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ABSTRACT1

Turnover of species composition through time is frequently observed in ecosystems. It is2

often interpreted as indicating the impact of changes in the environment. Continuous turnover3

due solely to ecological dynamics—species interactions and dispersal—is also known to be the-4

oretically possible, however the prevalence of such autonomous turnover in natural communit-5

ies remains unclear. Here we demonstrate that observed patterns of compositional turnover and6

other important macroecological phenomena can be reproduced in large spatially explicit model7

ecosystems, without external forcing such as environmental change or the invasion of new spe-8

cies into the model. These results imply that the potential role of autonomous turnover as a9

widespread and important natural process is underappreciated, challenging assumptions impli-10

cit in many observation and management tools. Quantifying the baseline level of compositional11

change would greatly improve ecological status assessments.12

INTRODUCTION13

Change in species composition observed in a single locality through time, called community14

turnover, is observed to occur in most ecosystems at a faster rate than is explainable by ran-15

dom drift1,2. Climate change and other anthropogenic pressures are known to contribute to16

community turnover3–6 and there is evidence to suggest that turnover is accelerating in some17

biomes7. The extent to which processes intrinsic to ecosystems contribute to turnover, however,18

remains poorly understood8.19

Previous theoretical9,10 and experimental studies11 have shown how specific motifs in com-20

petitive ecological networks can lead to population abundances which do not arrive at fixed21

points. Instead, such systems can manifest persistent dynamics which we refer to here as22

‘autonomous’ since they do not depend on variation in the external environment or other ex-23

trinsic drivers. When these population fluctuations are strong, changes in the abundances of spe-24

cies can be dramatic and even drive species locally extinct; if an excluded species retains occu-25

pancy in adjacent patches10, it may re-colonise at some future time. We refer to as ‘autonomous26
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turnover’ local compositional changes involving colonisation-extinction processes or significant27

restructuring of relative abundances, driven by autonomous population dynamics.28

Understanding the expected amount of autonomous turnover in natural systems is import-29

ant if change in the composition of ecological communities is to be interpreted as indicative30

of community stress12,13. If strong temporal community turnover was a natural phenomenon31

that can arise independently of changes in the abiotic environment, then observed shifts in the32

composition of ecological communities would not on their own carry the fingerprint of external33

pressures.34

Limitations in the availability of historical turnover rates before the onset of widespread an-35

thropogenic impacts pose considerable challenges when trying to establish the natural baseline36

of turnover. Nevertheless, emergent patterns in species-time-area relationships14,15 suggest an37

underlying consistency accessible through modelling.38

Antagonistic interactions between predators and prey have been shown in both theory and ex-39

periment to lead to persistent population oscillations in the absence of external variation16,17. It40

has also long been established that models of competitive communities can generate any type of41

dynamical behaviour, including persistent chaotic cycles18–20. However, these cyclic processes42

are different from and have not usually been associated with observations of acyclic compos-43

itional turnover1,2. An important distinction between these processes lies in the role of space.44

While cyclic forms of community dynamics can lead to characterisic spacial structures20,21,45

cyclic dynamics do principle not require space. Acyclic turnover, on the other hand, manifestly46

involves colonisation by species from surrounding patches.47

Here we ask: can community dynamics enabled by spatial structure account for the ob-48

served macroecological patterns in population turnover? We address this question drawing49

on recent advances in the theory of spatially extended ecological communities, so called50

metacommunities22, using a population-dynamical simulation model with explicit spatial and51

environmental structure23 that has previously been shown to reproduce fundamental spatial52

biodiversity patterns. Here we build upon this work by exploring the spatio-temporal patterns53

that emerge in metacommunity models. As shown below, these arise when expanding the54
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spatial and taxonomic scale of simulations beyond those studied previously.55

RESULTS56

Metacommunity model and asymptotic community assembly57

We built a large set of model metacommunities (detailed in full in Methods) describing com-58

petitive dynamics within a single guild of species across a landscape. Each metacommunity59

consisted of a set of patches, or local communities, randomly placed in a square arena and60

linked by a spatial network. The dynamics of each population are governed by three processes:61

inter- and intraspecific interactions, heterogeneous responses to the environment and dispersal62

between adjacent patches (Fig. 1). Competition coefficients between species are drawn at ran-63

dom and the population dynamics within each patch are described by a Lotka-Volterra compet-64

ition model. We control the level of environmental heterogeneity across the network directly65

by generating an intrinsic growth rate for each species at each patch from a random, spatially66

correlated distribution. To ensure any turnover is purely autonomous, we keep the environment67

fixed throughout simulations. Dispersal between neighbouring patches declines exponentially68

with distance between sites. This formulation allows precise and independent control of key69

properties of the metacommunity–the number of patches, the characteristic dispersal length and70

the heterogeneity of the environment.71

To populate the model metacommunities, we iteratively introduced species with randomly72

generated intrinsic growth rates and interspecific interaction coefficients. Between successive73

invasions we simulated the model dynamics, and removed any species whose abundance fell74

below a threshold across the whole network. Through this assembly process both the average75

local diversity, the number of species coexisting in a given patch, and the regional diversity, the76

total number of species in the metacommunity, eventually saturate and then fluctuate around an77

equilibrium value—any introduction of a new species then leads on average to the extinction78

of one other species (Fig. S1). As previously shown23, these metacommunities have reached79

a state of ‘ecological structural instability’24, as a result of which species richness is intrinsic-80
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ally regulated. In these metacommunities we then studied the phenomenology of autonomous81

community turnover in the absence of regional invasions or abiotic change.82

The structural stability of a system refers to its capacity to sustain changes in parameters83

without undergoing qualitative changes in dynamical behaviour25. In ecological communities,84

for which abundances are all strictly non-negative, an important qualitative change occurs when85

species are driven extinct. As such, ecological structural stability is taken to describe in particu-86

lar the capacity of a community to persist (all constituent species have abundances greater than87

zero) in the face of small biotic or aboitic perturbations24,26–30. Ecological structural instability88

has been shown to play a critical role in the regulation of biodiversity, setting hard limits to the89

number of species that can coexist24, a mechanism found to operate at both local and metacom-90

munity scales23. Empirical observation of many of the emergent phenomena associated with91

ecological structural instability provides strong indirect evidence for the prevalence of struc-92

tural instability in nature23,31. Our understanding of the impact of structurally unstable diversity93

regulation on temporal community-level properties, however, remains incomplete32.94

In our metacommunity model, local community dynamics and therefore local limits on spe-95

cies richness depend on a combination of abiotic and biotic filtering (non-uniform responses of96

species to local conditions)33–35 and immigration from adjacent patches, generating so called97

mass effects in the local community36–38. Abiotic filtering occurs via the spatial variation of98

intrinsic growth rates Rix and biotic filtering via interspecific competition encoded in the inter-99

action coefficients Aij . Intrinsic growth rates Rix are sampled from spatially correlated normal100

distributions with mean 1, autocorrelation length φ and variance σ2 (Fig. S2). For simplicity,101

and since predator-prey dynamics are known to generate oscillations39 through mechanisms dis-102

tinct from those we report here, we restrict our analysis to competitive communities for which103

all ecological interactions are antagonistic. The off-diagonal elements of the interaction matrix104

A, describing how one species i affects another species j, are sampled independently from a105

discrete distribution, such that the interaction strength Aij is set to a constant value in the range106

0 to 1 (in most cases 0.5) with fixed probability (connectance, in most cases 0.5) and otherwise107

set to zero. Intraspecific competition coefficients Aii are set to 1 for all species.108
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Figure 1. Structure of the Lotka-Volterra metacommunity model and emergence of autonomous
population dynamics. Environmental heterogeneity is modelled using a spatially autocorrelated Gaus-
sian random field. A random spatial network defines the spatial connectivity of the landscape. The
network of species interactions is modelled by sampling competition coefficients at random (perpen-
dicular bars indicate recipients of a deleterious competitive impact). The resulting dynamics of local
population biomasses, given by colour-coded equation, are numerically simulated. For large metacom-
munities, local populations exhibit persistent dynamics despite absence of external drivers. In the 3D
boxes, typical simulated biomass dynamics of dominating species are plotted on linear axes over 2500
unit times. The graphs illustrate the complexity of the autonomous dynamics and the propensity for
compositional change (local extinction and colonisation).

Dispersal is modelled via a spatial connectivity matrix with elements Dxy. The topology109

of the model metacommunity, expressed through D, is generated by sampling the spatial co-110

ordinates of N patches from a uniform distribution U(0,
√
N)×U(0,

√
N), i.e., an area of size111

N . Thus, under variation of the number of patches, the inter-patch distances remain fixed on112

average. Spatial connectivity is defined by linking these patches through a Gabriel graph40, a113

planar graph generated by an algorithm that, on average, links each local community to four114

close neighbours41. Avoidance of direct long-distance dispersal and the sparsity of the resulting115

dispersal matrix permit the use of efficient numerical methods. The exponential dispersal kernel116

defining Dxy is tuned by the dispersal length `, which is fixed for all species.117

The dynamics of local population biomasses Bix = Bix(t) are modelled using a system of118
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spatially coupled Lotka-Volterra (LV) equations that, in matrix notation, takes the form23
119

dB

dt
= B ◦ (R−AB) + BD, (1)

with ◦ denoting element-wise multiplication. Hereafter this formalism is referred to as the120

Lotka-Volterra Metacommunity Model (LVMCM). Further technical details are provided in121

Methods and the Supplementary material.122

In order to numerically probe the impact of `, φ and σ2 on the emergent temporal dynamics,123

we initially fixed N = 64 and varied each parameter through multiple orders of magnitude124

(Fig. S3). In order to obtain a full characterisation autonomous turnover in the computationally125

accessible spatial range (N ≤ 256), we then selected a parameter combination found to generate126

substantial fluctuations for further analysis. Thereafter we assembled metacommunities of 8 to127

256 patches (Fig. 2A) to regional saturation (with 10-fold replication) and generated community128

time series of 104 unit times from which the phenomenology of autonomous turnover could be129

explored in detail. We found no evidence to suggest that the phenomenology described below130

depends on this specific parameter combination. While future results may confirm or refute131

this, autonomous turnover arises over a wide range of parameters (Fig. S3) and as such the132

phenomenon is reasonably robust.133

Autonomous turnover in model metacommunities134

For small (N ≤ 8) metacommunities assembled to saturation of regional diversity, pop-135

ulations attain equilibria, i.e. converge to fixed points, implying the absence of autonomous136

turnover23. With increasing metacommunity size N , however, we observe the emergence of137

persistent population dynamics (Fig. S4, https://vimeo.com/379033867) that can pro-138

duce substantial turnover in local community composition. This autonomous turnover can be139

represented through Bray-Curtis42 (BC) similarity matrices comparing local community com-140

position through time (Fig. 2B), and quantified by the number of compositional clusters detected141

in such matrices using hierarchical cluster analysis (Fig. 2A and C).142
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Figure 2. Autonomous turnover in model metacommunities. A: Typical model metacommunities:
a spatial network with nodes representing local communities (or patches) and edges, channels of dis-
persal. Patch colour represents the number of clusters in local community state space detected over 104

unit times using hierarchical clustering of the Bray-Curtis (BC) similarity matrix, Fig. S5. B: Colour
coded matrices of pairwise temporal BC similarity corresponding to the circled patches in A. Insets rep-
resent 102 unit times. For small networks (N = 8) local compositions converge to static fixed points.
As metacommunity extent increases, however, persistent dynamics emerge. Initially this autonomous
turnover is oscillatory in nature with communities fluctuating between small numbers of states which
can be grouped into clusters (16 ≤ N ≤ 32). Intermediate metacommunities (32 ≤ N ≤ 64) manifest
‘Clementsian’ temporal turnover, characterized by sharp transitions in composition, implying species
turn over in cohorts. Large metacommunities (N ≥ 128) turn over continuously, implying ‘Gleasonian’
assembly dynamics in which species’ temporal occupancies are independent. C: The mean number of
local compositional clusters detected for metacommunities of various numbers of patches N . While
the transition from static to dynamic community composition at the local scale is sharp (see text), non-
uniform turnover within metacommunities (A) blurs the transition at the regional scale. Aij = 0.5 with
probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5.
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At intermediate spatial scales (Fig. 2, 16 ≤ N ≤ 32) we often find oscillatory dynam-143

ics, which can be perfectly periodic or slightly irregular. With increasing oscillation amp-144

litude, these lead to persistent turnover dynamics where local communities repeatedly fluc-145

tuate between a small number of distinct compositional clusters (represented in Fig. 2 by146

stripes of high pairwise BC similarity spanning large temporal ranges). At even larger scales147

(N ≥ 64) this compositional coherence begins to break down, and for very large metacom-148

munities (N ≥ 128) autonomous dynamics drive continuous and unpredictable change in com-149

munity composition. The number of compositional clusters detected typically varies within a150

given metacommunity (Fig. 2A node colour), however we find a clear increase in the average151

number of compositional clusters, i.e. an increase in turnover, with increasing total metacom-152

munity size (Fig. 2C).153

Metacommunities in which the boundaries of species ranges along environmental gradients154

are clumped are termed Clementsian, while those for which range limits are independently dis-155

tributed are denoted Gleasonian43. We consider the block structure of the temporal dissimilarity156

matrix at intermediate N to represent a form of Clementsian temporal turnover, characterized157

by sudden significant shifts in community composition. Metacommunity models similar to ours158

have been found to generate such patterns along spatial gradients44, potentially via an analog-159

ous mechanism45. Large, diverse metacommunities manifest Gleasonian temporal turnover. In160

such cases, species colonisations and extirpations are largely independent and temporal occu-161

pancies predominantly uncorrelated, such that compositional change is continuous, rarely, if162

ever, reverting to the same state.163

Mechanistic explanation of autonomous turnover164

Surprisingly, the onset and increasing complexity of autonomous turnover as system size165

N increases (Fig. 2) can be understood as a consequence of local community dynamics alone.166

To explain this, we first recall relevant theoretical results for isolated LV communities. Then167

we demonstrate that, in presence of weak propagule pressure, these results imply local com-168

munity turnover dynamics, controlled by the richness of potential invaders, that closely mirror169
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Figure 3. Approximate heteroclinic networks underlie autonomous community turnover. The main
panel shows two trajectories in the state space of a community of three hypothetical species (population
biomasses B1, B2, B3) that are in non-hierarchical competition with each other, such that no species can
competitively exclude both others (a “rock-paper-scissors game”20). Without propagule pressure, the
system has three unstable equilibrium points (P1, P2, P3) and cycles between these (red curve), coming
increasingly close to the equilibria and spending ever more time in the vicinity of each. The correspond-
ing attractor is called a heteroclinic cycle (dashed arrows). Under weak extrinsic propagule pressure
(blue curve), the three equilibria and the heteroclinic cycle disappear, yet the system closely tracks the
original cycle in state space. Such a cycle can be represented as a graph linking the dynamically con-
nected equilibria (inset). With more interacting species, these graphs can become complex “heteroclinic
networks”46–48 representing complex sequences of species composition during autonomous community
turnover.

the dependence on system size seen in full LV metacommunities.170

Application of methods from statistical mechanics to models of large isolated LV communit-171

ies with random interactions revealed that such models exhibit qualitatively distinct phases49–51.172

If the number of modelled species, S, interpreted as species pool size, lies below some threshold173

value determined by the distribution of interaction strengths (Fig. S6), these models exhibit a174

unique linearly stable equilibrium (Unique Fixed Point phase, UFP). Some species may go ex-175

tinct, but the majority persists51. When pool size S exceeds this threshold, there appear to be176

no more linearly stable equilibrium configurations. Any community formed by a selection from177

the S species is either unfeasible (there is no equilibrium with all species present), intrinsically178

linearly unstable, or invadable by at least one of the excluded species. This has been called the179
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multiple attractor (MA) phase50. However, the precise nature of dynamics in this MA phase180

appears to remain unclear.181

Population dynamical models with many species have been shown to easily exhibit attractors182

called stable heteroclinic networks46, which are characterized by dynamics in which the system183

bounces around between several unstable equilibria, each corresponding to a different compos-184

ition of the extant community, implying indefinite community turnover (Fig. 3, red line). As185

these attractors are approached, models exhibit increasingly long intermittent phases of slow186

dynamics, which, when numerically simulated, can give the impression that the system even-187

tually reaches one of several ‘stable’ equilibria. We demonstrate in supplementary text that the188

MA phase of isolated LV models is in fact characterized by such stable heteroclinic networks189

(Figs. S7, S8).52
190

If one now adds to such isolated LV models terms representing weak propagule pressure for191

all S species (Eq. S5), dynamically equivalent to mass effects occurring in the full metacom-192

munity model (Eq. 1), then none of the S species can entirely go extinct. The weak influx of193

biomass drives community states away from the unstable equilibria representing coexistence of194

subsets of the S species and the heteroclinic network connecting them (blue line in Fig. 3). Typ-195

ically, system dynamics then still follow trajectories closely tracking the original heteroclinic196

networks (Fig. 3), but now without requiring boundless time to transition from the vicinity of197

one equilibrium to the next.198

The nature and complexity of the resulting population dynamics depend on the size and199

complexity of the underlying heteroclinic network, and both increase with pool size S. In200

simulations (Fig. S9) we find that, as S increases, LV models with weak propagule pressure201

pass through the same sequence of states as we documented for LVMCM metacommunities in202

Fig. 2: equilibria, oscillatory population dynamics, Clementsian and finally Gleasonian tem-203

poral turnover.204

Above we introduced the number of clusters detected in Bray-Curtis similarity matrices of205

fixed time series length as a means of quantifing the approximate number of equilibria visited206

during local community turnover. As shown in Fig. 4, this number increases in LV models207
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Figure 4. Ecological mass effects drive autonomous turnover. A: The number of compositional
clusters detected, plotted against the size of the pool of potential invaders for an isolated LV community
using a propagule pressure ε of 10−10 and 10−15, fit with a generalized additive model53. For S < 35

a single cluster is detected. For S ≥ 35 autonomous turnover occurs (≥ 1 compositional clusters) with
the transition indicated by the dashed line (inset). B: Qualitatively identical behaviour was observed for
model metacommunities in which ‘propagule pressure’ arises due to ecological mass effects from the
local neighbourhood. Each point represents a single patch. Lines in B are standard linear regressions.
The good alignment of subsequent fits demonstrates that neighbourhood diversity is the dominating
predictor of cluster number, rather than patch number N . Aij = 0.5 with probability 0.5, φ = 10,
σ2 = 0.01, ` = 0.5.

with S in a manner strikingly similar to its increase in the LVMCM with the number of species208

present in the ecological neighbourhood of a given patch. Thus dynamics within a patch are209

controlled not by N directly but rather by neighbourhood species richness which, due to spa-210

tial inhomogeneities, varies from patch to patch for metacommunities of a given size N . As211

illustrated in Fig. 4, there is a tendency for neighbourhood richness to be larger in larger meta-212

communities, leading indirectly to the dependence of metacommunity dynamics on N seen in213

Fig. 2.214

There is thus a close correspondence between dynamically isolated LV models and LVMCM215

metacommunities in the sequence of dynamic states as propagule richness increases and in the216

resulting complexity of dynamics quantified by counting compositional clusters. This suggests217

that underlying heteroclinic networks, which are revealed by adding propagule pressure in isol-218
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ated communities, explain the complex dynamics seen in LVMCM metacommunities.219

For the isolated LV community, the threshold beyond which autonomous turnover is detec-220

ted (> 1 compositional cluster) occurs at a pools size of around S = 35 species, consistent with221

the theoretical prediction50 of the transition between the UFP and MA phases (supplementary222

text). Close inspection of this threshold reveals an important and hitherto unreported relation-223

ship between the transition into the MA phase and local ecological limits set by the onset of224

ecological structural instability, which is known to regulate species richness in LV systems sub-225

ject to external invasion pressure23,24: in Supplementary Material we show that the boundary226

between the UFP and MA phases50 coincides precisely with the onset of structural instability24
227

(Eqs. S6-S12). For LVMCM metacommunities, the relationship revealed analytically in the228

Supplementary Material is numerically confirmed in Fig. 5. During assembly, local species229

richness increases until it reaches the limit imposed by local structural instability. Further as-230

sembly occurs via the ‘regionalisation’ of the biota54–a collapse in average range sizes23 and231

associated increase in spatial beta diversity–until regional diversity limits are reached23. The232

emergence of autonomous turnover coincides with the onset of species saturation at the local233

scale. Autonomous turnover can therefore serve as an indirect indication of intrinsic biod-234

iversity regulation via local structural instability in complex communities.235

Thus, we have shown that propagule pressure perturbs local communities away from un-236

stable equilibria and drives compositional change. In order to invade, however, species need to237

be capable of passing through biotic and abiotic filters33–35. We would expect, therefore, that238

turnover would be suppressed in highly heterogeneous or poorly connected environments where239

mass effects are weak. Indeed, by manipulating the autocorrelation length φ, and variance σ2
240

of the abiotic filter represented by the matrix R and the characteristic dispersal length `, we ob-241

serve a sharp drop-off in temporal turnover in parameter regimes that maximise between-patch242

community dissimilarity (short environmental correlation or dispersal lengths Fig. S10).243
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Figure 5. The emergence of temporal turnover during metacommunity assembly. A: local species
richness, defined by reference to source populations only (αsrc, grey) and regional diversity (black) for
a single metacommunity of N = 32 coupled communities during iterative invasion of random species.
We quantify local source diversity αsrc as the metacommunity average of the number αsrc of non-zero
equilibrium populations persisting when immigration is switched off (off-diagonal elements of D set to
zero), since this is the component of a local community subject to strict ecological limits to biodiversity.
Note the log scale chosen for easy comparison of local species richness and regional diversity. B: In-
creases in regional diversity beyond local limits arise via corresponding increases in spatial turnover (βs,
black). Autonomous temporal turnover (βt, grey) sets in precisely when average local species richness
αsrc has reached its limit, reflecting the equivalence of the transition to the MA phase space and the
onset of local structural instability. In both panels, the dashed line marks the point at which autonomous
temporal turnover was first detected. Aij = 0.3 with probability 0.3, φ = 10, σ2 = 0.01, ` = 0.5. Both
spatial and temporal turnover computed as the mean BC dissimilarity.

The macroecology of autonomous turnover244

We find important similarities between temporal and spatio-temporal biodiversity patterns245

emerging in model metacommunities in the absence of external abiotic change and in empir-246

ical data (Fig. 6), with quantitative characteristics lying within the ranges observed in natural247

ecosystems.248

Temporal occupancy: The proportion of time in which species occupy a community tends249

to have a bi-modal empirical distribution55–57 (Fig. 6A). The distribution we found in simula-250

tions (Fig. 6E) closely matches the empirical pattern.251
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Community structure: Temporal turnover has been posited to play a stabilizing role in252

the maintenance of community structure58,59. In an estuarine fish community60, for example,253

species richness (Fig. 6B) and the distribution of abundances were remarkably robust despite254

changes in population biomasses by multiple orders of magnitude. In model metacommunities255

with autonomous turnover we found, likewise, that local species richness exhibited only small256

fluctuations around the steady-state mean (Fig. 6F, three random local communities shown) and257

that the macroscopic structure of the community was largely time invariant (Fig. S11). In the258

light of our results, we propose the absence of temporal change in community properties such259

as richness or the abundance distribution despite potentially large fluctuations in population260

abundances60 as an indication of predominantly autonomous compositional turnover.261

The Species-Time-Area-Relation, STAR: The species-time-relation (STR), typically fit by262

a power law of the form S ∝ Tw14,61,62, describes how observed species richness increases263

with observation time T . The exponent w of the STR has been found to be remarkably con-264

sistent across taxonomic groups and ecosystems14,15,63, indicative of some general population265

dynamical mechanism. However, the exponent of the STR decreases with increasing sampling266

area14, and the exponent of the empirical Species Area Relation (SAR) (S ∝ Az) consistently267

decreases with increasing sampling duration14 (Fig. 6C, D). We tested for these patterns in a268

large simulated metacommunity with N = 256 patches by computing the STAR for nested sub-269

domains and variable temporal sampling windows (see Methods). We observed exponents of270

the nested SAR in the range z = 0.02-0.44 and for the STR a range w = 0.01-0.44 (Fig. S12),271

both in good agreement with observed values15,64. We also found a clear decrease in the rate of272

species accumulation in time as a function of sample area and vice-versa (Fig. 6G, H).273

Thus, the distribution of temporal occupancy, the time invariance of key marcoecological274

structures and the STAR in our model metacommunities match observed patterns. This evidence275

suggests that such autonomous dynamics cannot be ruled out as an important driver of temporal276

compositional change in natural ecosystems.277
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Figure 6. Macroecological signatures of autonomous compositional change. A bimodal distribution
in temporal occupancy observed in North American birds55 (A) and in simulations (E, N = 64, φ = 5,
σ2 = 0.01, ` = 0.5). Intrisically regulated species richness observed in estuarine fish species60 (B) and in
simulations (F, N = 64, φ = 5, σ2 = 0.01, ` = 0.5). The decreasing slopes of the STR with increasing
sample area14 (C), and the SAR with increasing sample duration14 (D) for various communities and in
simulations (G and H, N = 256, φ = 10, σ2 = 0.01, ` = 0.5). In C and D we have rescaled the
sample area/duration by the smallest/shortest reported value and coloured by community (see original
study for details). In G and H we study the STAR in metacommunities of various size N , represented by
colour. Limited spatio-temporal turnover in the smallest metacommunties (blue colours) greatly reduces
the exponents of the STAR relative to large metacommunities (red colours). Aij = 0.5 with probability
0.5 in all cases.

CONCLUSIONS278

Current understanding of the mechanisms driving temporal turnover in ecological communit-279

ies is predominantly built upon phenomenological studies of observed patterns2,65–67 and is un-280

questionably incomplete8,60. That temporal turnover can be driven by external forces—e.g.281

seasonal or long term climate change, direct anthropogenic pressures—is indisputable. A vi-282

tally important question is, however, how much empirically observed compositional change is283

actually due to such forcing. Recent landmark analyses of temporal patterns in biodiversity have284
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detected no systematic change in species richness or structure in natural communities, despite285

rates of compositional turnover greater than predicted by stochastic null models1,68–70. Here we286

have shown that empirically realistic turnover in model metacommunities can occur via pre-287

cisely the same mechanism as that responsible for regulating species richness at the local scale.288

While the processes regulating diversity in natural communities remain poorly understood, our289

theoretical work suggests local structural instability may explain these empirical observations290

in a unified and parsimonious way. Therefore, we advocate for the application of null models of291

metacommunities dynamics that account for natural turnover in ecological status assessments292

and predictions based on ancestral baselines.293

How do the turnover rates that we find in our model compare with those observed? Our294

current analytic understanding of autonomous turnover is insufficient for estimating the rates295

directly from parameters, but the simulation results provide some indication of the expected296

order of magnitude, that can be compared with observations. Key for such a comparison is the297

fact that, because the elements of R are 1 on average, the time required for an isolated single298

population to reach carrying capacity is O(1) unit times. Fig. S11B suggests that transitions299

between community states occur at the scale of around 10-50 unit times. This gives a holistic,300

rule-of-thumb estimate for the expected rate of autonomous turnover, depending on the typical301

reproductive rates of the guild of interest. In the case of macroinvertebrates, for example, the302

time required for populations to saturate in population biomass could be of the order of a month303

or less. By our rule of thumb, this would mean that autonomous community turnover would304

occur on a timescale of years. In contrast, for slow growing species like trees, where mono-305

culture stands can take decades to reach maximum population biomass, the predicted timescale306

for autonomous turnover would be on the order of centuries or more. Indeed, macroinvertebrate307

communities have been observed switching between community configurations with a period of308

a few years71,72, while the proportional abundance of tree pollen and tree fern spores fluctuates309

in rain forest bog deposits with a period of the order of 103 years73—suggesting that predicted310

turnover rates are biologically plausible.311

Our simulations revealed a qualitative transition from ‘small’ metacommunities, where312
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autonomous turnover is absent or minimal, to ‘large’ metacommunities with pronounced313

autonomous turnover (Fig. 2). The precise location of the transition between these cases de-314

pends on details such as dispersal traits, the ecological interaction network, and environmental315

gradients (Fig. S3). Taking, for simplicity, regional species richness as a measure of meta-316

community size suggests that both ‘small’ and ‘large’ communities in this sense are realised317

in nature. In our simulations, the smallest metacommunities sustain 10s of species, while the318

largest have a regional diversity of the order 103, which is not large comparable to the number of319

tree species in just 0.25 km2 of tropical rainforest (1, 100− 1, 200 in Borneo and Ecuador74) or320

of macroinvertebrates in the UK (> 32, 00075). Within the ‘small’ category, where autonomous321

turnover is absent, we would therefore expect to be, e.g. communities of marine mammals or322

large fish, where just a few species interact over ranges that can extend across entire climatic323

niches, implying that the effective number of independent “patches” is small and providing few324

opportunities for colonisation by species from neighbouring communities. Likely to belong to325

the ‘large’ category are communities of organisms that occur in high diversity with range sizes326

that are small compared to climatic niches, such as macroinvertebrates. For these, autonomous327

turnover of local communities can plausibly be expected based on our findings. Empirically328

distinguishing between these two cases for different guilds will be an important task for the329

future.330

For metacommunities of intermediate spatial extent, autonomous turnover is characterized331

by sharp transitions between cohesive states at the local scale. To date, few empirical ana-332

lyses have reported such coherence in temporal turnover, perhaps because the taxonomic and333

temporal resolution required to detect such patterns is not yet widely available. Developments334

in biomonitoring technologies76 are likely to reveal a variety of previously undetected ecolo-335

gical dynamics, however and by combining high resolution temporal sampling and metagenetic336

analysis of community composition, a recent study demonstrated cohesive but short-lived com-337

munity cohorts in coastal plankton77. Such Clementsian temporal turnover may offer a useful338

signal of autonomous compositional change in real systems.339

Thus, overcoming previous computational limits to the study of complex metacommunities10,78,340

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.05.22.110262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110262


we have discovered the existence of two distinct phases of metacommunity ecology—one char-341

acterized by weak or absent autonomous turnover, the other by continuous compositional342

change even in the absence of external drivers. By synthesizing a wide range of established343

ecological theory10,23,24,46,50,51, we have heuristically explained these phases. Our explanation344

implies that autonomous turnover requires little more than a diverse neighbourhood of poten-345

tial invaders, a weak immigration pressure, and a complex network of interactions between346

co-existing species.347
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[25] Solé, R. V. & Valls, J. On structural stability and chaos in biological systems. Journal of theoretical407

Biology 155, 87–102 (1992).408
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SUPPLEMENTARY MATERIALS533

Materials and Methods534

Supplementary text535

Figs. S1 – S10536

MATERIALS AND METHODS537

Metacommunity assembly: The dynamics of local population biomasses Bix(t) were538

modelled using a spatial extension to the multispecies Lotka-Volterra competition model23:539

dBix

dt
= Bix

(
Rix −

S∑
j=1

Aij Bjx

)
− eBix +

∑
y∈N (x)

e

ky
exp
(
−dxy`−1

)
Biy. (S1)

The competitive coupling coefficients Aij for i 6= j were sampled from discrete distributions.540

Generally, Aij were set to 0.5 with a probability of 0.5 and to 0 otherwise, however, for the541

simulation shown in Fig. 5, we relaxed the dynamic coupling and instead set Aij to 0.3 with a542

probability of 0.3. This delayed the onset of local structural instability during metacommunity543

assembly, making the coincident emergence of local biodiversity regulation and autonomous544

compositional turnover visually clearer.545

Environmental heterogeneity was modelled implicitly through spatial variation in species’546

intrinsic growth rates Rix. Specifically, the Rix were sampled independently for each species547

i from a Gaussian random field85 with mean µ = 1.0 and standard deviation σ, generated548

via spectral decomposition86 of the N × N landscape covariance matrix with elements Σxy =549

exp [−φ−1dxy], where dxy denotes the Euclidean distances between patches x and y, and φ the550

autocorrelation length (Fig. S2).551

The dispersal matrix D (Eq. (1)) has diagonal elements Dxx of −e, where e, the fraction of552

biomass leaving patch x per unit time, was kept fixed at 0.01 for all simulations. For pairs of553

patches connected by an edge in the spatial network, the immigration terms were modelled as554

negative exponentials Dxy = ek−1y exp (−dxy`−1), controlled by a dispersal length parameter `,555
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thus assuming a propensity for propagules to transition to nearby sites. The normalisation con-556

stant ky divides the biomass departing patches y between all other patches in its local neighbour-557

hood (N (y)), weighted by the ease of reaching each patch i.e. ky =
∑

z∈N (y) exp
(
−dyz`−1

)
,558

implying an active dispersal process.559

Metacommunities were assembled through a stepwise invasion process (Fig S1). In each it-560

eration of the algorithm, 0.05S + 1 new species were introduced to the metacommunity, with S561

denoting the current extant species richness. The invaders were tested to ensure positive growth562

rates at low abundance. This was done by introducing a multiple of 0.05S + 1 newly gener-563

ated species into all patches at very low abundance, then simulating for a handful of time steps564

and testing for increasing biomass trajectories in at least one patch. Of the successful invaders,565

0.05S + 1 were randomly selected and each introduced at 10−6 biomass units into the patch566

in which its growth rate was greatest during testing. After invaders were introduced, meta-567

community dynamics were simulated using the SUNDIALS80 numerical ODE solver. The time568

between invasions we kept fixed at 500 unit times, and before each new invasion the metacom-569

munity was scanned and species with biomass smaller than 10−4 biomass units in all patches570

of the network were considered regionally extinct and removed from the model. The assembly571

algorithm aims to remove all species whose total biomass declines to zero in the course of572

the system’s complex dynamics. In rare cases autonomous fluctuations may drive one of the re-573

maining species to very low abundance in all patches, however the majority retain local biomass574

above the detection threshold in at least one patch at all times.575

To assemble models of sufficient spatial extent and species richness, we developed a paral-576

lel implementation of the assembly model that makes use of the algorithmic domain decom-577

position method81 for the population-dynamical simulations. This involves decomposing the578

metacommunity into spatial subdomains of equal numbers of patches, each of which is sim-579

ulated by a unique parallel process (CPU), with boundary states regularly broadcast between580

processes. The code was run on the Apocrita high-performance cluster at Queen Mary, Uni-581

versity of London87. This permitted assembly of saturated metacommunities of up to N = 256582

patches harbouring S ∼ 3000 species, thus breaking through frequently lamented computa-583
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tional limits10,78 on the numerical study of metacommunities.584

Quantifying autonomous turnover: For fully assembled metacommunities, we simulated585

and stored time series of tmax = 104 metacommunity samplesBixt = Bix(t) taken in intervals of586

one unit time. In these metacommunity timeseries, we measured spatio-temporal turnover based587

on i) compositional dissimilarity, ii) the distribution of temporal occupancy, iii) the number of588

compositional clusters detected using hierarchical clustering, and iv) via species accumulation589

curves generated using sliding spatial and temporal sampling windows. Metrics were selected590

in order to answer specific questions, or for comparison to observed patterns. Some analyses591

require quantifying local species richness. This was done by setting a detection threshold of592

10−4 biomass units, below which populations are considered absent from the community. Local593

source diversity, which we define in Fig. 5, is a related but different diversity measure that is594

more adequate for quantifying the component of a local community subject to local ecological595

limits to biodiversity.596

Compositional dissimilarity: Spatial/temporal compositional similarity was quantified us-597

ing the Bray-Curtis42 similarity index via the function vegdist in the R package “vegan”91.598

Temporal occupancy: We assessed temporal occupancy by first converting biomass into599

presence-absence data (Pixt = 1 for allBixt > 10−4, and 0 otherwise). Then, for all populations600

present at least once, we computed the temporal occupancy (TOix) as the proportion of the time601

interval of length tmax during which that population was present:602

TOix =
1

tmax

∑
t

Pixt (S2)

Hierarchical clustering: We assessed the degree of temporal clustering in community com-603

position using complete linkage hierarchical clustering92 of the Bray-Curtis similarity matrix,604

which gives an approximate measure of the number of unstable equilibria between which the605

dynamical system fluctuates. We computed the number of clusters using a threshold of 75%606

similarity, which reflects the structure visible in pairwise dissimilarity matrices (Fig. S5A and607

B).608

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.05.22.110262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110262


Spatio-temporal species accumulation: We studied the STR and SAR in model metacom-609

munities using a sliding window approach, asking, for given ∆A ∈ N and ∆T ∈ R>0, how610

many species Sobs were detected on average in sets A of ∆A = |A| patches during any time611

interval T of ∆T unit times length. Specifically, for a metacommunity of N = 28 = 256,612

the spatial windows were ∆A ∈ {20, 21, ..., 28} patches, while the temporal windows were613

∆T ∈ {1, 5, 10, 50, 100, 500, 1000} unit times. For each patch x ∈ {1, ..., N} the spatial sub-614

sample was then defined as the set A consisting of the focal patch and its ∆A − 1 nearest615

neighbours. Similarly, for each t ∈ {1, ..., tmax − ∆T} the sliding temporal window T was616

defined as the ∆T successive recording time steps in the range t to t + ∆T . The species rich-617

ness observed in a given spatio-temporal sub-sample was then computed as618

Sobs =
∑
i

[∑
t∈T

∑
x∈A

Pixt ≥ 1

]
, (S3)

where the Iverson brackets [.] denote the indicator function ensuring species are counted only619

once. Finally, the average of Sobs for a given spatio-temporal sample size was computed in all620

combinations.621

In closed systems, the species accumulation in both space and time must ultimately saturate,622

either when the entire metacommunity or entire time series is sampled. Thus we defined the623

exponents z and w of the STAR as the maximum slopes of the SAR/STR on double logarithmic624

axes (Fig. S12).625

SUPPLEMENTARY TEXT626

Spatial parameterization: Other than patch number N , the parameters that most im-627

pact the spatio-temporal structure of model metacommunities are the environmental correla-628

tion length φ, the variability of the environment σ2, and the dispersal length `. In order to629

understand the role of these parameters for autonomous turnover, we fixed N = 64 and as-630

sembled metacommunity models with σ2, ` ∈ {1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1, 1},631

and φ ∈ {1, 5, 10, 50, 100} in all combinations and computed the resulting temporal beta632
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diversity as the mean spatially averaged temporal BC dissimilarity observed in 10 replicates633

of each parameterization. Rates of autonomous turnover varied in a complex but systematic634

way under variation in the spatial parameterization of the model, with turnover being weakly635

correlated with the dispersal length and maximized for intermediate habitat heterogeneity and636

autocorrelation (Fig. S3). Weak abiotic heterogeneity seeds the non-uniform spatial structure637

of the metacommunity and therefore promotes turnover. For large enough spatial networks,638

dispersal limitation and competitive repulsion alone are sufficient to drive autonomous dy-639

namics in perfectly uniform landscapes. The scan of the parameter space allowed selection640

a parameterization with strong autonomous turnover: φ = 10, σ2 = 0.01, ` = 0.5 (peak in641

Fig. S3A). Using this combination of parameters we then assembled metacommunity models642

of N = 8, 16, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256 patches.643

To some extent, the complex roles of parameters φ, σ2, and `, shown in Fig. S3, can be644

distilled into the effect on a single parameter: the average spatial community dissimilarity at645

the local neighbourhood scale. This is due to the fact that the impact of each of the parameters,646

which control the between-patch differences in environment and the strength of mass effects, is647

reflected in the degree of spatial beta diversity within the metacommunity. To demonstrate this648

we used the multiple-site dissimilarity metric derived in Ref.83, which generates an unbiased649

total beta diversity metric for systems of three or more sites/time points. Since both local650

neighbourhood and (correspondingly) temporal turnover vary within a given metacommunity,651

we show the beta diversity metrics averaged over all patches.652

Temporal turnover responded unimodally to local neighbourhood dissimilarity (Fig. S10)653

over the parameter range of Fig. S3, suggesting that spatial parameterizations that maximise βs,654

either through exaggerating abiotic differences between adjacent local communities or dampen-655

ing mass effects, can elevate neighbourhood diversity while simultaneously suppressing the656

pool of species that can actually invade.657

This result makes plausible why empirical studies have detected a range of statistical as-658

sociations between spatial and temporal turnover in natural ecosystems. Positive, negative,659

unimodal, and non-significant relationships have been reported between temporal turnover and660
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species richness or spatial turnover15,95–99. The unimodal response shown in Fig. S10 may help661

to resolve these apparent contradictions: it is not species richness or spatial dissimilarity per se662

that best predict temporal turnover, but the size of the pool of species capable of passing through663

biotic and abiotic filters to invade a local community.664

Phase space of a generalised Lotka-Volterra community: Analytic theory50 predicts a665

sharp transition between what has been called the Unique Fixed Point (UFP) and Multiple666

Attractor (MA) phases. In Fig. S6 we reproduce the phase portrait for such a system and note667

that our explicitly modelled metacommunities reveal a gradual transition in the MA phase space668

from oscillatory, to Clementsian and into Gleasonian turnover regimes. Assuming large S, the669

sharp transition between UFP and MA phases has been shown50 to occur at species richness670

S =
2

(1 + γ)2 var (Aij)
, (S4)

where γ = corr (Aij, Aji) denotes the degree of correlation in the effects two species have on671

each other, measuring the symmetry of interspecific interaction strengths, and var (Aij) is the672

variance in the distribution. In our model we use a random interaction matrix for which γ = 0.673

We sample interaction coefficients from a discrete distribution with var (Aij) = (0.25)2 giving674

a predicted transition into the MA phase space at S = 32 species. Thus, while the prediction675

is approximate for small S communities with non-uniform intrinsic growth rates, a numerically676

observed threshold of around 35 species in the isolated LV model (Fig. 4C inset) is consistent677

with these analytic predictions.678

Isolated LV communities: To explore the emergence of heteroclinic networks in LV mod-679

els, we studied an isolated LV model with and without coupling to an implicitly modelled neigh-680

bourhood species pool. The dynamics of the model follow681

db

dt
= b ◦ (r−Ab) + ε, (S5)
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where b is a population biomass vector of length S, r is a vector of independent random normal682

variables with mean 1 and variance σ2 = 0.01 representing maximum intrinsic growth rates,683

A is a competitive overlap matrix and the vector ε represents the slow immigration of biomass684

corresponding to a weak propagule pressure. The elements εi are analogous the to explicitly685

modelled immigration terms BixDxy of the full metacommunity model.686

As in the metacommunity model, interspecific competition coefficients Aij were set to 0.5687

with a probability of 0.5 for i 6= j and otherwise to zero, while Aii = 1, for all i. We enforced688

bi > 0 for all i by simulating dynamics in terms of logarithmic biomass variables. In simulating689

this model, we did not follow the common practice of removing species whose biomass drops690

below some threshold. Instead all species were retained. We consider two situations: with and691

without the inclusion of a weak propagule pressure ε.692

Heteroclinic networks in the case without propagule pressure: We first demonstrate in693

simulations that, indeed, as predicted under certain constraints46, stable heteroclinic networks694

exist in the MA phase of model Eq. (S4) for ε = 0. For this we choose S = 300, which,695

with other parameters set as described above, brings us deeply into the MA phase of the model.696

Simulations were initialised by setting allBi = 10−3 (1 ≤ i ≤ S) at t = 0. The system was sim-697

ulated until t = 2.1·107 and system states recorded at times t = 2.1·10j/1000 (0 ≤ j ≤ 7000). As698

illustrated in Fig. S7, while dynamics tend to become slower for larger t, no stable equilibrium699

or other simple attractor appears to be ever reached—as expected for a system approaching700

a heteroclinic network. Instead, as expected when a heteroclinic network exists, the system701

bounces around between unstable equilibria, apparently in a random fashion. Unexpected to us,702

however, the system appears to visit not only unstable equilibria in its transient, but occasionally703

also unstable periodic orbits (t ≈ 1.3 · 104 in Fig. S7) and perhaps more complex invariant sets704

(t ≈ 1.2 · 106 in Fig. S7).705

One might wonder whether there is any tendency for dynamics to eventually come to a706

halt. To study this question, we calculated the number of changes in community composition707

(species colonisations and extinctions) between all pairs of subsequently recorded system states,708

where we considered a species i as “present” if Bi > 10−4, and from this the momentary rate709
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of change in composition on the ln(t) scale by dividing by ln(101/1000). In Fig. S8 we show710

the time series of the centred moving average over this number for 100 subsequent pairs or711

recordings, and averages for non-overlapping adjacent blocks for 300 pairs. Spikes where the712

rate of change is particularly high correspond to brief phases of regular or irregular oscillation.713

We performed a median regression of the block-wise averages by a power law of the form:714

(rate) ∼ tν . Median regression was used to de-emphasize the spikes. For the simulation shown715

in Fig. S7 we found that ν did not differ significantly from zero, implying a decline of the716

turnover rate on the natural time axis as t−1. When we repeated this analysis for 15 independent717

simulations (two of which failed due to numerical issues), we observed a tendency for ν to be718

slightly positive (ν = 0.054 ± 0.020, t-test t = 2.67, p = 0.020), perhaps because the effect719

of oscillatory phases on the mean turnover rate on the ln(t)-scale increases with increasing t.720

Overall, however, the decline of turnover rate approximately as t−1 was confirmed, providing721

evidence for the existence of an attracting heteroclinic network that the LV system Eq. (S5) with722

ε = 0 slowly approaches.723

Use of logarithmic biomass variables was essential for these simulations. We found that724

median species biomass at the end of each run was typically around 10−3,500,000, much smaller725

than the smallest number representable by double precision floating point arithmetic, which is726

around 2 · 10−308. Needless to say, these small numbers mean that the simulations with ε = 0727

are, while instructive, ecologically unrealistic.728

Heteroclinic networks in the case with propagule pressure: The case ε > 0, where dy-729

namics move alongside the underlying heteroclinic network without ever fully approaching it,730

is discussed in the Main Text as it provides a useful intermediate between the explicit metacom-731

munity model and the more tractable isolated community. In Fig. S9 we show that the transition732

from oscillatory to Clementsian and finally Gleasonian turnover regimes can also be observed733

in these isolated LV models (εi = ε = 10−15 for all i, other parameters as above).734

Local structural instability drives autonomous turnover: Species richness in compet-735

itive LV communities is intrinsically limited by the onset of ecological structural instability.736

Here we show analytically that for isolated communities the boundary between the UFP and737
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MA phases50 is identical to the structurally unstable limit24.738

The transition between UFP and MA phase for competitive LV models occurs50 when739

Φ = (u− γv)2 , (S6)

where Φ := S∗/S is the proportion of species persisting, i.e. the ratio between the number S∗740

of species that persist and the pool size S, and again γ = cor (Aij, Aji). The quantities u and v741

in Eq. (S6) are given by742

u =
1− E[Aij]

S1/2 std (Aij)
, (S7)

with E[Aij] and std (Aij) denoting mean and standard deviation of the distribution of off-743

diagonal entries of A, respectively, and744

v =
Φ

u− γv
. (S8)

For γ 6= 0, Eq. (S8) does not have a unique solution for v. The equivalent quadratic equation745

γv2 − uv + Φ = 0 has two solutions, one of which diverges as γ → 0; this we discard. The746

other solution is747

v =
u−

√
u2 − 4γΦ

2γ
, (S9)

which becomes v = Φ/u for γ → 0, consistent with Eq. (S8). Substitution of Eq. (S9) into748

Eq. (S6) gives749

Φ =

(
u−

√
u2 − 4γΦ

2

)2

, (S10)

which can be shown in a standard calculation to be equivalent to750
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Φ =
u2

(1 + γ)2
(S11)

for u > 0 and −1 < γ < 1. Finally, substituting Eq. (S7) into Eq. (S11) gives751

S∗ =

(
1− E[Aij]

)2
(1 + γ)2 var (Aij)

, (S12)

which is exactly the theoretical limit of structural instability in isolated LV communities752

[Eq. (18.3) of Ref. 24], thus demonstrating that UFP-MA phase boundary and the onset of753

structural instability perfectly coincide.754

Temporal patterns in community structure: Fluctuations in local population biomasses755

as communities move between unstable equilibria in heteroclinic networks can span multiple756

orders of magnitude (red trajectories in Fig. S11A) and lead to significant temporal turnover in757

community composition (Fig. S11B). In contrast, the high-level properties of the assemblages758

remain largely unchanged. This is evident in the dampening of biomass fluctuations at metapop-759

ulation and metacommunity scales via a spatial portfolio effect58,59,82 (blue and black trajectories760

in Fig. S11A), but also in the robustness of species biomass distribution (Fig. S11C) and range761

size distribution (Fig. S11D, range sizes computed as in Ref.23). In this case the mean relat-762

ive biomass and range size are plotted irrespective of species identity (black lines) along with763

the mean ± one standard deviation (grey lines), for direct comparison with Ref.60. The relat-764

ively small standard deviations demonstrate a temporally robust distribution of metapopulation765

biomasses and spatial ranges, despite large fluctuations at the local scale.766

STAR in large metacommunity models: We characterised the within assemblage STAR767

using a moving spatio-temporal window as described in the main text and comparing the res-768

ulting SAR and STR exponents. In Fig. S12 we show the nested SAR and STR for a single769

metacommunity of N = 256. The number of species detected for large spatial or temporal770
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windows necessarily saturates in closed systems. We therefore defined the exponents of the771

STAR, displayed in Fig. 6 of the main text, as the maximum slope of the SAR/STR on double772

logarithmic axes.773
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Supplementary figures774
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Figure S1. The metacommunity assembly algorithm. First, a random planar graph is generated with
spatial coordinates sampled at random and patches connected via the Gabriel40 algorithm. Communities
are then assembled iteratively: species are generated with intrinsic growth rates and interaction coeffi-
cients sampled from random distributions, introduced into the metacommunity at low abundance, meta-
community population-dynamics are simulated, and regionally extinct species are removed from the
model before the next iteration. Eventually the metacommunity reaches both its local and regional di-
versity limits, the situation studied in the main text. In the inset a single metacommunity assembly
process is shown; the black line represents regional species richness, the blue line average local species
richness. Both of which are intrinsically regulated, as demonstrated by the effect of random removals of
species (dashed lines) and subsequent re-assembly: local richness is barely affected and regional richness
returns to the approximate same level. Inset adapted from Ref.23. See text for detailed description.
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Figure S2. Spatially autocorrelated growth rate distributions. Instrinsic growth rates are sampled
from spatially autocorrelated random fields of autocorrelation length φ and variance σ2. Two example
distributions are shown, both of N = 64, σ2 = 0.01, with φ = 10 (left) and φ = 1 (right). See Materials
and Methods for details.
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Figure S3. Temporal turnover throughout the spatial parameter space. Temporal β-diversity βt
was computed as the mean BC dissimilarity between time points in a time series of 1000 unit times,
observed in metacommunities of N = 64 patches. Correlation length φ was varied in the range 1 to
100, environmental variability σ2 and dispersal length ` in the range 10−2 to 1, with each parameter
combination replicated 10 times. The values of φ, σ2 and ` were each plotted on logarithmic axes. In A
we fixed ` at 0.5; in B φ at 10; and in C σ2 at 1.0. See Supplementary Text for details.
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Figure S4. Autonomous metapopulation dynamics in large metacommunity models. In species rich
metacommunities of N > 8 patches, local biomasses autonomously fluctuate and the variability of those
fluctuations increases with metacommunity size. Here we show the instantaneous biomass distributions
for a single species in metacommunities of N = 32, 64 and 128, at three time points in logarithmic
biomass units. For N = 32, autonomous fluctuations are largely restricted to the outer extremes of the
species’ distribution, while the core range (left of network) remains largely static. For N = 64, some
patches or regions may be permanently occupied by the focal species, however even in this core range
biomass can fluctuate by orders of magnitude. With the emergence of Gleasonian turnover in the high
N limit no or few patches are permanently occupied and local community composition is no longer
well characterized by the core-transient distinction55,57,60, which decomposes local communities into
populations that are present almost all the time, and those observed only rarely. Hence, for N = 128

no obvious core range exists. Note that spatial networks are not shown to scale, the area of the model
landscape is ≈ N in all cases. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5. See Main
Text for details.
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Figure S5. The number of compositional clusters in a community time-series analysed using hier-
archical clustering. A: Temporal clustering in local community composition represented by the block
structure of the BC similarity matrix (N = 64, 200 unit times shown). B: Using hierarchical cluster ana-
lysis we approximately quantifies the number of clusters in communit state using a similarity threshold
of 75% (red dashed line).

0

Figure S6. The sharp transition between UFP and MA phases. Reproduction of the phase diagram
derived by Bunin50 showing the emergence of MA as the size S of the species pool increases. In our
case, the first and second moments of the distribution in Aij were fixed. Community state in phase space
therefore follows a square root function with increasing S, as indicated by the dashed line. (The “Un-
bounded growth” phase is hence not relevant for our study.) In spatially explicit metacommunity models
we observe the emergence of autonomous turnover which transitions from oscillations to Clementsian
and finally Gleasonian turnover. See Supplementary Text for details.
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Figure S7. Episodes in the approach of an isolated LV community model to a heteroclinic network.
The biomasses of different species are represented by lines of different colours and style. At any moment
in time, all but a few of the S = 300 species in the system have biomasses close to zero. With increasing
simulation times t the intervals between the switches in system state, corresponding to transitions from
the vicinity of one unstable equilibrium to the next, become longer, while the duration of these transitions
remains of the order of magnitude of 10 time units, leading to increasingly sharper transitions on the
logarithmic time scale. See Supplementary Text for details.
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Figure S8. Rate of change in community composition for the simulation shown in Fig. S7. The
black line is the moving average over 100 subsequent recordings, blue dots represent averages over
non-overlapping adjacent blocks of 300 recordings for t ≥ 1000, and the red line a median nonlinear
regression of the dots by a power-law (rate) ∼ tν (ν = 0.091 ± 0.062, not significantly different from
zero). See Supplementary Text for details.
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Figure S9. Autonomous turnover in isolated LV communities. A: The number of compositional
clusters detected as a function of the size of the pool of potential invaders for a propagule pressure, ε,
of 10−15 biomass units per unit time. B-F: Heatmaps of the pairwise Bray-Curtis similarity for the cor-
responding time-series (over 104 unit times) showing a clear transition from oscillatory to Clementsian
turnover and finally to Gleasonian turnover. Dashed lines in A show the size of the species pool for which
each community time series was generated. Aij = 0.5 with probability 0.5, σ2 = 0.01. The parameters
φ and ` are not defined for the isolated LV models. See Supplementary Text for details.
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Figure S10. Unimodal relationship between spatial and temporal turnover. Temporal beta diversity,
computed during 1000 unit times, plotted against the spatial beta diversity of the local neighbourhood.
The number of patches in a local neighbourhood depends on the patch degree, which varies. We therefore
use a beta-diversity metric83 (based on BC dissimilarity) that is normalises by the number of sites/time-
points included in the sub-sample. Both βt and βs are averages over the metacommunity. The blue line
and shaded area represent a locally weighted regression (LOESS smoothing) and 95% C.I.. Parameters
N , φ, σ2 and ` as in Fig. S3. See Supplementary Text for details.
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Figure S11. Temporally robust community structure A: We highlight the scale dependence of
autonomous population dynamics by showing the biomass of three random local populations of the same
species (Bix, red), of the metapopulation of which they form a part (Bi =

∑
xBix, blue) and finally

of the entire metacommunity (B =
∑

i

∑
xBix), black). B: Autonomous turnover can be substantial.

Here we show the decay of spatially averaged BC similarity from an arbitrary initial composition in
metacommunities of N = 16, 32, 64, 128, and 256 patches. For large metacommunities undergoing
autonomous Gleasonian turnover, the percentage of permanent populations, and hence the temporal BC
similarity can drop to zero. C: Metacommunity scale relative rank abundance curve, plotted with species
‘identity’ disregarded. The black curve represents the mean biomass observed at a given rank, while grey
curves represent the mean ± one standard deviation. This figure highlights the temporally invariant di-
versity structure at the metacommunity scale. D: The temporally averaged rank range size curve, plotted
as in C. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5. N = 64 for A, C and D. See
Supplementary Text for details.
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Figure S12. The Species-Time-Area-Relation. The nested SAR (A) and STR (B) generated using a
sliding window approach for a single metacommunity model of N = 256. Metacommunity models
are closed systems and as such, both the SAR and STR saturate for the large sub-samples. As such
we defined the exponents of the STAR by the maximum slopes observed on double logarithmic axes.
Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5. See Supplementary Text for details.
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