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Abstract
The Digital Elevation Model (DEM) of a watershed is one of the most important inputs in most hydrological analyses and plays a key role in the accurate prediction of various hydrological processes. Comprehensive knowledge of the impact of different DEM sources on the performance of a model is essential before utilizing the model. In this study, we evaluated the influence of TOPO1:25000, ASTER, and SRTM DEMs, as input, on the performance of the Soil and Water Assessment Tool (SWAT) model for the prediction of surface runoff.  We also investigated the effect of the resolution of the studied DEM sources on the accuracy of the SWAT model in the estimation of runoff. The second objective of this study was to identify the most influential and the least impactful input parameters on the performance of the SWAT model. We studied the Zarrineh River watershed in Iran as a case study to compare the effect of the aforementioned DEM types and DEM resolution on the output of the SWAT model. The outcomes of the study demonstrated that influential parameters on predicted runoff as well as a few watershed parameters, such as reach lengths, reach slopes, number of sub-basins, and the number of hydrologic response units (HRU), differs noticeably when the DEM source and resolution changes. It was also observed that simulated results over-predict the runoff during low precipitation periods and under-predict the runoff during high precipitation months, and the accuracy of the simulated results decreases by reducing the DEM resolution. The results showed that the SWAT model had the best performance when the TOPO1:25000 DEM was used as the input source. Low-resolution DEMs are available to a wider range of researchers. The outcomes of the current study can be employed to estimate the impact of low-resolution input data on the simulated result as well as substantially reduce the computation time by decreasing the input DEM resolution with only a minor reduction of accuracy. 
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1. Introduction
Applied models and accurate data in hydrological studies are fundamental in the understanding of the phenomena governing various processes in a watershed [1, 2]. The ability of a model to simulate runoff, sediment, and nutrient yields can be influenced by the spatial resolution of the input data [3-5]. In recent years, the application of hydrological models has attracted significant attention, especially in rainfall-runoff simulation and flood estimation. The Digital Elevation Model (DEM) is essential input data in the estimation of several parameters in a watershed [5-8]. DEM resolution can alter watershed characteristics, such as watershed area, shape, length, and slope [9, 10]. A handful of investigations have been performed on the impact of the DEM resolution on watershed delineation parameters, such as the formation of sub-basins, reach length, reach slope, and the Hydrological Response Units (HRU) in the SWAT model [11-13]. The mean slope is sensitive to grid size as it is affected by DEM resolution [6], the travel time of water through a watershed is also influenced by the length, and the momentum of runoff is dependent on the slope of the ground and its variation [14-16]. 
Accurate and high-resolution DEMs have resulted in considerable advancement in remote sensing technology, while the computation time of spatial analysis in ArcGIS is closely related to the resolution of the input data [15, 17]. Among available software packages, the Soil and Water Assessment Tool (SWAT) is widely employed for watershed-scale studies. SWAT has been specially developed to predict the impact of various management approaches on runoff, sediment, and agricultural chemical yields in watersheds [18]. Only a few studies address the effects of DEM spatial resolution and the watershed’s geomorphological parameters on SWAT model performance [9, 10]. Intuitively, Mamillapalli et al. [19] reported that employing high-resolution DEM data in the SWAT model would generate relatively more accurate data to a certain threshold. Cotter et al. [20] estimated the impact of different DEM cell sizes on the prediction of flow, sediment, NO3-N, and total phosphor transport in the Moores Creek watershed in the USA. The results showed DEM resolution could affect different factors such as watershed delineation, stream network, and sub-basin classification. They also concluded that decreasing the DEM resolution would reduce stream-flow, sediment, NO3-N, and TP load predictions with short-term variations. Hebtezion et al[21]. evaluated the effect of DEM resolution on the veracity of predicted stream networks computed by the SWAT. Dixon et al.  used the SWAT model to calculate the impact of three different DEMs with 30, 90, and 300 meter resolution on stream-flow prediction in the Charlie Creek drainage basin located in the Peace River drainage basin of central Florida, USA. The authors concluded that the model is sensitive to DEM resolution, and resampling the cell sizes may not be an appropriate option for modeling stream-flows.
Lidberg et al. [7] studied the accuracy of the SWAT model by using 30m-resolution data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 90m-resolution data collected from the Shuttle Radar Topography Mission (SRTM). The results showed that the accuracy of the runoff simulation using the SRTM-90m data is more satisfactory than the ASTER-30m data. Liffner et al. [22] computed the sensitivity of hypsometric attributes to the DEM resolution and DEM type through assessment of variations in hypsometric attributes taken from 417 catchments and sub-catchments in southern Australia. The researchers observed significant sensitivity of hypsometric attributes within the  DEM types and polynomial orders, with a P-value <0.05. Chen et al. [23]  investigated four different DEMs as well as the Soil Loss Universal (SLU) equation to calculate the amount of sheet and rill erosion in the Shihmen Reservoir watershed in northern Taiwan. The researcher concluded that the DEM with the highest vertical resolution created from airborne Light Detection and Ranging (LiDAR) generates the most increased soil erosion across the four different DEMs. The lowest amounts of soil erosion were obtained while using the DEM created from satellite images, which have the lowest vertical resolution. Nazari-Sharabian et al.[24]  assessed the sensitivity of three DEM resolutions (ALOS PALSAR 12.5 m, SRTM30, and ASTER90) on the runoff yield with the SWAT model for the Mahabad Dam watershed in Iran. They showed that the highest values of the surface area, minimum mean, and maximum elevations in the delineated watershed were demonstrated with the finest resolution data (12.5m DEM). Obtaining accurate results by employing DEMs with coarse resolution substantially reduces the computation cost and increases the accessibility of the input data to researchers [25]. 
In most previous studies, the correlation between the resolution of the input DEMand the accuracy of the computed runoff has been neglected. Furthermore, studying the most influential input parameters in the estimation of runoff has not been well-discussed, especially when the source of the input DEMchanges from TOPO1:25000 to the SRTM and ASTER. Therefore, this study aims to evaluate the performance of the SWAT model in predicting the hydrological variables and runoff by employing different DEM resolution data (TOPO1:25000, ASTER, SRTM), as well as assessing the sensitivity of calculated runoff to the input parameters. In addition, the effect of different DEM sources with resampled cell sizes (50, 100, 150, 200, 300, and 500 meters) is investigated on monthly runoff with observed data from the Zarrineh river watershed. Finally, this study compares the runoff predicted by the SWAT model using several DEM sources during the low/ high precipitation month. The rest of the paper is structured as follows.  Section 2 presents the study area and the simulation method. In Section 3, the results are presented and discussed, including a sensitivity analysis of the simulation parameters and the influence of DEM sources on water delineation and runoff yield. Lastly, in Section 4, the conclusion of the results and outcomes of the study is summarized.

2. Materials and Methods
   2.1	 The Study Area
The Zarrineh River watershed in Iran has been selected as the case study to evaluate the impact of different spatial resolutions of multiple DEM sources on hydrological parameters and simulated runoff. The Zarrineh River watershed is one of the essential catchments in Iran and the main inflow source of Lake Urmia, the largest salt-water lake in the Middle East. Figure 1 depicts the Zarrineh River watershed and its location in Iran. It is located in the southern part of the lake’s basin, between 45.46◦ E to 47.23◦ W longitude and 35.41◦ S to 37.44◦ N latitude, with an area of 2532.48 km2. It includes parts of Kurdistan as well as the West Azarbaijan and East Azarbaijan provinces in Iran and contains the four large cities of Miandoab, Shahindej, Takab, and Saghez. The Zarrineh River itself is about 302 km in length, with most of its course within mountainous areas.
 The region's climate varies from semi-wet cold or wet-cold in the mountainous areas to semi-dry in the vicinity of Lake Urmia. The annual rainfall of the basin varies between 230 mm/year in the lower catchment area to 800 mm/year in the mountains, with the highest rainfall occurring in the February-July period. Moreover, there are four hydrometric stations located in the right and left branches of the river at Alasghel, Saroogh Chay, and Safakhaneh, as well as one meteorological station at Takab, which are presented in Figure 1. The major land cover of the Zarrineh River watershed is dry land, and the available pasture is shown in Figure 4. The Zarrineh River watershed is relatively prone to flooding, especially in early spring when snowmelt in the mountainous areas of the basin occurs, and devastating floods have occurred there in recent years.

[Insert Figure 1]

2.2 Soil and Water Assessment Tool 
In this study, we utilized the Soil and Water Assessment Tool (SWAT) to calculate the rainfallrunoff. The SWAT is a semi-distributed model with a continuous time-step process. This model was developed by the United States Department of Agriculture Research Service (USDA) and is able to simulate rainfall and runoff, water quality, sediment yield, and  vapor-transpiration in a watershed region. A simulation using the SWAT requires different datasets, such as a DEM, soil map, land use/land cover map, and weather data. Datasets used in the current study are presented in Figure 2. The SWAT model integrates weather data, surface and groundwater hydrology data, soil properties, plant growth, nutrient cycles, and land management practices [26, 27]. The output results are calculated and listed according to   Hydrologic Response Units (HRU), sub basins, and channel routing. 

[Insert Figure 2]

The modeling is based on the water balance presented in Equation 1.
	
	(1)


Where, is the final soil water content (mmH2O),  is the initial soil water content (mmH2O), t is the time (days),  is the amount of precipitation on day i (mmH2O),  is the amount of surface runoff on day i (mmH2O),  is the amount of evapotranspiration on day i (mmH2O),  is the amount of  water entering the vadose zone from soil profile on day i (mmH2O), and  is the amount of return flow on day i (mmH2O). The surface runoff is computed by Equation 2.
	
	(2)


Where,  is the amount of rainfall in a day,  is an initial abstraction, and Sis the watershed storage. The subdivision of the watershed allows the model to reflect variations in evapotranspiration of different crops and soil. Runoff is calculated independently for each HRU and guided to obtain the total runoff for the watershed. This method increases the accuracy of the simulation and provides a better physical description of the water balance. 

2.3 The Input Data 
2.3.1 Digital Elevation Models
DEM datasets, soil, land use/land cover maps, and weather data are the necessary inputs in the SWAT model. Details of input data used in the present study are depicted in Figure 3.
We employed three different DEM sources as the input to the SWAT model with multiple cell sizes as follows:
·  A 1:25000 scale topographic map (developed by Landsat data from NASA in 2008).
·  ASTER30 with a resolution of 30×30 (acquired by the TERRA satellite in 2010) 
· SRTM90  with a resolution of 90×90 m (created by the German Aerospace Center in 2003)
We also generated various DEM cell sizes (50, 100, 200, 300, and 500 meters) from three initial DEM sources by resampling tools presented in the ArcGIS 9.3 package [19].

[Insert Figure 3]

2.3.2 Soil Map and Meteorological Records
As depicted in Figure 4, a 1:25000 scale soil map was obtained from the Digital Soil Map of the World database provided by the Food and Agriculture Organization of the United Nations (FAO). The SWAT soil database calculates soil parameters, such as Plant Evaporation Compensation factor (PECO), Base Flow Alpha factor (ALPHA_BF), Groundwater Delay Times (GW_DELAY), the available water capacity of the soil layer (SOL_AWC), Moist Bulk Density (SOL_BD), depth from the soil surface to bottom of a layer (SOL_Z), Saturated Hydraulic Conductivity (SOL_K), Organic Carbon Content (SOL_CBN), Moist Soil Albedo (SOL_ALB), and the  USLE equation soil erodibility K-factor (USLE_K) [28]. Daily weather records for 2985 to 2000 were acquired from the Iran Meteorological Organization, Takab.

[Insert Figure 4]

2.3.3 Simulated Runoff 
The measured runoff of the studied area was gathered from the Global Runoff Database (GRDB), which is built on an initial dataset collected to provide a global hydrological data set. After gathering the initial data and preparing the input files, all the output results are summarized and listed according to the HRUs, sub-basins, and channel routings. The HRUs within the watershed are sensitive to physical properties, such as watershed area, shape, slope, and length, influencing volume, travel time, and momentum of runoff. The studied basin is divided into three classes of slope: 0-10%, 10-25%, and more than 25%. The Hargreaves method was used to assess daily noted evapotranspiration based on daily data. Hargreaves is a temperature-based approach, and it is a powerful method when the climatological data is incomplete [29].  The SCS curve number method was employed to compute surface runoff by considering the characteristics of soil and land use. The SCS curve number method is a simple, proficient, and extensively used method to determine the approximant amount of runoff from a rainfall event in a specific area [21]. The SCS curve numbers are calculated in Equation 3.
	
	(3)


Where, Qsurf is the accumulated runoff (mm of H2O), Rday is the precipitation depth for a day (mm of H2O), S is the maintenance parameter (mm of H2O), and Ia is the initial abstraction
loss (mm of H2O). The maintenance parameter S is computed by Equation 4.
	
	(4)


The standard curve number values for different land covers and soil types can be obtained in standard hydrology references [30].

3.1 Results and Discussion, Sensitivity Analysis
A practical watershed model has to be calibrated. Also, parameters display processes, and several parameters assist in watershed yields. A sensitivity analysis has to be completed prior to model calibration in order to verify the parameters that most influence the variable in the watershed, e.g., runoff [13, 31]. Accordingly, a sensitivity analysis causes the number of parameters in the calibration process to decrease by eliminating the parameters determine as not sensitive [8, 32]. 
Calibration and validation processes were applied using gauging station records derived from the hydrometric station  The calibration procedure (from 1985 to 1988) has been carried out for all three types of DEMs (from 1985 to 1988). For the relative sensitivity analysis, the SUFI-2 algorithm of the SWAT-CUP calibration module was run 20 times to achieve the best value range for 45 parameters, and 1000 simulations were performed for each run after determining the temporal parameters for the calibration of the runoff. The most accurate result was derived in run 12. Then, these 29 parameters were used in the modeling and validation for the whole basin (from 1988 to 2002).
A short definition of parameters evaluated utilizing the SUFI-2 module of the SWAT-CUP package [33, 34] is reported in Table 1. The SWAT model employs several input parameters to simulate the surface runoff in a watershed [4]. Among these, the parameters displayed in Table 1 most affect the runoff generation in a watershed.
Figure 5 shows the results of the sensitivity analyses of the parameters contributing to the runoff in the SWAT model of the Zarrineh river watershed for various DEMs.  Parameters with higher t-stat values (lower p-values) are more influential and have a greater impact on the calculated runoff in the watershed compare with the parameters with low t-stat values. Any variation in the input parameters with a high t-stat value has a substantial impact on runoff yield in the watershed [6, 35].

[Insert Table 1]

According to the results illustrated in Figure 5, when the TOPO1:25000 is the input DEMin the SWAT model, the Curve Number (CN2.mgt) has the most impact on the computed runoff in a watershed. Accordingly, as the Curve Number rises, infiltration of water to the ground reduces, and surface runoff increases; subsequently, the base flow decreases. The parameters linked to the flow of groundwater have a significant impact on the outflow of the watershed, including delay time between irrigation water withdrawal from the soil profile and entry into the surface aquifer (GW-DELEY.gw) and the threshold depth of water in the shallow aquifer required for return flow to occur (GWQMN.gw). In addition, the Manning’s n-value for tributary channels (CH-N1.sub), Snowfall temperature (SFTMP.bsn), initial depth of water in the shallow aquifer (SHALLAT.gw), baseflow alpha factor for bank storage (ALPHA-BNK.rte), initial depth of water in the deep aquifer (DEEPST.gw), initial snow water content (SNO_SUB.sub), an available water capacity of the soil layer (SOL_AWC.sol), and maximum rooting depth of the soil profile (SOL_ZMX.sol) are the most influential parameters in the calculation of runoff. On the other hand, the runoff is least sensitive to the snowmelt base temperature (SMTMP.bsn), the precipitation lapse rate (TLAPS.sub), saturated hydraulic conductivity (SOL_K.sol), effective hydraulic conductivity in tributary channel alluvium (CH_K1.sub), and maximum canopy storage (CANMX.hru).
When the ASTER30 DEM is the input to the SWAT model, the initial SCS runoff for Curve Number moisture condition II (CN2.mgt), the threshold depth of water in a shallow aquifer required for return flow to occur (GWQMN.gw), groundwater delay time (GW_DELAY.gw), the Manning’s n-value for tributary channels (CH-N1.sub), moist bulk density (SOL_BD.sol), an available water capacity of the soil layer (SOL_AWC.sol), initial depth of water in the deep aquifer (DEEPST.gw), and initial depth of water in the shallow aquifer (SHALLST.gw) are the most impactful parameters on the estimation of runoff [36][35][35][34] [37][38]. While the effective hydraulic conductivity in the main channel alluvium (CH_K2.rte), temperature lapse rate (TLAPS.sub), maximum canopy storage (CANMX.hru), Manning’s n-value for the main channel (CH_N2.rte), and snowmelt base temperature (SMTMP.bsn) are the least influencing parameters.
Finally, using SRTM90 as the input DEM, the threshold depth of water in shallow an aquifer required for return flow to occur (GWQMN.gw), the Manning’s ‘n-value for tributary channels (CH-N1.sub), the initial SCS runoff for Curve Number moisture condition II (CN2.mgt), groundwater delay time (GW_DELAY.gw), initial depth of water in the deep aquifer (DEEPST.gw), an available water capacity of the soil layer (SOL_AWCsol) and moist bulk density (SOL_BD.sol),  are the most important parameters in runoff calculation, respectively. The effective hydraulic conductivity in main channel alluvium (CH_K2.rte), snowmelt base temperature (SMTMP.bsn), maximum canopy storage (CANMX.hru), temperature lapse rate (TLAPS.sub), effective hydraulic conductivity in tributary channel alluvium (CH_K1.sub) are the least important parameters, respectively.
Figure 6 also compares the parameters with the highest , high t-state value (with p-value < 0.1) for all the three studied DEMs. 
The comparison between the sensitivity of the simulated runoff to the input parameters in different DEM datasets shows that all three DEMs generally share the same highly sensitive parameters. Nevertheless, TOPO1:25000 and ASTER30 DEM parameters show a similar influence on the calculated runoff. The TOPO1:25000, as the DEM input, demonstrates the snowfall temperature as a sensitive parameter, which is an indicator of snowfall’s importance in the mountainous watersheds. Moreover, the Initial SCS runoff curve number for moisture condition (CN2.mgt) shows it is the highest importance in both TOPO1:25000 and ASTER30m DEMs. Manning’s ‘n’ value for the tributary channels (CH_N1.sub) is more important when the input DEMis TOPO1:25000 as compare to ASTER30m and SRTM90 DEMs. This is probably due to the fact that land features are more distinctive when using high-resolution DEMs; therefore, more tributary streams form and join the mainstream in the simulation of the watershed. The Available Water Capacity of the soil layer (SOL_AWC.sol) is the most impactful parameter among all soil parameters. The groundwater parameters show that the initial depth of water in the shallow aquifer (SHALLST.gw) are the most influential parameters in the TOPO1:25000 and ASTER30m DEMs. The initial depth of water in the deep aquifer (DEEPST), GWQMN.gw (threshold depth of water in the shallow aquifer required for return flow to occur), and Groundwater delay time (GW_DELAY.gw) are the most impactful parameters on the simulated runoff in all three studied DEMs. The soil bulk density (SOL_BD.sol) most impacts the computed runoff when the input DEMis ASTER30 or SRTM90.

[Insert Figure 5]


3.2 Influence of DEM Type on Delineation
Various DEM sources noticeably affect watershed delineation, watershed size, differing stream network systems, HRUs, and sub-basins [37]. The detailed watershed parameters of different DEM sources are listed in Table 2. Considering the results presented in Table 2, TOPO1:25000 yielded more  sub-basins and HRUs among the three studied DEMs. It has been observed that the accuracy of the sub-basin areas and the number of the sub-basins and HRUs decrease in the low-resolution DEMs compare with high-resolution DEMs.  It should be noted that coarse DEMs provide less detailed information at the HRU level, which has a significant influence on the computation of runoff.
Furthermore, the reach slopes do not show any notable trend to the DEM resolution [38]. Lin et al. [17] and Peipei et al. [39] showed the uncertainty of the reach slope and minimum/maximum elevation rises by increasing the DEM resolution. By analyzing the obtained results, it can be concluded that the drainage network and reach slope are also important parameters in calculating runoff. The SRTM and ASTER DEMs were also evaluated for similar classification of reach slope and drainage network. Each DEM was simulated independently utilizing the SWAT model. The soil map, land use map, and meteorological parameters were kept the same as before for calibration of all simulation models. We also realized that, for all the studied DEM sources, the HRUs within the watershed are sensitive to physical attributes like watershed area, shape, slope, and length that influence volume, travel time, and momentum of runoff.

[Insert Table 2]

3.3 Effect of DEM Type on Runoff
The SWAT model was applied to TOPO1:25000, ASTER30m, and SRTM90 DEMs to simulate the surface runoff between 1988-2002, and the results are illustrated in Figure 6. 
Figure 6 indicates that the SWAT model properly predicted the runoff in years with high precipitation during the rainfall season (March to June). However, the model slightly under-predicts the runoff in high precipitation months and over-predicts the runoff in low perception months (July to February).
The accuracy of the SWAT model is assessed by comparing the simulated data with real-world observation. We computed the Nash–Sutcliffe efficiency coefficient (NSE),  the coefficient of determination (R2) and the percent bias (PBIAS). The results are presented in Table 3.
The aforementioned performance measures show the output of the SWAT model is satisfactory in the simulation of surface runoff in the Zarrineh river watershed. In other similar results, Moriasi et al. [4] suggested that SWAT model performance is satisfactory if the hydrological outcomes of the model generate an NSE > 0.5 and an R2 > 0.5. The equations utilized in the calculation of the R2, NSE, and PBIAS are presented in the appendix in Equations 5, 6, and 7, respectively.

[Insert Figure 6]

The runoff values showed mild variation when changing the DEM type. TOPO1:25000 was able to predict more accurate results compared with the other DEM sources and shows a linear correlation with observed measurements. Considering the results presented in Table 3, it is noticeable that using TOPO1:25000 and ASTER30 in the SWAT model leads to the calculation of runoff by the same degree of accuracy. Overall, we can conclude that the simulated runoff is sensitive to the DEM type in the SWAT model.  

[Insert Table 3]

Table 3 also demonstrates that the higher values of NES and R2 as well as the lower value of PBAIS when using the Topo1:25000 DEM as the input data lead to a more accurate estimation of runoff compare with other DEMs. It can also be concluded that the larger cell size of the SRTM90 DEM results in a slight decrease in the accuracy of the simulated runoff. Table 4 presents the calculated R2, NES, PBIAS for the simulated runoff during high and low precipitation periods using different sources of DEM as the input to the SWAT model. Low perception months in the Zarrineh River watershed are from July to February.

[Insert Table 4]

Based on the results listed in Table 4, the PBIAS in high precipitation months between 1988-2002  is less than the same value during the entire years. The result indicates that the calculated runoff during the high precipitation months under-predicts the real observations. In addition, simulation results tend to over-predict the runoff during low precipitation months. It can be concluded that the over-prediction and under-prediction of the simulated monthly runoff will increase compared with observed data when the DEM source changes from TOPO1:25000 to SRTM90.

3.4 Impact of Resampled DEM on runoff 
Based on the results presented in Figure 6 and Table 3, the SWAT model showed that it has adequate accuracy at predicting high peak flows. During the period of this study (1988-2002), three years with the highest peak flow, 1988, 1992, and 1998,   were selected for a closer look at the simulated runoff. Figure 7 illustrates the calculated monthly runoff by employing various cell sizes of multiple DEM sources alongside the experimentally measured data in the aforementioned periods.

[Insert Figure 7]

According to Figure 7, the SWAT model adequately predicted the runoff accurately during the high flow period. Furthermore, it shows that the simulation results are an under-prediction of the real observations during the high flow period; however, the simulation tended to over-predict during the low flow periods. The simulated surface runoff is greater than the observed data during the low flow months of July-Feb, while the surface runoff simulated value is lower than the observed value during the high flow March-Jun months. Figure 7 shows that ASTER50, SRTM50, and TOPO50 DEMs lead to more accurate estimation of runoff in high flow periods compared to the other DEM resolution. It can be concluded that the accuracy of the simulated runoff moderately decreased with changing the resolution in each DEM source from 50 to 500m.  The efficiency of the SWAT model is reported by calculating the standard performance measures (NSE, R2, and PBIAS) of the simulated runoff while using various cell sizes of DEM as input to the model in high flow years.

[Insert Table 5]

As presented in Table 5, regardless of the DEM sources used in the simulations, a coarser resolution of the DEM leads to a reduction of R2 and NSE and an increase of PBIAS.  The performance statistics also show that the accuracy of the simulated runoff in TOPO50, ASTER50, and SRTM50 DEMS, as input data, is more than the other simulations. Nevertheless, TOPO50 has less PBIAS and more R2 and NES compared to ASTER50 and SRTM50. This trend also applies to other DEM resolutions. Table 5 shows that a high R2 and NSE and a low PBIAS would be achieved when a fine DEM resolution is being used as input to the SWAT model. The calculated runoff experiences slight variation when the DEM resolution is changed, and the simulation precision slightly decreases when using DEM with large cell sizes. The results of the current study infer that the SWAT model tends to increasingly under-predict the peak flow, particularly when the resolution of the input DEM reduces.
An important advantage of using low-resolution input data is a noticeable reduction in simulation time. To investigate the impact of cell size on the computation cost, we recorded the calculation time in the various simulations. Figure 8, depict the simulation time of various resolution of the input DEM.

[Insert Gigure 8]

As presented in Figure 8, the computation time substantially reduces by increasing the DEMs cell size, or, in other words, by reducing the input DEMs resolution. As expected, the input DEM source has no meaningful impact on the simulation time; therefore, the results illustrated in Figure 8 are independent of the input source. The time of simulation is normalized compared with the simulation time of the study, with a 50m DEM cell size. Hence, it can be concluded from Figure 8 that the computation time of the study with 500m cell size is roughly only 13% of a similar study with 50m cell size. The results generally demonstrate that, for the investigated cell sizes, the computation time is related to the cell size with an X-0.934 factor. The hardware utilized in performing the simulations consisted of an Intel 9700K CPUs, Nvidia RTX 2080 GPU, 16 GB DDR4 2133MHz RAM, 1 TB SSD drive, GIGABYTE Z390 AORUS motherboard, and the operating sytem was Windows 10. The trade-off between the accuracy and the simulation time has always been a dilemma in computational studies. The results presented in this section will assist researchers in obtaining a general view of the impact of input DEMs cell size on the accuracy of the simulated results and the computation time, and empower them to select the resolution of the input data more wisely, especially when available computation power is limited or the investigated area is large.

4. Conclusion
In this study, we assessed the impacts of three DEM resolutions (TOPO1:25000, SRTM30m, and ASTER90m) on the SWAT outputs of watershed delineation properties and runoff yield during high and low precipitation months. We also investigated the sensitivity of runoff to the various parameters in the Zarrineh river watershed in Iran. Furthermore, the impact on runoff of three resampled sources of DEMs with 50 to 500m cells was evaluated.
The source of DEMs has a notable impact on watershed delineation and watershed size, as well as the results in differing stream network systems, number of sub-basins, and HRUs. The accuracy of sub-basin areas, number of sub-basins, and HRUs decrease in coarse DEMs compared with fine DEMs. Reach lengths and reach slope differ substantially in various DEM resolutions; however, a uniform trend in results was not observed. The coarse resolution of ASTER30m and SRTM90 m DEMs creates a smoother and less defined landscape as well as more moderate slope gradients and reduced curvatures. The predicted monthly runoff based on TOPO1:25000 is the most accurate compared to the other DEMs. Noticeably, decreasing the resolution of the DEM leads to a reduction in the accuracy of simulated runoff in all DEM sources. The model employed in this study over-predicted the runoff in the low precipitation season and under-predicted the runoff in the high precipitation season. The under-prediction or over-prediction of the estimated runoff slightly increases as the resolution of the input DEM decreases. 
The results showed that the three studied DEMs share the same highly influencing parameters on runoff, with theTOPO1:25000 and ASTER30 DEMs having the most similarity. The TOPO1:25000 DEM is the only DEM in which snowfall temperature is a sensitive parameter indicating that snowfall is an important factor in a mountainous watershed. The Soil Conservation Service Curve Number (SCS-CN) is the more dominant parameter and showed the highest sensitivity in the TOPO1:25000 and ASTER30m compared with SRTM90 m DEMs. Tributary Channels have the most influence in the TOPO1:25000 DEM because more land features appear when using finer resolution DEMs. Therefore, more tributary streams form in the watershed and ultimately join the mainstream. Available Water Capacity (AWS) and Soil Bulk Density (SOL_BD) are the most important soil parameters in the simulation of runoff in all three DEMs.

Initial calibration and verification of the simulation parameters showed that the SWAT model has an adequate ability to estimate the peak flow and performs acceptably in large watershed areas.  Our results predict that SWAT can satisfactorily simulate the surface runoff process in the Zarrineh river watershed.
The finding of this study could help GIS environmental model users in understanding the sensitivity of the SWAT model to the resampled resolutions of DEMs. Utilizing the results of the current research, we can also conclude that computation time can be substantially reduced by using slightly coarser resolutions of input data while maintaining an acceptable level of accuracy in the simulated runoff. We are hopeful that the presented results will help researchers to gain a general perspective about the impact of the DEMs resolution on the accuracy of the predicted results and the computation time and assist them in carefully selecting the input cell size in the simulation of a large watershed, especially when the available computational power is limited.
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 Appendix 
The coefficient of determination (R2) is defined as the variance ratio in the dependent variable, which is predictable from the independent variable. Therefore, it usually ranges from 0 to 1 and is presented in Equation 5. 
	
	(5)


Where,  and are the observed and simulated data, respectively, and is the average of the observed data.
The Nash–Sutcliffe Efficiency (NSE) is applied to evaluate the predictive function of hydrological models. The NSE shows how well the simulated data correspond with experimental measurements, and it ranges in value from −∞ to 1. An ideal model generates an NSE equal to 1.
	
	(6)


The PBIAS is a statistical metric that assesses the average tendency of the simulated data compared with the experimental observations. The optimal value of PBIAS is 0.0, which indicates an accurate simulation result. A positive PBIAS shows the model suffers from underestimation bias, and a negative PBIAS indicates the model provides an overestimation of real data [40].
	PBIAS =
	(7)









Tabel 1. The influencing parameters in the calculation of runoff contributing to the SWAT model
	Parameter
	Description
	Parameter
	Description

	SOL_AWC
	Available water capacity of soil layer
	SFTMP
	Snowfall temperature

	SOL_K
	Saturated hydraulic conductivity
	SMTMP
	Snow melt base temperature

	SHALLST
	Initial depth of water in the shallow aquifer
	SURLAG
	Surface runoff lag coefficient

	DEEPPST
	Initial depth of water in the deep aquifer
	CANMX
	Maximum canopy storage

	GWHT
	Initial groundwater height
	CH-N2
	Manning’s ‘n’ value for the main channel

	GW_DELAY
	Groundwater delay from soil to channel
	CH-K2
	Effective hydraulic conductivity in main channel alluvium

	PLAPS
	Precipitation lapse rate
	ALPHA-BNK
	Base flow alpha factor for bank storage

	SOL_BD
	Soil bulk density
	ESCO
	Soil evaporation compensation factor

	TLAPS
	Temperature Lapse Rate
	OV_N
	Manning’s ‘n’ value for the overland

	ALPHA_BF
	Base flow alpha-factor
	SOL_ZMX
	Maximum rooting depth of the soil profile

	GWQMN
	Threshold depth of water in the shallow aquifer required for return flow to occur
	CH_K1
	Effective hydraulic conductivity in tributary channel alluvium

	GW_REVAP
	Groundwater ‘Revap’ coefficient
	CH_N1
	Manning’s ‘n’ value for the tributary channel

	REVAPMN
	Threshold depth of water in the shallow aquifer for ‘revap’ or percolation to deep aquifer to occur
	CN2
	Initial SCS runoff Curve number II

	RCHRG-DP
	Deep aquifer percolation fraction
	SNO_SUB
	Initial snow water content

	GW_SPYLD
	Specific yield of the shallow aquifer
	
	

















Table 2. The detailed description of the watershed properties in different DEM sources.
	Property
	TOPO1:25000
	ASTER30m
	SRTM90 

	Number of sub-basin
	34
	32
	27

	Number of HRUs
	241
	220
	173

	Reach length(m)
	69254
	68076
	60687

	Reach slope
	35.7
	29.3
	37.42

	Minimum elevation (m)
	1260
	1410
	1597

	Maximum elevation(m)
	3298
	3317
	3320


























Table 3. Comparison of the SWAT model performance for various DEMs of topo1:25000, aster30, srtm90 on a monthly scale during 1988-2002 period.
	DEM
	NES
	R2
	PBIAS (%)

	TOPO1:25000
	0.79
	0.79
	-13.57

	ASTER30
	0.77
	0.78
	-14.7

	SRTM90  
	0.67
	0.67
	-34.94





























Table 4. Comparison of SWAT model performance for various DEM sources during high and low precipitation months during 1988-2002 period.
	DEM
	NES
	R2
	PBIAS (%)

	
	Low Precip. Period 
	High Precip. Period
	Low Precip. Period
	High Precip. Period
	Low Precip. Period
	High Precip. Period

	TOPO1:25000
	0.67
	0.76
	0.68
	0.77
	-15.2
	8.2

	ASTER30
	0.64
	0.74
	0.65
	0.76
	-16.7
	7.3

	SRTM90  
	0.54
	0.62
	0.56
	0.64
	-37.2
	6.4



























Table 5. Comparison of the SWAT model performance while using DEM with various cell sizes for the input in high flow years.
	DEM Type & Size
	PBIAS
	R2
	NSE
	DEM Type & Size
	PBIAS
	R2
	NSE
	DEM Type & Size
	PBIAS
	R2
	NSE

	TOPO50
	11.5
	0.73
	0.72
	ASTER50
	12.0
	0.73
	0.71
	SRTM50
	12.2
	0.72
	0.70

	TOPO100
	12.1
	0.73
	0.71
	ASTER100
	13.1
	0.72
	0.71
	SRTM100
	14.6
	0.71
	0.70

	TOPO150
	13.2
	0.72
	0.71
	ASTER150
	14.5
	0.72
	0.70
	SRTM150
	15.1
	0.70
	0.68

	TOPO200
	15.2
	0.71
	0.69
	ASTER200
	15.9
	0.71
	0.68
	SRTM200
	16.3
	0.69
	0.68

	TOPO300
	17.4
	0.70
	0.67
	ASTER300
	17.9
	0.70
	0.66
	SRTM300
	18.1
	0.68
	0.66

	TOPO500
	18.9
	0.67
	0.64
	ASTER500
	19.1
	0.65
	0.64
	SRTM500
	19.8
	0.63
	0.61



























Figure 1. The Zarrineh River watershed area and its main streams. It is located in the northwest of Iran between 45.46◦ E to 47.23◦ W and 35.41◦ S to 37.44◦ N, with an area of 2532.48 km2.

Figure 2. Input requirements in the SWAT model.

Figure 3. Digital elevation models of the Zarrineh river watershed. ASTER30, SRTM90, and a 1:25000 scale topographic map were utilized as the initial input DEM in the simulations.

Figure 4. (a) Soil map and (b) Land-cover distribution in the Zarrineh river watershed provided in the Digital Soil Map of the World database presented by the Food and Agriculture Organization of United Nations (FAO).
[bookmark: _GoBack]
Figure 5. The influence of the simulation parameters contributing to the calculation of runoff in the SWAT model using TOPO1:25000, ASTER30m, and SRTM90 as the digital elevation model input.

Figure 6. The calculated and observed surface runoff during the simulation time from 1988 to 2002.

Figure 7. Runoff simulated by the SWAT model for different cell sizes of TOPODEM (a1,b1,c1), ASTERDEM (a2,b2,c2), and SRTMDEM (a3,b3,c3) for the years 1988, 1992, and 1998.

Figure 8. The calculation time of different simulations with various input cell sizes. The simulation time is normalized with the computation time of simulation with 50m cell size.
