2021), thus offers and393

alternative route to prudence. However, firstly, this just shifts the problem of explaining consumer-resource394

coexistence to understanding why and to what extent consumers have evolved to restrain foraging in the395

presence of competitors. Secondly, with consumers behaviourally restraining themselves, there is again396

little fitness benefit in excessively high base attack rates, potentially constraining realised base attack397

rates as a result. Prudence in nature could be realised by mixtures of varying composition between398

adaptation of based attack rates and predator-dependence of functional responses.399

3.6 The analogy with evolution of virulence400

Evolution of prudent predation has an analogy in the evolution of the virulence of infectious diseases401

(Lion & Boots, 2010). Laying out this analogy can contribute to demystifying evolution of prudence.402

According to the classical theory by Anderson & May (1982), evolutionary stable virulence is the outcome403

of a trade-off between virulence and transmission rate (Cressler et al., 2016). Virulence, i.e. the mortality404

of infected hosts, corresponds to inverse population “life time” 1/L(a) in our model and transmission405

rate to population “birth rate” b(a). As for infectious diseases, a trade-off between L(a) and b(a) arises406

in our model (Fig. 3) that leads to evolutionary stable values for a, b(a), and L(a).407

The major difference to current models of evolutionary epidemiology (Cressler et al., 2016) is the408

inclusion of mutation bias in Eq. (3). For viruses, such bias is well documented (Sanjuán et al.,409

2004; Silander et al., 2007); its omission in epidemiological models most likely just a nod to parsimony.410

Indeed, the bias would only shift evolutionary stable virulence to smaller values in most models, without411

fundamentally affecting mechanisms. In our model this is different. Since b(a) plateaus with increasing412

a and L(a) declines, R(a) = b(a)L(a) appears to attain a maximum along the a axis, representing an413

evolutionary stable point even without mutation bias. The corresponding base attack rate a, however, is414

rather high. It would lead to a decline in resource richness (Rossberg, 2013, Sec. 20.2) and, ultimately,415

to extirpation of all consumers. Mutation bias is hence a facet of reality our model cannot afford to gloss416

19



Figure 5: Prudence and optimisation in evolution. The figure schematically illustrates evolutionary forces
acting on a single, isolated consumer k (red) feeding a single resource, and a polyphagous consumer k
embedded in a metacommunity (blue). The area shaded in grey indicates the range of physiologically feasible
combinations of attack and respiration rates under ad libitum feeding. The isolated monophagous consumer
will evolve to minimise the abundance of its resource at equilibrium (arrows), controlled by ρk/ak, leading to an
evolutionary optimum as indicated by the eight-pointed star. The polyphagous consumer in a metacommunity
will evolve towards prudent predation (range of corresponding ρk/ak values indicated by blue shading) and
also to minimise its respiration+mortality rate (arrows) in order to maximise its abundance. The evolutionary
endpoint is then given by the five-pointed star. Both endpoints are consistent with observations in so far as
they represent the limit of physiologically feasible ak-ρk combinations.

over.417

3.7 Prudence and optimisation418

Purely ecological mechanisms constrain the basic reproduction number Rk of extant consumers k in our419

model (Sec. 3.3). Evolved prudence means that, through adaptation of k’s phenotype, Rk for newly420

establishing species is also constrained to values not much larger than 1.421

At first sight, such adaptation appears to contradict decades of research demonstrating that organisms422

have evolved to optimise their metabolism, minimise mortality, and maximise their intrinsic population423

growth rates. But this apparent contradiction can be resolved.424

The metapopulation fitness of species is determined not only by their abilities to invade patches and425

population survival within patches, but also by the rate of dispersal from one patch to others. This rate426

is controlled not only by dispersal strategy but also by population size within patches. All else equal,427

larger populations disperse more propagules.428

Population biomass in our model is B̂C
k = α0ksB

C
k = εKsρ−1k BC

k . In this expression, dimensionless429

population biomass BC
k is independent of ρk for given scaled interaction strengths Hjl (1 ≤ j ≤ SR, 1 ≤430

l ≤ Sl), and K and s are characteristics of the resources. To increase population size, and hence dispersal,431

consumers can therefore adapt to minimise ρk while at the same time keeping and Rk =
∑SR

j Hjk in432

the range consistent with prudent predation. (A corresponding argument could be made for assimilation433

efficiency ε.)434

Figure 5 schematically compares evolutionary forces and the resulting position of the evolutionary435

stable strategy in the space spanned by ρk and ak for a prudent consumer (blue) and for a monophagous436

consumer in an isolated community (red). Crucially, both optima are consistent with empirical observations437
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that foraging apparatus and strategies are optimised to maximise base attack rates ak within the limits438

of given metabolic+mortality costs ρk, and that metabolic and mortality costs are minimised under the439

constraint of maintaining the biological machinery required to retain a given base attack rate ak.440

The difference between the two optima lies in the (true or apparent) quantitative trade-off between441

ρk and ak, i.e. the slope of the edge of the physiologically feasible range at the optimum in Fig. 5.442

Empirical work rarely if ever quantifies this trade-off for comparison with theoretical expectations.443

Prudent predation therefore cannot be dismissed simply on the grounds that metabolism, longevity444

and foraging are found to be minimised or maximised in nature with some trade-off.445

4 What empirical support for our theory looks like446

We discussed a range of conceivable mechanisms for consumer-resource coexistence. These include447

resource survival at metapopulation level, resources winning evolutionary arms races, prudence through448

predator-dependent functional responses, and evolution of prudence via either selection by monophagous449

boom-bust cycles or the polyphagous mechanism describe here. To test specifically for the polyphagous450

mechanism, we propose to study three kinds of empirical data:451

1. Basic reproduction numbers of resident consumers, to test for ecological constraints on this number.452

2. Events surrounding invasive alien consumers, to test for separation of ultimate and proximate453

causes of selection for prudence.454

3. Comparisons of minimum required and actual resource densities, to test for manifest prudence.455

Below we provide examples of each. Tests 1 and 2 are specific to the polyphagous mechanism. Test 3456

excludes metapopulation-level resource survival and to some extent predator-dependent functional responses.457

4.1 Evidence of ecological constraints on basic reproduction number458

Our theory predicts an ecological constraint on the basic reproduction number Rk of resident polyphagous459

consumers k (after their impact phase). This can be tested by studying what fisheries scientists call460

stock-recruitment relations (Fig. 6, thick lines): the functional dependence of the number of newly461

maturing recruits Rec(SSB) produced by a stock each year on its spawning stock biomass, SSB—the462

total biomass of sexually mature individuals.463

With SSB0 denoting SSB for the unfished, virgin stock, one defines the steepness h (Fig. 6) of464

Rec(SSB) as465

h =
Rec(0.2× SSB0)

Rec(SSB0)
. (16)
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Figure 6: Stock-recruitment relations and steepness. The figure illustrates the range of possible
stock-recruitment relations (thick lines) that can emerge from a Lotka-Volterra model of a fish stock feeding
on a single resource (Appendix S7). Panels a, b, and c, correspond to basic reproduction numbers 1.2, 3,
and 20, respectively. Specifically, we evaluated the model of Appendix S7 with a = 1.2K−1, 3K−1, 20K−1,
the other parameters fixed at s = 1, K = 100, ε = 0.1, ρ = 0.1, and fishing mortality F varying from 0
up to the value where the fish stock goes extinct. Stock size SSB = SSB0 and recruitment Rec for the
unfished (F = 0) community are indicated by a circle and dotted lines, SSB and Rec at 20% of the unfished
stock size by a cross and dash-dotted lines. The resulting steepness h, defined as the ratio of the two Rec
values, is indicated in each panel. To see why steepness and basic reproduction number are closely related,
note that for a virgin stock, and hence along the blue dashed line in Panel b, each adult fish has exactly one
recruit offspring on average. Basic reproduction number is the factor by which recruitment lies above this line
at minimal abundance, steepness is 0.2 times this factor at 0.2 SSB0. Observed stock-recruitment relations
typically resemble rather Panel b than Panels a or c.
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Steepness is closely related to basic reproduction number (Fig. 6). In Appendix S7, we show that for a466

single stock k feeding on multiple resources in a Lotka-Volterra model467

hk =
1

25
(1 + 4Rk) . (17)

The ecological constraint on Rk thus implies a constraint on steepness hk (see also Myers et al., 1999).468

Is this constraint observed? For fish stocks, yes. Following the realisation that steepness attains469

preferred values across stocks (Punt et al., 1994; McAllister et al., 1994), priors for steepness are now470

regularly used to estimate stock-recruitment relations for data-poor stocks (Punt & Dorn, 2014). In471

simple cases, a fixed value for h is used. The assumption that steepness has some preferred value is also472

implicitly in rules of thumb that estimate the fishing mortality rate generating maximum sustainable473

yield as a constant multiple of the natural mortality rate of adults (Beddington & Kirkwood, 2005),474

which are surprisingly accurate (Zhou et al., 2012).475

This preference for steepness to attain certain values could never be explained (Myers et al., 1999; He476

et al., 2006). Ginzburg et al. (2010) argued that, for annual or age-structured populations (Tuljapurkar477

et al., 1994), periodic or chaotic oscillations can set in at large Rk, independent of the detailed nature478

of density dependence, thus potentially selecting against large Rk. However, for these such oscillations479

to lead to extirpations, and so selection, their amplitude would need to be much larger than anything480

observed in the fisheries context. Our theory provides a more natural explanation.481

Unfortunately, quantitative comparisons of steepness are possible only for a fixed functional form of482

the fitted stock-recruitment relation (Munyandorero, 2020), and we are unaware of systematic studies483

using Lotka-Volterra (or “Schaefer”) models. Typically, the Beverton-Holt model is used (Rec =484

c1SSB/(1 + c2SSB) with parameters c1, c2), for which steepness priors tend to have a mode near h = 0.8485

(McAllister et al., 1994; Zhou et al., 2012; Shertzer & Conn, 2012; Thorson et al., 2019; Munyandorero,486

2020). Remarkably, this mode near h = 0.8 was also found in a size-structured marine food-web model487

where interacting fish and their resources were explicitly modelled, permitting the mechanism described488

in Sec. 3.3 to unfold (Rossberg et al., 2013).489

4.2 Evidence of operation of the polyphagous selection mechanism490

By definition, invasive alien species cause harm to the ecosystems they invade. Often, this is through491

predation or grazing. Such harmful invasive consumers appear to have base attack rates too high for492

the invaded ecosystems to sustain. Our theory predicts a series of telltale signatures that should be493

observable when such imprudent alien polyphagous consumers invade local communities:494

1. Fast initial population growth, indicative of an imprudent alien consumer.495

2. A strong impact on the resource community, involving resource extirpations or resource depletion496
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Table 2: Examples of observed signatures of the operation of the proposed mechanism selecting for prudence
as being reported for invasive alien consumers. For detailed explanation of signatures, see text.

Invasion Event Signature Key References
1. Fast 2. Resource 3. Ad- 4. Disap-
Growth Extirpation justment pearance

Comb jellyfish
(Mnemiopsis leidyi)
in the Black Sea

yes yes yes decline Kideys 2002

Indo-Pacific lionfish
(Pterois volitans/miles)
in Gulf of Mexico

yes yes yes decline Côté & Smith 2018
Harris et al. 2020

Signal crayfish
(Pacifastacus leniusculus)
in Swedish lakes

yes yes yes yes Sandström et al. 2014
Ruokonen et al. 2014

Argentine ant
(Linepithema humile)
in New Zealand

yes yes ? yes Cooling et al. 2012
Tillberg et al. 2007

to low levels sustained by immigration (i.e. mass effects, Shmida & Wilson 1985). This might go497

along with exclusion of competing consumers.498

3. A halt in population growth, potentially with subsequent decline, after which the invader’s population499

stabilises.500

4. Further local decline or even extirpation of the invader’s population, explained through the (re-)emergence501

of competitors, other rather unsuspicious causes, or unexplained.502

That is, we are not only predicting “population crashes of established introduced species”, reviewed by503

Simberloff & Gibbons (2004), but a more detailed pattern that evidences the temporal separation of504

the ultimate cause (2.) from the proximate cause (4.) of population collapse. This separation is highly505

specific to the mechanism we propose. In particular, it does not arise with the monophagous counterpart.506

We shall discuss four well-studied examples of invasive alien consumers where these signatures have507

been fully or partially documented (Tab. 2). This serves not only to illustrate how these signatures508

manifest themselves in the field but also demonstrates that observation of what we predict is not unheard509

of. A careful meta-analysis would be required to establish how common documentation of these signatures510

is and to what extent absence of their documentation is due to incomplete observation or reporting.511

4.2.1 Comb jellyfish in the Black Sea512

The comb jelly Mnemiopsis leidyi is a “voracious zooplanktonic predator” (Kideys, 2002), known to513

depress both abundance and diversity of mezoplankton (Shiganova, 1998; Fiori et al., 2019). After514

arriving in the Black Sea through ballast water, its outbreak in 1989 (with density > 1 kg m−2) led to515

a sharp decline of anchovies, previously the dominating planktivores in the Black Sea, a result of both516

resource competition and predation of larvae (Kideys, 2002). Over the subsequent three years, however,517

24



Mnemiopsis declined about five-fold and anchovy catches recovered to their previous levels. Whatever518

resources fuelled the 1989 outbreak had been exhausted. Between 1992 and 1998 Mnemiopsis coexisted519

with anchovy at this lower abundance (Kideys et al., 2000). Predation by the invading ctenophore Beroe520

(B. ovata or B. cucumis), which appeared in 1997, led to a further sharp decline of Mnemiopsis in 1999.521

Because Beroe feeds almost exclusively on Mnemiopsis (Finenko et al., 2001), it cannot entirely extirpate522

its prey. Currently, the two jellyfish therefore appear to persist in the Black Sea at low abundance.523

4.2.2 Lionfish in the Gulf of Mexico524

Indo-Pacific lionfish Pterois volitans/miles grow and reproduces fast (Côté & Smith, 2018), deter predators525

with venomous spines (Vetrano et al., 2002; Côté & Smith, 2018), have high physiological tolerance, and526

are effective predators, as they appear inconspicuous to their prey (Lönnstedt & McCormick, 2013). The527

course of their invasion of the Northern Gulf of Mexico and neighbouring areas since 1985 is exceptionally528

well studied (Côté & Smith, 2018; Harris et al., 2020). Prey extirpation by lionfish has been documented529

in controlled field experiments (Ingeman, 2016).530

In 2018, Côté & Smith found first indications that the worst-case scenario of lionfish invasion531

envisioned by Albins & Hixon (2013), “in which most reef-fish biomass is converted to lionfish biomass,532

leaving invaded reefs depauperate of native fishes”, would not materialise. Benkwitt et al. (2017) reported533

for 64 unmanaged and unfished reefs in the Bahamas how lionfish populations first rapidly increased534

(70.6% per year), plateaued for between 2 and > 7 years, and then, in some case, their unexplained535

declines (by up to 99% over a 4-year period). Populations of the Nassau grouper (Epinephelus striatus),536

a comparable native predator, varied much less. Similarly, Harris et al. (2020) detailed what they called537

a “precipitous declines” of lionfish density in the Northern Gulf of Mexico over the period 2017-2019 (by538

up to 77-79%). Harris et al. associated this decline with an ulcerative skin disease observed on lionfish,539

but since this peaked in 2017 while the decline continued into 2019, other factors might also play a role.540

4.2.3 Signal crayfish in Swedish lakes541

Sandström et al. (2014) documented 40 years of population dynamics of North American signal crayfish542

(Pacifastacus leniusculus) that were introduced into 44 Swedish lakes. Most populations exhibited the543

rapid increase characteristic of invasive species, after which populations sizes stabilised. Yet, 41% of544

these populations collapsed after an average of 10.8 years without recovering. The authors considered545

and dismissed presence of predatory eel (Anguilla anguilla) and of crayfish plague (Aphanomyces astaci)546

to explain the collapses. Instead, they found subtle statistical effects of temperature and year of stocking.547

Based on evidence of strong density dependence in population time series and because it is known548

from Finnish lakes that P. leniusculus modifies and depauperates its macroinvertebrate prey community549

(Ruokonen et al., 2014), Sandström et al. (2014) offer resource overexploitation as a likely mechanistic550
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explanation of the collapses.551

4.2.4 Argentine ants in New Zealand552

An example from the terrestrial realm is provided by populations of the Argentine ant (Linepithema553

humile) in New Zealand (Cooling et al., 2012). In the words of Cooling et al., “Introduced populations554

form high-density, widespread, highly aggressive, unicolonial populations and can deleteriously influence555

native communities (Holway et al., 2002).” While collapse and extirpation of invasive ant populations556

are a common phenomenon (Lester & Gruber, 2016), attribution of mechanisms can be hampered by557

insufficient understanding of ant diet and feeding behaviour. As Holway et al. (2002) point out, predation558

and scavenging must be distinguished. Noteworthy are therefore observations by Tillberg et al. (2007)559

that the trophic position of invading L. humile is highest at the invasion front and declines with the560

duration of site occupation, falling well below the trophic position of L. humile in its native range. This561

evidences resource depletion through predation that scavenging cannot explain. When Abril et al. (2007)562

found in invaded natural areas that most of the solid food of L. humile was dead and dehydrated, this563

might plausibly have been because L. humile had already extirpated their preferred life prey.564

Studying 150 sites with recorded L. humile presence in New Zealand, Cooling et al. (2012) found565

that 40% of populations had collapsed, with survival time in the rage of 10-18 years. Of the remaining566

populations, “many had shrunk from numerous nests covering multiple hectares with extremely high567

abundances to just one or two nests covering a very small area with low worker densities.” At infested568

sites, richness and abundance of other ant species was depressed but recovered after L. humile collapsed,569

providing additional indirect evidence of severe resource depletion by L. humile.570

4.3 Evidence of manifest prudence571

From laboratory measurements of attack rate ajk for preferred resources j of a consumer k, its assimilation572

efficiency ε, and respiration+mortality rate ρk one can determine the minimum resource biomass ρk/(εajk)573

or, in practice, biomass density that k requires to sustain its population. When this is similar to the574

resource density in k’s native habitat, we call this manifest prudence; it is the outcome predicted by575

our theory. If native resource density is much higher than this a mechanism different from what we576

propose must be enabling consumer-resource coexistence. In cases where comparisons of absolute values577

of minimum required and native resource density are not possible, one can test for proportionality of the578

two quantities across contrasting groups of organisms.579

In pelagic ecology ajk = m−1k sjk is called the maximum specific clearance rate, and determined from580

consumer biomass mk and the maximum slope sjk (dimension Volume/Time) or similar of a measured581

functional response. Marine ecologists have often studied whether pelagic consumers are food limited,582

and the question to what extend food is sufficient for survival got addressed along the way. In this583
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context Huntley & Boyd (1984) introduced Cm = ρk/(εajk) as the “maintenance food concentration”.584

The contribution of mortality to ρk is not usually considered, thus underestimating the true minimum585

requirement. Despite this, true native resource densities tend to be lower than Cm (Mullin & Brooks,586

1976; Huntley & Boyd, 1984; Huntley, 1992; Hirst & Bunker, 2003)!587

To reconcile this discrepancy, it has been argued that pelagic consumers might be able to exploit588

higher then average resource density, since resource distribution is patchy on the relevant scales (Mullin589

& Brooks, 1976; Huntley, 1992). Whatever the explanation, an abundance of data suggest that clearance590

or attack rates of marine pelagic consumers are not much higher than required to sustain their population.591

Marine pelagic consumers are manifestly prudent.592

4.3.1 Trends across ocean biogeographic regions593

Huntley & Boyd (1984), for example, executed the program above for marine herbivorous zooplankton,594

paying attention to include only studies conducted “at temperatures encountered in the natural habitat”595

of study organisms. Temperatures varied between 0 and 30◦C, covering most global ocean-climatic596

zones. Higher sea-surface temperatures reduce mixing of the water column, and so nutrient supply and597

phytoplankton density.598

Huntley & Boyd compared maintenance food concentration Cm with ranges of concentrations of599

particulate organic carbon (POC) observed in studies spanning 0-25◦C water temperature, while distinguishing600

between “coastal” and “oceanic” waters. For organisms of 0.1 mg dry mass (the size of the copepod601

Calanus pacificus) Cm varied by a factor 23 from 0.022 mg L−1 at 25◦C to 0.50 mg L−1 at 0◦C. This602

temperature dependence tracked the lower ends of the oceanic POC concentration ranges. Coastal POC603

concentrations where higher.604

The strong temperature dependence of Cm was mostly driven by a temperature dependence of ajk.605

Between 0 and 25◦C, ajk increased by a factor 126 for 0.1 mg organisms. As a measure for the strength606

of temperature dependence, this corresponds to a Q10 value of 12610/(25−0) = 6.9. Since Q10 for the607

intraspecific temperature dependence of clearance and other physiological rates of zooplankton lies in608

the range 1.5-4 (average: 2.8) (Hansen et al., 1997), this large Q10 for ajk is unlikely to be explained609

on physiological grounds. More plausibly, the large interspecific Q10 for ajk reflects adaptation of610

zooplankton species to different characteristic resource densities—ultimately controlled by ocean physics.611

Interestingly, Huntley & Boyd’s Q10 = 2.0 for respiration is in the expected range. This is consistent612

with the expectation from Sec. 3.7 that ρk will be at the physiological limit while ajk is adjusted for613

prudence.614

Remarkable in this context is also a meta-analysis by Kiørboe (2011b) showing that the geometric615

mean specific clearance rate of freshwater cladocerans (water fleas) is lower by an approximate factor 10616

than that of marine copepods (which occupy a similar ecological niche). This is the trend expected from617
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prudence, because in freshwater nutrients and food tend to be more abundant.618

4.3.2 Trends across life forms619

Kiørboe & Hirst (2014) conducted a meta-analysis of respiration ρk and specific clearance rates ajk of620

marine pelagic species spanning a factor 1015 in body mass. Within major taxonomic and life-form groups621

(flagellates, ciliates, calanoid copeopods, non-calanoid copeopods, euphasids, cnidaria & ctenophores,622

tunicates, pisces) they found that the scaling of both rates is consistent with −1/4 power laws. The lead623

coefficients (“intercepts”) of the power laws, however, differed between taxonomic groups in such a way624

that both scaling exponents, when evaluated across all groups and body sizes, were close to 0.625

It is unsurprising that two organisms of the same size but from different taxonomic groups feed and626

metabolise at somewhat different rates (Kiørboe, 2011a). What surprised Kiørboe & Hirst (2014) was627

that the changes between groups in the lead coefficients size for ρk and for ajk were of similar, such that628

ρk/(εajk) remained similar across groups.629

Can prudent predation explain this? In marine pelagic ecosystems biomass is approximately evenly630

distributed over the logarithmic body size axis (Sheldon et al., 1972), implying an approximately equal631

density of food available to organisms of all sizes. To be precise, biomass slightly declines with body mass632

(Rossberg et al., 2019), but so does species richness. The two effects plausibly compensate each other633

such that the biomass density of a consumer’s preferred resources is independent of consumer body mass.634

Manifest prudence then means invariance of ρk/(εajk) across body size, as documented by Kiørboe &635

Hirst (2014).636

Remarkably, the variation of ρk around the overall geometric mean (≈ 0.05 (gC/gC) day−1) found637

by Kiørboe & Hirst (2014) is smaller than that of ajk, and this mean value of ρk is observed similarly638

across all domains of life (Makarieva et al., 2008). This, too, agrees with our expectation (Sec. 3.7) that639

ρk will be at the physiological limit while ajk is adjusted for prudence.640

5 Prudent predation - the way forward641

Both, the theoretical and the empirical pictures we have drawn of the polyphagous mechanism for642

evolution of prudence remain incomplete. Our theory represents several elements implicitly, including643

the metacommunity (O’Sullivan et al., 2020), continuity of space (Goodnight et al., 2008), trophic644

trait matching (Appendix S1), and evolution on the generational timescale (Mitteldorf et al., 2002).645

Simulations making these elements explicit would be challenging but feasible, and useful for confirming646

their interaction in the ways we predict. And while we presented empirical evidence of predicted processes647

(Sec. 4.2) and outcomes (Sec. 4.1, 4.3), different evidence related to different systems. Future research648

should address these gaps.649
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What gives us confidence in the theory despite these caveats are its reliance on generic ecological650

principles and its tremendous explanatory power. All three specific patterns it predicts (preferred651

steepness values, delayed decline of invasive alien consumers and manifest prudence) have long been652

noticed but remained hitherto unexplained. Evolved prudence offers explanations for all three apparently653

unrelated loose ends or, in the words of Kuhn (1962), “anomalies”. A dismissal of evolved prudent654

predation would not only reopen the old question of how consumers and resources coexist in nature, it655

would also forfeit its potential for theoretical unification.656

To both sceptics and enthusiasts of our theory we suggest more wide-ranging testing for the predicted657

patterns across biota. For example, the analysis by Kiørboe & Hirst (2014) discussed in Sec. 4.3.2 could658

be expanded to include biogeography (Sec. 4.3.1), and databases such as FoRAGE (Uiterwaal et al.,659

2018) might permit its extension beyond marine pelagic systems.660
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Křivan, V. & Eisner, J. (2006). The effect of the Holling type II functional response on apparent776

competition. Theor. Popul. Biol., 70, 421–430.777

Kuhn, T.S. (1962). The Structure of Scientific Revolutions. vol. 2 of International Encyclopedia of778

Unified Science. University of Chicago Press, Chicago, IL.779

Law, R. & Morton, R.D. (1996). Permanence and the assembly of ecological communities. Ecology, 77,780

762–775.781

van Leeuwen, E., Jansen, V.a.A. & Bright, P.W. (2007). How population dynamics shape the functional782

response in a one-predator–two-prey system. Ecology, 88, 1571–1581.783

Lester, P.J. & Gruber, M.A.M. (2016). Booms, busts and population collapses in invasive ants. Biol.784

Invasions, 18, 3091–3101.785

Lindeman, R.L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.786

Lion, S. & Boots, M. (2010). Are parasites “prudent” in space? Ecol. Lett., 13, 1245–1255.787

Lion, S., Jansen, V.A.A. & Day, T. (2011). Evolution in structured populations: Beyond the kin versus788

group debate. Trends Ecol. Evol., 26, 193–201.789

Lion, S. & Metz, J.A.J. (2018). Beyond R0 maximisation: On pathogen evolution and environmental790

dimensions. Trends Ecol. Evol., 33, 458–473.791

Lockwood, J.L., Hoopes, M.F. & Marchetti, M.P. (2013). Invasion Ecology. John Wiley & Sons,792

Incorporated, Hoboken, United Kingdom.793
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Stenberg, M., Hertonsson, P., Vr̊alstad, T. & Granèli, W. (2014). Population collapses in introduced877

non-indigenous crayfish. Biol. Invasions, 16, 1961–1977.878

Sanjuán, R., Moya, A. & Elena, S.F. (2004). The distribution of fitness effects caused by single-nucleotide879

substitutions in an RNA virus. Proc. Natl. Acad. Sci. U. S. A., 101, 8396–8401.880

Schaffer, W.M. & Rosenzweig, M.L. (1978). Homage to the Red Queen. I. Coevolution of predators and881

their victims. Theor. Popul. Biol., 14, 135–157.882

Schino, G. & Aureli, F. (2010). The relative roles of kinship and reciprocity in explaining primate883

altruism. Ecol. Lett., 13, 45–50.884
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Appendix S1 Motivation of our algorithm for sampling species7

We explain here in detail why Eqs. (3) and (4) are plausible approximations for sampling the interaction8

strengths of new species entering our model community.9

Under quite general conditions it is possible to approximate the dependence of attack rates on the10

traits of consumers and resources in the form (Rossberg et al., 2010; Nagelkerke & Rossberg, 2014;11

Rossberg, 2013, Ch. 8):12

ajk ≈ a0 exp

[
v
(j)
0 + f

(k)
0 −

D∑
k=1

σk
2

(
v
(j)
k − f

(k)
k

)2]
, (S1)

withD denoting the dimensionality of trophic niche space and v
(j)
0 , . . . , v

(j)
D and f

(k)
0 , . . . , f

(k)
D vulnerability-13

and foraging traits of resources and consumers, respectively, which can be computed as functions of14

observable biological traits (Nagelkerke & Rossberg, 2014). A similar representation has been proposed15

by Rohr et al. (2010). The constant a0 has dimensions of attack rates and σk = ±1. There is some16

ambiguity in how to chose a0, σk and the functions mapping observed traits to trophic traits. However,17

when imposing a condition the mean of (v
(j)
0 )2 over the entire resource pool j is minimised, these18

ambiguities are resolved up to rigid geometric transformations of the vectors v(j) = (v
(j)
1 , . . . , v

(j)
D ) and19

f (k) = (f
(j)
1 , . . . , f

(j)
D ) (Rossberg, 2013, Ch. 8). With the mean of (v

(j)
0 )2 minimised, we shall approximate20

v
(j)
0 = 0.21

For large D and sufficient statistical independence of the components of v(j) and f (k) (Rossberg,22

2013, Ch. 11), one can approximate the sum in Eq. (S1) for randomly sampled consumer-resource pairs23

(j, k) by a normal distribution. Denoting the mean of this normal distribution by µ and its variance by24

σ2, and defining ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (4).25

All traits of consumers and resources can undergo mutations. However, compared to the evolution26

of foraging traits f
(k)
0 , . . . , f

(k)
D , the resulting evolution of vulnerability traits v

(j)
0 , . . . , v

(j)
D is known to27

be slow (Rossberg et al., 2006; Bersier & Kehrli, 2008; Eklöf & Stouffer, 2016)—a median of 25 times28

slower in an analysis of Rossberg et al. (2006). It shall here be disregarded.29

Mutations of any observable biological traits will affect several foraging traits f
(k)
0 , . . . , f

(k)
D . The30

question whether this increases of decreases short-term fitness (Goodnight et al., 2008) in a given31

community depends not only on all traits f
(k)
0 , . . . , f

(k)
D of the focal consumer k but also on the sets of32

resources and competitors in the community. Even when a mutation leads to an increase in short-term33

1



fitness, the change in f
(k)
0 associated with this mutation might be positive or negative, provided niche34

space dimensionality D is not too low, since the associated change in f
(k)
0 is just one of many random35

contributions to the change in short-term fitness. As a result, mutants arriving at the focal patch from36

a source patch may have f
(k)
0 values that can be higher or lower than the f

(k)
0 of the propagule that37

founded the population in the source patch. Because smaller f
(k)
0 correspond to consumers that, overall,38

forage less effectively than consumers with larger f
(k)
0 , and low effectiveness is mechanically easier to39

achieve than high effectiveness, one must plausibly assume that degeneration of traits through mutations40

(Pomiankowski et al., 1991) leads to a decay of f
(k)
0 on average unless this is counteracted by selection41

pressure. Recalling that ak = a0 exp(f
(k)
0 − µ), this leads to Eq. (3).42

We assume that the relevant species pools are large and diverse, such that different patches have in43

effect statistically independent, typically non-overlapping species compositions. The random variables44

ξjk in Eq. (4) are therefore sampled anew as a propagule arrives at the focal patch, independent of45

a consumer’s interactions with the residents of its source patch. Only the inheritance of ak must be46

accounted of.47

As a caveat, we note that in reality vulnerability traits do not cover the D-dimensional trophic traits48

space evenly, e.g. because these traits carry phylogenetic signal (related species have similar consumers,49

Bersier & Kehrli 2008). Then foraging traits other than f
(k)
0 might contribute to long-term fitness as50

well. For simplicity, we disregard this complication in our model.51
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Appendix S2 Derivation of the sub-models of the deconstructed52

formulation53

We provide the rationale and outline the derivation of the four criteria Eqs. (5-9) driving invasions and54

extirpations in the deconstructed model formulation.55

The invadability criterion, Eq. (5), predicts invadability when disregarding the presence of all but56

the focal consumer in the dimensionless full model, Eq. (2). Formally, it is obtained by computing the57

equilibrium state of Eq. (2) for SC = 1 and BC
k = 0 (with k = 1), which is BR

j = 1 for 1 ≤ j ≤ SR, and58

then extracting the condition that, by Eq. (2b), this equilibrium is unstable such that the consumer can59

invade:
∑SR

j=1HjkB
R
j − 1 =

∑SR

j=1Hjk − 1 > 0.60

The condition for the overexploitation of resource j during the expansion phase of an invading61

consumer k, Eq. (7), is obtained by analysing the dimensionless full model, Eq. (2), for the case of62

only one consumer and one resource: SC = 1, SR = 1 (with j = k = 1). We consider again the situation63

where the consumer is initially absent BC
k = 0 and the resource at equilibrium BR

j = 1, dBR
j /dt = 0. Then64

the consumer invades at low abundance. To estimate the minimum of BR
j attained during the consumer65

invasion, i.e. during the transient before a new equilibrium is reached, we approximate dynamics by66

disregarding the density dependence of resource production expressed by the term −BR
j in Eq. (2a).67

This approximation is justified because we are interested in situations where BR
j falls below Mmin � 1.68

It reduces the model to the classical Lotka-Volterra predator-prey equations69

dBR
j

dt
= s

[
1−HjkB

C
k

]
BR
j , (S2a)

dBC
k

dt
= ρk

[
HjkB

R
j − 1

]
BC
k . (S2b)

Evaluating the conservation law known for this system (Lotka, 1920) for the initial conditions BR
j = 1,70

dBR
j /dt = 0, one finds that at its minimum BR

j satisfies ln(BR
j ) = −Hjk(1 − BR

j ) (Rossberg, 2013,71

Sec. 20.3.3). Since we are interested in situations where the minimum is deep (BR
j < Mmin � 1), this72

condition can be approximated as ln(BR
j ) = −Hjk. It follows that BR

j falls below Mmin during consumer73

k’s invasion if ln(Mmin) > −Hjk, which is equivalent to Eq. (7).74

The conditions for consumer-mediated competitive exclusion, for exploitative competitive exclusion75

and for Pyrrhic competition all derive directly from exact equilibrium solutions of the dynamic model.76

The general multispecies model, Eq. (2), is well studied (MacArthur, 1970, 1972; Case & Casten, 1979;77

Chesson, 1990). To write down its equilibrium solution, let H be the matrix with entries Hjk and define78

the competition matrix as the matrix with entries79

Ckl =

SR∑
j=1

HjkHjl, that is C = HTH. (S3)

Denote by s the vector of intrinsic consumer growth rates80

sk = Rk − 1, (S4)

with Rk =
∑SR

j=1Hjk defined as in the main text. The vector bC of consumer population biomasses BC
j81

at equilibrium is then given by82

bC = C−1s. (S5)
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and that of resource population biomasses BR
j by83

bR = 1−HBC. (S6)

In the case of only one consumer (SC = 1, k = 1), the biomass of the resource j is therefore BR
j =84

1 − Hjk(Ckk)−1sk. The resource with the lowest biomass is that with the largest Hjk, i.e., the main85

resource of k. Its biomass is negative, implying resource extinction (Holt, 1977), if86

Ckk < Hjksk. (S7)

The criterion for consumer-mediated competitive exclusion, Eq. (8), spells out this condition.87

For the two-consumer (Sc = 2) problem, we have, with k = 1 and l = 2,88

C−1 =
1

CkkCll − C2
kl

(
Cll −Ckl
−Ckl Ckk

)
. (S8)

Combining Eqs. (S5) and (S8), we find that (for Sc = 2) BCk < 0 if89

Cllsk − Cklsl < 0 (S9)

or equivalently90

sk <
Cklsl
Cll

. (S10)

Our criterion of exploitative competitive exclusion, Eq. (6) spells out this condition.91

Now, assume that Eq. (S10) and the corresponding condition with l’s and k’s role reversed both fail92

to be satisfied. This alone does not guarantee coexistence of all species. Combining Eqs. (S5), (S6)93

and (S8), one can see that the equilibrium abundance of resource BR
i is predicted to be negative if94

1 < Hik
Cllsk − Cklsl
CkkCll − C2

kl

+Hil
Ckksl − Cklsk
CkkCll − C2

kl

. (S11)

This can be re-arranged to95

CkkCll − C2
kl < sk (HikCll −HilCkl) + sl (HilCkk −HikCkl) , (S12)

and our condition for Pyrrhic competition, Eq. (9), spells out this inequality.96

We now outline how these conditions can efficiently be evaluated for large SR and SC. The most time97

consuming step is the computation of C in Eq. (S3), as (for practical purposes) the number of operations98

this requires increases as O(S2
CSR) with system size. All remaining calculations can be done using just99

O(S2
C) or O(SCSR) operations.100

Denote, for any square matrix A, by diag(A) the vector formed by its diagonal elements, and by101

Diag(v), for any vector v, the diagonal matrix with v on the diagonal. We can evaluate the SC × SC102

matrix Φ with entries Φkl given by the left hand side of Eq. (S9) as103

Φ = s diag(C)T −C Diag(s). (S13)

To test for extirpations, set the diagonal of Φ to exactly zero to remove small numerical errors. Extirpation104

of consumer k by our (simplified) criterion follows if row k of Φ constrains negative elements.105

4



The SC×SC matrix D with entriesDkl = CkkCll−C2
kl, containing the determinants of all two-consumer106

competition problems (the denominators in Eqs. (S8), (S11)), can be computed as107

D = diag(C) diag(C)T −C ◦C, (S14)

with ◦ denoting elementwise multiplication. After finding for each consumer k the index m(k) of its108

main resource, one can constructed the SC × SC matrix M with entries109

Mkl = Hm(k)l. (S15)

Using this, we obtain the SC × SC matrix ∆ with entries given by the difference between left and right110

hand side of Eq. (S12) for the main resource of each consumer k as111

∆ = D−Diag(diag(M))Φ−M ◦ΦT . (S16)

To test for extirpations, set the diagonal of ∆ to exactly zero to remove small numerical errors.112

Extirpation of the main resource of consumer k by our (simplified) criterion follows if row k of ∆113

contains negative elements.114

By striking a new balance between code complexity, speed, and accuracy in the multi-objective115

optimisation problem of finding fast, simple and accurate models, our deconstructed formulation carves116

out emergent properties (sensu Rossberg, 2007) of the full model, Eq. (2), e.g., those shown in Figs. 2117

and 3.118
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Appendix S3 The evolutionary steady-state condition including119

mutation bias120

We derive the evolutionary steady state condition for base attack rate, Eq. (11).121

To understand the effect of mutation bias, we invoke the Price equation (Price, 1972). It predicts122

that the expected rate of evolutionary change of the a trait q is given by123

dEq/dt = cov[f(q), q] + Eq̇, (S17)

with f(q) denoting the invasion fitness (for a given environment) of lineages of type q, and the last124

term representing the mutation bias (the mean inherent rate of change of traits). For trait values q∗125

corresponding to evolutionary steady states, both sides of Eq. (S17) must evaluate to zero. Following126

Page & Nowak (2002), we expand f(q) to first order at q = q∗. Combined with the population-dynamical127

equilibrium condition f(q∗) = 0, this leads to 0 = f ′(q∗) var q + Eq̇, or equivalently128

f ′(q∗) = − Eq̇

var q
. (S18)

This condition generalises the conventional criterion for evolutionary singular strategies, f ′(q∗) = 0, to129

situations with mutation bias.130

To apply Eq. (S18) to our models, we set q = ln a and131

Eq̇ =
ln γ0
L∗

, (S19)

where L∗ is the mean lifetime of populations in the community. With time measured in units of consumer132

additions and considering that consumer richness remains approximately constant in the steady state,133

L∗ = S−1C . The standing mutational variance var q = var(ln a) is obtained from the distribution of a over134

the simulation steady state.135

We approximate steady-state invasion fitness, i.e. the mean inherent rate of increase (f(q) > 0) or136

decrease (f(q) < 0) of the number of populations of type q in the simulation steady state, as f(q) ≈137

ln[R(a)]/L(a), where R(a) is the mean number of populations that inherit their base attack rate via138

Eq. (3) from a population with base attack rate a (the “mean lifetime reproductive success”), and L(a)139

is the mean lifetime of populations with base attack rate a. With a∗ representing the geometric mean140

of a over the simulation steady state, such that ln a∗ is the arithmetic mean of ln a, we expect that141

R(a∗) = 1. This leads to142

f ′(q∗) ≈ d{ln[R(a)]/L(a)}
d ln a

∣∣∣∣
a=a∗

=
1

L(a)

d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

≈ 1

L∗
d ln[R(a)]

d ln a

∣∣∣∣
a=a∗

. (S20)

Putting Eqs. (S19) and (S20) into Eq. (S18) and multiplying both sides with L∗ yields Eq. (11).143
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Appendix S4 Mechanisms determining “birth rate”144

To derive an analytic representation of the dependence of birth rate b(a) of a resident consumer on base145

attack rate a, we must account for three elements common to both model formulations:146

1. The mutation step, Eq. (3), determining the new consumer’s based attack rate from that of the147

resident.148

2. The sampling of the new consumer’s attack rates according to Eq. (4), and the test whether it can149

invade.150

3. The fact that time is measured in numbers of successful consumer invasions.151

Crucial is the probability of successful invasion in 2. We begin with an analysis of this element, adding152

subsequently considerations of 1 and 3.153

Competitive exclusion by a resident consumer according to Eq. (6) always implies an inability to154

invade according to Eq. (5), so that (for SC > 0) only Eq. (6) needs to be considered. However, Eq. (5)155

can be understood as a correction of the invadability criterion, Eq. (5). To see this, re-arrange Eq. (6)156

as157

SR∑
j=1

Hjk

[
1−Hjl

∑SR

i=1Hil − 1∑SR

i=1H
2
il

]
− 1 < 0. (S21)

The term in square brackets represents the population biomass (in units of K) that resource j would158

have if l was the only extant consumer. The deconstructed formulation ensures that, at the end of a159

model iteration, no extant resource satisfies the criterion for consumer-mediated competitive exclusion,160

Eq. (8) and all extant consumers satisfy the simple invadability criterion, Eq. (5). These loop invariants161

guarantees that the value of the expression in brackets in Eq. (S21) lies between 0 and 1 for all k and l.162

Satisfaction of Eq. (S21) therefore implies violation of Eq. (5).163

Because there is no mechanism active in the model that would favours values of the expression in164

square brackets that are particularly close to zero (see also Fig. S1), most of the variation in the terms165

of the sum over j is due to the log-normal distribution of the invader’s attack rates Hjk. The presence166

of competitors merely moderates the effect of this variation. It can be represented by substituting the167

square bracket by a suitable constant 0 < β < 1: the fitting parameter introduced in the main text.168

The sum over j in Eq. (S21) can then be written as α0akβ
∑SR

j=1 e
σξjk . The distribution of the169

sum in this last expression is, for a given number of resources SR, often well approximated by a single170

log-normal distribution with suitable choices for mean µSR ≈ σ
√

2 lnSR and standard deviation σSR ≈171

σ/
√

1 + 2 lnSR of the logarithm (Rossberg et al., 2011). (We estimated µSR and σSR numerically form172

10,000 samples of log-normal sums, which is more accurate.)173

From this log-normal approximation, the invasion probability for species with given base attack rate174

ak is obtained as175

Pinv(ak) = Φ

(
ln(α0βak) + µSR

σSR

)
, (S22)

with Φ(x) denoting the cumulative standard normal distribution function. For the full model, the same176

functional form as in Eq. (S22) can be chosen based on the same rationale: compared to the variation177

in of link strengths, the variation in resource biomasses is small.178

Denote by P ∗inv(ar) the probability for the “offspring” of resident species r to invade successfully. The179

log-normal approximation for the sum in α0akβ
∑SR

j=1 e
σξjk used above combines seamlessly with the180

log-normal distribution of ak resulting from the mutation of base attack rate ar of the resident “parent”181
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Figure S1: Histogram of resource biomasses BR in the steady state of the full model, sampled from community
snapshots after every 200 consumer additions. Neither values close to zero nor values close to one are very
frequent.

species as per Eq. (3). We can therefore obtained P ∗inv(ar) from Eq. (S22) by correcting µ∗SR
= µSR

+ln γ0182

and σ∗SR
= [σ2

SR
+ (ln γ1)2]1/2 to account for mutational variance and bias. Hence183

P ∗inv(ar) = Φ

(
ln(α0βar) + µ∗SR

σ∗SR

)
. (S23)

Because we measure time in units of consumer invasions, and both variants of our model attempt184

consumer invasions from random resident species until one succeeds, the probability for offspring of185

resident consumer r to invade in a given time step is P ∗inv(ar)/
∑SC

k=1 P
∗
inv(ak) (guaranteeing that the186

probability for offspring of some consumer k to invade evaluates to 1). Since species richness and the187

distribution of ar fluctuate somewhat through time, we calculated the “birth” rate in Fig. 3c,g as the188

average of this probability for a given base attack rate a over the model steady states:189

b(a) = Average through time of
P ∗inv(a)∑SC

k=1 P
∗
inv(ak)

. (S24)
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Appendix S5 Serial extinction190

We derive Eq. (15) for the consumer’s intrinsic growth rate after serial extinction191

Note first that, because resources are successively removed in decreasing order of the consumer’s192

attack rate in the deconstructed model formulation (and also in the simplified model, Box 2), the193

distribution of attack rates after serial extinction is the same as before, except for being truncated194

from above at the point where Eq. (8) becomes violated. In situations where the sums in Eq. (8) are not195

dominated by just a few resources, the central limit theorem can be invoked and the sums approximated196

by their expectation values, which then permits analytic computation of the truncation threshold H∗197

and other properties of the end state.198

The calculations simplify by first approximating the relevant section of the upper tail of the log-normal199

attack-rate distribution, Eq. (4), by a Pareto distribution, which can be derived in the limit of high200

resource richness SR (Rossberg et al., 2011; Rossberg, 2013). By this approximation, the consumer has201

on average Z resources with Hjk larger then some “observation threshold” H0, and for these202

P [Hjk ≤ x] ≈ 1−
(
H0

x

)ν
, (S25)

with ν = σ−1
√

2 lnSR. Empirically, typical values for ν are in the range 0.5 to 0.6 (Rossberg et al.,203

2011; Rossberg, 2013). Values ν ≥ 1 would correspond to extreme omnivory where the proportional204

contribution of each resource species to a consumer’s diet scales as 1/SR, i.e. no resource makes a sizeable205

contribution to the diet. We are unaware of such a situation occurring in nature, and therefore assume206

0 < ν < 1 in this study. The value of the link density Z is chosen to control the typical strengths Hmax207

of the strongest attack rate before serial extinction, specifically the exp(−1)-quantile of the distribution208

of maxj Hjk. In the limit of large Z, this leads to the condition209

exp(−1) = (P [Hjk ≤ Hmax])
Z

=

[
1−

(
H0

Hmax

)ν]Z
≈ exp

[
−
(

H0

Hmax

)ν
Z

]
(S26)

and so210

Z ≈
(
Hmax

H0

)ν
. (S27)

It goes without saying that Hmax is proportional to base attack rate ak and can therefore be use as a211

proxy for the latter.212

With this preparation, we can now take expectation values on both sides of Eq. (8) for the case of213

truncation at H∗, the largest threshold where it is not violated, to approximate214

E

Hjk≤H∗∑
j

Hjk − 1

 =H−1∗ E

Hjk≤H∗∑
j

H2
jk

 (S28)

as [
Z

ˆ H∗

H0

p(x)xdx− 1

]
=H−1∗ Z

ˆ H∗

H0

p(x)x2dx, (S29)

where p(x) = −(d/dx)P [Hjk ≤ x] is the probability density of the untruncated attack rate distribution.215

Evaluation of the integrals after inserting Eq. (S25) leads to216

ZνH−ν∗ (H∗H
ν
0 −Hν

∗H0)

1− ν
− 1 =H−1∗

ZνH−ν∗
(
H2
∗H

ν
0 −Hν

∗H
2
0

)
2− ν

(S30)
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Figure S2: Dependence of intrinsic growth rate C = 1 −
∑
j Hjk on base attack rate in the course

of repeated serial extinction and resource turnover. Panel (a) shows geometric means of C over 106

replicated runs of the model of Box 2 over 104 iterations, panel (b) arithmetic means. For high base attack
rates ak (dark lines), both geometric and arithmetic means approach the same value ≈ 0.86 (indicating
a near-deterministic outcome) after the first iteration of consumer-mediated competitive exclusion, largely
independent of base attack rate, as predicted by the analytic theory. The value is different from the analytic
prediction 1− σ−1

√
2 logSR ≈ 0.14 valid for large because SR, because SR = 224 is not sufficiently large.

and, after inserting Eq. (S27) and taking the limit of low observation threshold (H0 → 0),

H−ν∗ [νH∗H
ν
max −Hν

∗ (1− ν)]

1− ν
=
νH1−ν
∗ Hν

max

2− ν
. (S31)

This equation can be solved for H∗, yielding217

H∗ =

[
(1− ν)(2− ν)

νHν
max

]1/(1−ν)
. (S32)

The expected intrinsic growth rate of the consumer after serial extinction equals the left hand sides of218

Eqs. (S28)-(S31). When putting Eq. (S32) into the left hand side of Eq. (S31) it simplifies considerably,219

leading to the final result220

E

[
Hki≤H∗∑

k

Hki − 1

]
= 1− ν. (S33)
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With 0 < ν < 1, this result implies that E
∑Hjk≤H∗
j Hjk attains values between 1 and 2. On the other221

hand, the upper cutoff H∗ declines with increasing Hmax (or base attack rates ai) as H
−ν/(1−ν)
max by222

Eq. (S32). For large base attack rates the sum
∑Hjk≤H∗
j Hjk therefore has contributions from many223

small terms, justifying our application of the central limit theorem to approximate of the sums entering224

Eq. (8) by their expectation values. Figure S2b qualitatively confirms this result.225

Interestingly, above considerations imply that, despite having the same niche width in terms of the226

spread σ of the log-normal attack-rate distribution, invaders with higher base attack rate will have more227

diverse diets post Impact than those with lower attack rates. This might explain why invasive alien228

consumers are often found to be ’generalists’.229
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Box 1 Algorithm of the evolutionary metapopulation model.

The model state is given by N patches which are either empty of
occupied by a population with base attack rate ai (1 ≤ i ≤ N).
The model is simulated as follows:

1. Occupy a proportion p of patches with populations with identical
initial base attack rates ai.

2. Select an occupied source patch r for dispersal. Sample the base
attack rate ak of a propagule according to Eq. (3).

3. Sample a target patch l.

4. If patch l is occupied:

(a) If al < ak, replace the new population of patch l with one that
has base attack rate ak, otherwise do nothing.

5. If patch l is not occupied:

(a) With invasion probability Pinv(ak), establish in patch l a
new population with base attack rates ak and then remove
the population from another occupied patch m, sampled at

random from all occupied patches with probability proportional
to 1/L(am). Pinv(a) is our approximation of invasion
probability for the deconstructed community model, Eq. (S22)
with β = 0.45 and SR = 224 (corresponding to the
mean equilibrium richness in Fig. 2), and L(a) the polynomial
fit to mean population life time in Fig. 3h (log10 L =

−0.04105026(log10 a)
2−0.78404937 log10 a−0.77341520).

6. Continue from Step 2 for a predetermined number of interactions.

The values of γ0, γ1, and σ are as in Tab. 1.

The algorithm can be reformulated in such a way that only the list of
ai value of occupied patches i is kept in memory. In each iteration,
Step 3a is then executed with probability p and otherwise Step 4a.
When invasion is successful in Step 4a, the new ak value is stored in
the memory location where am was previously stored. This formulation
permits us to take the limit p→ 0 while keeping the number of occupied
patches pN fixed.

Appendix S6 The limited impact of cheaters230

Cheaters exploit benefits offered by more altruistic conspecifics to their advantage, thus potentially231

counteracting the evolution of altruism. To obtain a bound on the impact of cheaters on prudent232

predation, we devised a simple evolutionary metapopulation model. The model describes a landscape of233

N patches that are either occupied by the focal species or not. The population occupying patch i has234

an associated base attack rate ai.235

In our metapopulation model we assume that cheating occurs if a population of the focal species236

disperses to a patch that is already occupied, and the propagule’s base attack rate is larger than that of237

the resident in that patch. The propagule then replaces the resident population. This model disregards238

that conspecific propagules will not only differ in their base attack rates from residents, but also in239

other foraging traits (Appendix Appendix S1), and therefore have, on average, a reduced likelihood of240

establishment success. Our metapopulation model is therefore biased to overestimates the likelihood of241

cheating. We shall see that the predicted impact of cheating remains limited despite this.242

Contrasting conventional stochastic patch occupancy models in the tradition of Levins (1969), patch243

occupancy p, i.e., the proportion of occupied patches, is a parameter in our model. The reason is evidence244

that species richness both at patch level (α) and at landscape level (γ) is regulated through ecological245

structural stability limits (O’Sullivan et al., 2019), which our metapopulation model cannot explicitly246

represent. Mean occupancy is uniquely determined by α and γ as p = α/γ. By fixing p we represent247

these limits implicitly.248

The model is detailed in Box 1. We chose pN = 1000 over a range of p values, evaluated the algorithm249

over 4 · 107 iterations, and sampled base attack rates from the last 3/4 of each run to characterise the250

steady state (which was reached after less then a 10th of iterations).251

In the limit p → 0, where cheating does not occur, the model attained a steady state with mean252

logarithmic base attack rate log10 a = −5.14, close to the value obtained with the deconstructed model,253

and an approximately normal distribution of log10 a in the steady state similar to that in Fig. 3e. These254

results further confirm our reconstruction of the fitness landscape in Fig. 3.255

As shown in Fig. S3, log10 a increases linearly with p for low p. An occupancy of p = 0.3, for256

example, leads to an approximate 3-fold increase in geometric mean base attack rates. Hence, cheating257

makes consumers somewhat less prudent, but does not fundamentally undermine the evolution of prudent258

predation.259
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Appendix S7 Steepness and basic reproduction number260

We derive the relation between basic reproduction number and the steepness of stock recruitment261

relations given in Eq. (17).262

Consider first the following caricature model of a fish stock feeding on a single resource:263

dBR

dt
=

[
s

(
1− BR

K

)
− aSSB

]
BR, (S34a)

dSSB

dt
= εaBRSSB− ρSSB− F SSB. (S34b)

The parameter F denotes the fishing mortality rate, otherwise model structure and parameterization are264

as in Eq. (1). If one assumes, for simplicity, that (i) all mature individuals have the same body mass m,265

(ii) recruits are produced instantaneously, and (iii) the parameter ρ is dominated by natural mortality266

rather than respiration, then recruitment is given by the first term on the right-hand side of Eq. (S34b):267

mRec = εaBRSSB = εaK SSB− εa2K

s
SSB2. (S35)

In the second step we eliminatedBR by solving Eq. (S34a) with dBR/dt = 0 forBR > 0. Stock-recruitment268

relations of this quadratic form are frequently used in fisheries science and named after Schaefer (1954).269

Virgin (F = 0) equilibrium SSB evaluates to270

SSB0 = s
εaK − ρ
εa2K

. (S36)

From Eqs. (16), (S35) and (S36) one obtains the steepness271

h =
1

25

(
1 +

4εaK

ρ

)
. (S37)

The basic reproduction number R is defined as recruitment per mature individual (of which there are272

SSB/m) in units of ρ, in the limit SSB→ 0, which evaluates to273

R = lim
SSB→0

mRec

SSB ρ
=
εaK

ρ
. (S38)

Hence Eq. (S37) implies Eq. (17).274

We now verify that Eq. (17) remains valid if one generalises Eq. (S34) to a situation with multiple275

resources. We assume that the fish stock is initially fully established at SSB0, such that resources276

that would not withstand its consumption have been extirpated. By Eq. (S6), the biomass of each277

resource is then a linear function of consumer biomass, here SSB. With the linear functional response of278

Lotka-Volterra models, this implies279

mRec = (c1 − c2 SSB) SSB (S39)

with some positive constants c1 and c2. As above, we can evaluate280

R = lim
SSB→0

mRec

SSB ρ
=
c1
ρ
, (S40)

yielding c1 = ρR. Furthermore, recruitment balances mortality for the unfish stocks with SSB = SSB0.281

So mRec(SSB0) = ρSSB0, which implies282
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c2 = ρ
R− 1

SSB0
. (S41)

With these values for c1, c2, plugging Eq. (S39) into the definition of steepness, Eq. (16), yields again283

Eq. (17).284
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