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Abstract

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been

investigated by employing reduced differential transform method. Initially, the definition of the derivatives with

fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced

differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray

equation have been obtained by utilizing reduced differential transform method and results have been compared

through graphs and tables.

Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, 
Caputo fractional derivative. 

1. Introduction

The  mathematical  modelling  is  highly  important  for  defining  and  creating  solutions  for  problems,  which  are

encountered in science and engineering. As we know that there is no exact solution for most partial differential

equations. The fact that these differential equations have fractional derivatives and non-linearity makes it difficult to

produce analytical solutions. At this juncture, numerical methods come to the aid. Firstly, Zhou used the differential

transformation method for solving linear and nonlinear initial value problems in electrical circuit analysis [1]. In

1980, Adomian introduced some definitions and theorems about the Adomian decomposition method which he

named after himself, also he demonstrated how to apply this method to some differential equations [2]. Chen and Ho

used the transform method to obtain eigen-values and eigen-functions [3]. He, introduced a new analytical solution

called the method of variational iterations for the solution of nonlinear problems. Initial value problems are solved

with the help of Lagrange multiplier in variational theory via this method. This method, converges faster to the

analytical  solutions compared to the Adomian method [4].  Chen and Ho introduced the novel two-dimensional
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differential  transform  method  to  solve  Partial  Differential  Equations  (PDE)  and  for  the  first-time  differential

transform method was applied to partial differential equations [5]. Two-dimensional differential transform method

for solving the initial value problems for partial differential equations have been studied by Ayaz. Novel theorems

have been introduced and some linear and non-linear PDEs solved by employing this method [6]. The RDTM,

which was first proposed by the Keskin [7], has received much attention due to its applications to solve a wide

variety of problems. In this study, RDTM and HPM are successfully applied to the fractional Benney-Lin equation

and solutions are obtained [8]. In the Srivastava’s study, the solution of two and three dimensional time-fractional

telegraph equation with RDTM is presented. As a result, it has been observed that RDTM technique is efficient and,

by this method, the numerical solution quickly convergences to the analytical solution [9].

In this study, the solution of time-fractional differential Murray equation is tackled. The Burgers’ equation, which is

a member of the reaction-diffusion equation is defined as:   

                                          ut=uxx+λ1uux
The Burgers’ equation has many applications in applied mathematics, modeling fluid dynamics, modeling of gas

dynamics, boundary layer behavior, turbulence and shock wave formation [10]. Fisher’s equation, another member

of the reaction diffusion equation, is defined as: 

                                           ut=uxx+λ2u− λ3u
2. 

It was introduced by Fisher to describe the dynamics of the spread of a mutant gene. The Fisher equation has wide

applications  in  many  fields.  They  explain  the  spread  of  biological  populations,  branching  Brownian  motion

processes, logistic population growth, neurophysiology, flame propagation, neutron population in a nuclear reaction,

chemical kinetics, autocatalytic chemical reactions and nuclear reactor theory. Murray equation is the generalized

form of the Fisher and Burgers equations. Nonlinear Reaction-Diffusion Equations are very important due to their

ease of use in various fields in Engineering and Science [10]. The Murray equation, which is a member of the

reaction-diffusion equation family, is as follows;  

                                ut=uxx+λ1uux+λ2u− λ3u
2,0≤ x<1 ,0≤ t<1  [11,12].  

Reaction-Diffusion  equations  have  a  wide  range  of  applications  in  science  and  engineering  and  have  gained

attention in recent years due to their interesting properties and rich variety of solutions. The fractional version of

Murray equation define as 

                                 Dt
α u=uxx+λ1uux+λ2u−λ3u

2 ,0≤ x<1,0≤ t<1   

In this study, we apply reduced differential transform method to obtain the numerical solution of fractional Murray

differential equation.
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The paper is organized as follows; in section 2, we present some essential definitions of the fractional  calculus

theory. In section 3, we demonstrate the definition and some features of fractional reduced differential transform

method. Also we define the time-fractional  Murray equation with initial  condition. In section 4, we illustrate  a

numerical example and we apply the numerical method to solve the test problem. The tables and graphs are created

for this example. Finally, in section 5 the data obtained in the previous sections are compared and comments are

made on the method.

2. Basic definitions 

In this section, some notations and definitions,  which are necessary for  the solution of the problem, are given.

Fractional analysis theory is as old as classical analysis theory and interest in fractional analysis has increased in the

last two decades.  In addition, more than one definition has emerged. In this study, Riemann-Liouville fractional

integral, Riemann-Liouville fractional derivative and Caputo derivative are given.

Definition 2.1. [13] A real valued function f (x), x>0, is said to be in the space Cμ, μ∈R  if there exists a real

number   p>μ, such that f ( x )=x p f 1(x ) where f 1 ( x )∈C [0 ,∞ ) and a function f (x), x>0 is said to be in the

space Cμ
m, m∈N∪ {0 }, if f (m)∈Cμ.

 f 1 ( x )∈C ¿ olmak  üzere,  f ( x )=x p f 1(x ) olacak  şekilde  p>μ,  μ∈R  reel  sayısı  varsa  f (x),  x>0 reel

fonksiyonu Cα uzayındadır denir ve f (m)∈Cμ ise, bu takdirde f (x), x>0 fonksiyonu C μ
muzayındadır denir. 

Definition 2.2 The Riemann-Liouville fractional integral operator [14] of order α ≥0, of a function f ∈Cμ, μ≥−1

is defined as

(J a
α f ) ( x )=

1
Γ (α )

∫
a

x

( x−τ )
α−1 f (τ )dτ . x>a , x>0 ,                                                                                     (2.1)

The  properties  of  the  operator  Jα can  be  found  in  [15],  and  here  we  only  mention  the  following  (in  case,

f ∈Cμ , μ≥−1 ,α , β ≥0 and v>−1): 

(J a
0 f ) ( x )= f (x)                                                                                                                                                       (2.2)
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(J a
α Ja

β f ) ( x )=(J a
α+ β f ) (x)

(2.3)

Ja
α xv=

Γ (v+1)
Γ (α+v+1)

xα+v

(2.4)

where α ,β ≥0 , x>0 and v>−1.

Definition  2.3 Let  the  function  f  be  continuous  and  integrable  in  every  finite  (a , x ) range.  Let

m∈N ,m−1<α ≤m and  x>a ,a∈ R.  Therefore,  the  Riemann-Liouville  fractional  derivative  [15]  of  the

function f  is defined as

Dα f ( x )=Dm Jm−α f (x )

(2.5)

(D a
α f ) ( x )=

dm

d xm [ 1
Γ (m−α )

∫
a

x

( x−τ )
m−α−1 f (τ )dτ ] ,

(2.6)

Definition 2.4 The fractional derivative of  f (x) in the Caputo sense [16,17] is defined as 

 Dα f ( x )=Jm−α Dm f (x )

(2.7)

(D a
α f ) ( x )=

1
Γ (m−α )

∫
a

x

( x−τ )
m−α−1 f (m)

(τ)dτ ,

(2.8)                                          

for m−1<α ≤m, m∈N , x>0, f ∈C−1
m .
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The following two properties of this operator will be used in what follows.

Lemma If m−1<α ≤m,m∈N  and f ∈Cμ
m, μ≥−1, then 

a)  (D a
α Ja

α f ) ( x )=f (x )

(2.9)

b)(J a
αDa

α f ) ( x )=f ( x )−∑
k=0

m−1

f (k ) (a )
( x−a )

k

k !
, a≥0                                                                                           (2.10)

The Caputo fractional derivative is considered here, because it allows traditional initial and boundary conditions to

be included in the formulation of the problem.    

3. 2-dimensional fractional reduced differential transform method

In this section, reduced differential transform method will be given for the solution of fractional partial differential

equations.  By  using  the  reduced  differential  transform  method,  we  can  decrease  the  processes  density  of  the

generalized differential transform method. Therefore, it will be possible to obtain solutions of fractional differential

equations quickly.

Let us consider a function of two individual variables u ( x , t ), and suppose that it can be represented as a product of

two  single-variable  functions,  i.e.,  u ( x , t )=ϕ ( x )ψ (t ).  On  the  basis  of  the  properties  of  the  one-dimensional

differential transformation , the function u ( x , t ) can be represented as [18]

u ( x , t )=∑
k=0

∞

Φ (k ) xk∑
h=0

∞

Ψ α (h)t
αh
=∑
h=0

∞

U αh(x) t
αh

Where  0<α ≤1,  U αh ( x )=Ψ α(h)Φ(k ) is  called  spectrum  function  of  u ( x , t ).  The  basic  definitions  and

operations of the reduced differential transform are introduced as follows

Definition 3.1 [19,20] Let u ( x , t ) be an analytic function that continuously differentiable with respect to time t  and

space x in domain of interest . Define 

U h ( x )=
1

Γ (αh+1)
[Dt

αhu(x ,t ) ]t=t0

(3.1)       
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where α  is the parameter that describes the order of time fractional derivative in the Caputo sense and t -dimensional

spectrum function U h ( x ) is defined as

u ( x , t )=∑
h=0

∞

U h ( x )(t−t 0)
αh                                                                                                                              (3.2)

Combining equation (3.1) and (3.2), we have 

u ( x , t )=∑
h=0

∞
1

Γ (αh+1)
[Dt

αhu(x , t)]t=t 0
(t−t 0)

αh.

(3.3)

When t 0=0, Eqs. (3.3) reduces to

u ( x , t )=∑
h=0

∞
1

Γ (αh+1)
[Dt

αhu(x , t)]t=t 0
t αh 

From the above definition, it can be found that the concept of the reduced differential transform is derived from the

power series expansion of a function.

Table 1: Reduced fractional differential Transformations [7,21]

Original function Transformed function

u(x , t) U h ( x )=
1

Γ (1+hα) [ ∂
ha

∂t ha
u(x , t)]

t=0

u ( x , t )=l1w(x , t)± l2v (x ,t) U k ( x )=l1W h ( x )±l2V h ( x ) l1 , l2∈R

u ( x , t )=cw (x , t )(c∈ R) U h ( x )=cW h ( x )(c∈ R)
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u ( x , t )=
∂r

∂ xr
w (x , t) U h ( x )=

∂r

∂xr
W h(x )

u ( x , t )=
∂Nα

∂ tNα
w (x ,t) U h ( x )=

Γ (hα+Nα+1)
Γ (hα+1)

W h+N(x )

u ( x , t )=w(x ,t )v (x , t) U h ( x )=∑
s=0

h

V s ( x )W h−s ( x )

ψ (x ,t )=u(x , t)w(x , t)v (x ,t ) Ψ k=∑
r=0

k

∑
i=0

r

U i(x )V r−i( x)W k−r(x )

We illustrate the reduced differential transform method by employing the fractional Murray equation in standard

form,

L (u ( x , t ))+R (u ( x , t ) )+N (u ( x ,t ) )+F (u ( x ,t ) )=0                                                                                        (3.4)

with initial condition 

u ( x ,0 )=f (x)

(3.5)

where L=
∂α

∂ t α
,R=

∂2

∂x2 , F=u and N=u
∂u
∂ x

 are the linear operators which has partial derivatives.

According to RDTM formulas in Table 1, we can derive the following iteration formulas;

Γ (α (h+N )+1 )

Γ (αh+1 )
Uh+1 ( x )=−N (U h( x))−R (Uh(x))−U h(x )

(3.6)

where  N (U h(x )),  R (Uh(x )) and  U h(x ) are the transformations of  N (u ( x , t ) ) ,R (u ( x ,t ) ) and  F (u ( x ,t ) ),

respectively. From the initial condition, we write

U 0 ( x )=f (x)

(3.7)

7



Substituting eqs. (3.7) into (3.6) and by a straight forward iterative formula, we get the following U h(x ) values.

Then, we apply the inverse transformation to all the values {U h(x)}h=0

n
 to obtain the approximation solution as

~un ( x ,t )=∑
h=0

n

U h(x) t
αh                                                                                                                                        (3.8)

where n is order of approximation solution. Thus, the exact solution of the problem is obtained by

 u ( x , t )=lim
n→∞

~un ( x , t ) . 

4. Numerical example

Example The Murray equation with initial condition and analytical solution is given by

Dt
α u=uxx+λ1uux+λ2u−λ3u

2 ,0≤ x<1,0≤ t<1                                                                                  (4.1)

u ( x ,0 )=
1
2 (1+ tanh( x4 ))

(4.2)   

u ( x , t )=
λ2

2 λ3 (1+ tanh [
λ2

8 λ3
2 (2 λ1 λ3 x+(λ1

2
+4 λ3

2
)t )]).[10]

(4.3)                                                              

If λ1=1 , λ2=1 ve λ3=1 (λ1 , λ2 , λ3∈R) in equation (4.1), the time-fractional partial differential equation turns

into

  Dt
α u=uxx+uux+u−u

2 ,0≤ x<1,0≤ t<1                                                                                          (4.4)

Using the initial condition at (4.2), we apply the reduced differential transform method to (4.4) Murray equation and

obtained:
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Γ (α (h+1 )+1 )

Γ (αh+1 )
Uh+1 ( x )=

∂2

∂x2
U h(x)+∑

s=0

h

U s ( x )
∂
∂ x
U h−s ( x )+Uh ( x )−∑

s=0

h

U s ( x )U h−s(x)

(4.5)

If we iterate for  h=0,1,2,3…;

U 0 ( x )=
1
2 (1+ tanh( x4 ))

U 1=

4+sech2( x4 )−4 tanh2( x4 )
16Γ (α+1)

U 2=
1

64 Γ (2α+1 )
¿

−2 sech2( x4 ) tanh2( x4 )+16 tanh 3( x4 )¿

U 3=
−1

512 Γ (3α+1 ) Γ2 (α+1 )
¿

+16 Γ (2α+1 ) sech2( x4 )+9 Γ2
(α+1 ) sech4( x4 )+2Γ (2α+1 ) sech4( x4 )

+36 Γ 2
(α+1 ) sech2( x4 ) tanh( x4 )+20Γ (2α+1 ) sech2( x4 ) tanh( x4 )

−86 Γ 2
(α+1 ) sech4( x4 ) tanh( x4 )+5 Γ (2α+1 ) sech4 ( x4 ) tanh( x4 )

−128 Γ2
(α+1 ) tanh2( x4 )−64 Γ (2α+1 ) tanh2( x4 )

−138 Γ2
(α+1 ) sech2( x4 ) tanh2( x4 )−16Γ (2α+1 ) sech2( x4 ) tanh2( x4 )
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−36 Γ2
(α+1 ) sech2( x4 ) tanh 3( x4 )−20 Γ (2α+1 ) sech2( x4 ) tanh3( x4 )

+128 Γ2
(α+1 ) tanh4( x4 )+32 Γ (2α+1 ) tanh 4( x4 )¿

U 4=
−1

4096 Γ (4 α+1 ) Γ (2α+1 ) Γ2
(α+1 )

¿

+128 Γ (3α+1 )Γ (α+1 ) sech2( x4 )−92 Γ (2α+1 ) Γ2
(α+1 ) sech4( x4 )

−44 Γ2
(2α+1 ) sech4( x4 )+4 Γ (3α+1 ) Γ (α+1 ) sech4( x4 )

−233 Γ (2α+1 ) Γ2
(α+1 ) sech6( x4 )−13Γ 2

(α+1 ) sech6( x4 )

−7 Γ (3α+1 )Γ (α+1 ) sech6( x4 )−256 Γ2
(2α+1 ) tanh ( x4 )

−512Γ (3α+1 ) Γ (α+1 ) tanh( x4 )−416 Γ (2α+1 ) Γ2
(α+1 ) sech2( x4 ) tanh( x4 )

−288 Γ2
(2α+1 ) sech2( x4 ) tanh( x4 )−400 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh ( x4 )

−456Γ (2α+1 )Γ 2
(α+1 ) sech4( x4 ) tanh( x4 )−96 Γ 2

(2α+1 ) sech4( x4 ) tanh( x4 )

−64 Γ (3α+1 )Γ (α+1 ) sech4( x4 ) tanh( x4 )

+322 Γ (2α+1 ) Γ2
(α+1 ) sech6( x4 ) tanh( x4 )−85 Γ2

(2α+1 ) sech6( x4 ) tanh( x4 )

−24 Γ (3α+1 )Γ (α+1 ) sech6( x4 ) tanh( x4 )

−488Γ (2α+1 )Γ 2
(α+1 ) sech2( x4 ) tanh2( x4 )
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−264 Γ 2
(2α+1 ) sech2( x4 ) tanh2( x4 )−616 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh 2( x4 )

+2280 Γ (2α+1 ) Γ2
(α+1 ) sech4 ( x4 ) tanh2( x4 )

+2280 Γ (2α+1 ) Γ2
(α+1 ) sech4 ( x4 ) tanh2( x4 )

+144 Γ 2
(2α+1 ) sech4 ( x4 ) tanh2( x4 )−144 Γ (3 α+1 ) Γ (α+1 ) sech4( x4 ) tanh2( x4 )

+1024 Γ (2α+1 )Γ 2
(α+1 ) tanh3( x4 )+512 Γ2

(2α+1 ) tanh3( x4 )

+1024 Γ (3α+1 )Γ (α+1 ) tanh3( x4 )

+1892 Γ (2α+1 ) Γ2
(α+1 ) sech2( x4 ) tanh3( x4 )

+288 Γ2
(2α+1 ) sech2( x4 ) tanh3( x4 )+384 Γ (3α+1 )Γ (α+1 ) sech2( x4 ) tanh3( x4 )

−128 Γ (2α+1 ) Γ2
(α+1 ) sech4( x4 ) tanh3( x4 )

+140 Γ2
(2α+1 ) sech4( x4 ) tanh3( x4 )−8 Γ (3α+1 )Γ (α+1 ) sech4( x4 ) tanh3( x4 )

+488Γ (2α+1 )Γ 2
(α+1 ) sech2( x4 ) tanh4( x4 )

+232 Γ2
(2α+1 ) sech2( x4 ) tanh4( x4 )+488 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh 4( x4 )

−1024 Γ (2α+1 )Γ 2
(α+1 ) tanh5( x4 )−256 Γ 2

(2α+1 ) tanh5( x4 )

−512Γ (3α+1 ) Γ (α+1 ) tanh5( x4 )+16 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh5( x4 )¿
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 From here, the approximate solution is found from the inverse transformation of the values of the set {U k (x)}k=0

4
 .

 In order to obtain the approximate solution of this equation, if the below terms are written on the total series, 

~un ( x ,t )=∑
h=0

n

U h(x) t
αh

and we then arrive at the following solution:

~u4 (x , t )=∑
h=0

4

U h(x )t
αh
=

1
2 (1+ tanh( x4 ))+

4+sech2( x4 )−4 tanh 2( x4 )
16 Γ (α+1 )

tα

+1
64 Γ (2α+1 )

¿

−2 sech2( x4 ) tanh2( x4 )+16 tanh 3( x4 )¿ t
2α

+−1

512Γ (3α+1 )Γ 2 (α+1 )
¿

+16 Γ (2α+1 ) sech2( x4 )+9 Γ2
(α+1 ) sech4( x4 )+2Γ (2α+1 ) sech4( x4 )

+36 Γ 2
(α+1 ) sech2( x4 ) tanh( x4 )+20Γ (2α+1 ) sech2( x4 ) tanh( x4 )

−86 Γ 2
(α+1 ) sech4( x4 ) tanh( x4 )+5 Γ (2α+1 ) sech4 ( x4 ) tanh( x4 )

−128 Γ2
(α+1 ) tanh2( x4 )−64 Γ (2α+1 ) tanh2( x4 )

−138 Γ2
(α+1 ) sech2( x4 ) tanh2( x4 )−16Γ (2α+1 ) sech2( x4 ) tanh2( x4 )
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−36 Γ2
(α+1 ) sech2( x4 ) tanh 3( x4 )−20 Γ (2α+1 ) sech2( x4 ) tanh3( x4 )

+128 Γ2
(α+1 ) tanh4( x4 )+32 Γ (2α+1 ) tanh 4( x4 )¿ t

3α

+−1

4096 Γ (4 α+1 ) Γ (2α+1 ) Γ2 (α+1 )
¿

+128 Γ (3α+1 )Γ (α+1 ) sech2( x4 )−92 Γ (2α+1 ) Γ2
(α+1 ) sech4( x4 )

−44 Γ2
(2α+1 ) sech4( x4 )+4 Γ (3α+1 ) Γ (α+1 ) sech4( x4 )

−233 Γ (2α+1 ) Γ2
(α+1 ) sech6( x4 )−13Γ 2

(α+1 ) sech6( x4 )

−7 Γ (3α+1 )Γ (α+1 ) sech6( x4 )−256 Γ2
(2α+1 ) tanh ( x4 )

−512Γ (3α+1 ) Γ (α+1 ) tanh( x4 )−416 Γ (2α+1 ) Γ2
(α+1 ) sech2( x4 ) tanh( x4 )

−288 Γ2
(2α+1 ) sech2( x4 ) tanh( x4 )−400 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh ( x4 )

−456Γ (2α+1 )Γ 2
(α+1 ) sech4( x4 ) tanh( x4 )−96 Γ 2

(2α+1 ) sech4( x4 ) tanh( x4 )

−64 Γ (3α+1 )Γ (α+1 ) sech4( x4 ) tanh( x4 )

+322 Γ (2α+1 ) Γ2
(α+1 ) sech6( x4 ) tanh( x4 )−85 Γ2

(2α+1 ) sech6( x4 ) tanh( x4 )

−24 Γ (3α+1 )Γ (α+1 ) sech6( x4 ) tanh( x4 )

−488Γ (2α+1 )Γ 2
(α+1 ) sech2( x4 ) tanh2( x4 )
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−264 Γ 2
(2α+1 ) sech2( x4 ) tanh2( x4 )−616 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh 2( x4 )

+2280 Γ (2α+1 ) Γ2
(α+1 ) sech4 ( x4 ) tanh2( x4 )

+2280 Γ (2α+1 ) Γ2
(α+1 ) sech4 ( x4 ) tanh2( x4 )

+144 Γ 2
(2α+1 ) sech4 ( x4 ) tanh2( x4 )−144 Γ (3 α+1 ) Γ (α+1 ) sech4( x4 ) tanh2( x4 )

+1024 Γ (2α+1 )Γ 2
(α+1 ) tanh3( x4 )+512 Γ2

(2α+1 ) tanh3( x4 )

+1024 Γ (3α+1 )Γ (α+1 ) tanh3( x4 )

+1892 Γ (2α+1 ) Γ2
(α+1 ) sech2( x4 ) tanh3( x4 )

+288 Γ2
(2α+1 ) sech2( x4 ) tanh3( x4 )+384 Γ (3α+1 )Γ (α+1 ) sech2( x4 ) tanh3( x4 )

−128 Γ (2α+1 ) Γ2
(α+1 ) sech4( x4 ) tanh3( x4 )

+140 Γ2
(2α+1 ) sech4( x4 ) tanh3( x4 )−8 Γ (3α+1 )Γ (α+1 ) sech4( x4 ) tanh3( x4 )

+488Γ (2α+1 )Γ 2
(α+1 ) sech2( x4 ) tanh4( x4 )

+232 Γ2
(2α+1 ) sech2( x4 ) tanh4( x4 )+488 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh 4( x4 )

−1024 Γ (2α+1 )Γ 2
(α+1 ) tanh5( x4 )−256 Γ 2

(2α+1 ) tanh5( x4 )

−512Γ (3α+1 ) Γ (α+1 ) tanh5( x4 )+16 Γ (3α+1 ) Γ (α+1 ) sech2( x4 ) tanh5( x4 )¿ t
4α
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Fig. 4.a Murray equation graph for α=1 Fig. 4.b Murray equation graph for α=0,75 

Fig. 4.c Murray equation graph for α=0,50 Fig. 4.d Murray equation graph for α=0,25

Table 2 When α=1 and t=0,125, the u(x , t) numerical solution of time-fractional differential equation (4.4)

x value t value Numerical solution Analytical solution Absolute error

0,125 0,125 0,5544702743 0,5544704649 1,9×10−7
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0,225 0,125 0,5667858200 0,5667860060 1,8×10−7

0,325 0,125 0,5790194078 0,5790195874 1,7×10−7

0,425 0,125 0,5911567286 0,5911568998 1,7×10−7

0,525 0,125 0,6031839359 0,6031840971 1,6×10−7

0,625 0,125 0,6150877057 0,6150878555 1,4×10−7

0,725 0,125 0,6268552909 0,6268554280 1,3×10−7

0,825 0,125 0,6384745708 0,6384746941 1,2×10−7

0,925 0,125 0,6499340935 0,6499342022 1,0×10−7

Table 3 When t=0,125 and α=1,   α=0,75 ,   α=0,50 ,  α=0,25 , the u(x , t) numerical solution of time-

fractional differential equation (4.4) 

x t α=1 α=0,75 α=0,50 α=0,25

0,125 0,125 0,5544702743 0,5859103286 0,6334478288 0,6894731167

0,225 0,125 0,5667858200 0,5979239246 0,6446632874 0,7000300566

0,325 0,125 0,5790194078 0,6098216121 0,6557299695 0,7104476486

0,425 0,125 0,5911567286 0,6215906289 0,6666378629 0,7207052979

0,525 0,125 0,6031839359 0,6332187959 0,6773775486 0,7307833264

0,625 0,125 0,6150877057 0,6446945618 0,6879402342 0,7406632610

0,725 0,125 0,6268552909 0,6560070412 0,6983177834 0,7503280899

0,825 0,125 0,6384745708 0,6671460477 0,7085022739 0,7597624789

0,925 0,125 0,6499340935 0,6781021211 0,7184883430 0,7689529449
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Fig. 5.a  2D graphic of the exact and numerical solution of  u(x ,0.125) of the (4.4) time-fractional differential

equation for α=1.

Fig. 5.b 2D graphic of the numerical solution of  u(x ,0.125) of the (4.4) time-fractional differential equation for

α=1, α=0,75 , α=0,50 , α=0,25 of the (4.4) time fractional differential equation.

Table 4 When  α=1 and t=0,325, the u(x , t) numerical solution of time-fractional differential equation (4.4)

x value t value Numerical solution Analytical solution Absolute error

0,125 0,325 0,6150657708 0,6150878555 0,0000220847

0,225 0,325 0,6268340714 0,6268554281 0,0000213566

0,325 0,325 0,6384542799 0,6384746942 0,0000204143
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0,425 0,325 0,6499149279 0,6499342022 0,0000192743

0,525 0,325 0,6612052504 0,6612232068 0,0000179564

0,625 0,325 0,6723152161 0,6723316992 0,0000164831

0,725 0,325 0,6832355529 0,6832504316 0,0000148788

0,825 0,325 0,6939577659 0,6939709354 0,0000131695

0,925 0,325 0,7044741505 0,7044855324 0,0000113819

Table 5 When t=0,325 andα=1, α=0,75 ,   α=0,50 ,  α=0,25 , the  u(x , t) numerical solution of time-

fractional differential equation (4.4) 

x t α=1 α=0,75 α=0,50 α=0,25

0,125 0,325 0,6150657708 0,6541561282 0,6919781039 0,7192267946

0,225 0,325 0,6268340714 0,6651658729 0,7021446159 0,7307671602

0,325 0,325 0,6384542799 0,6760042568 0,7121570774 0,7421752989

0,425 0,325 0,6499149279 0,6866625171 0,7220040752 0,7534040021

0,525 0,325 0,6612052504 0,69713254710,7316746799 0,7644082702

0,625 0,325 0,6723152161 0,7074069155 0,7411585762 0,7751460837

0,725 0,325 0,6832355529 0,7174788827 0,7504461818 0,7855790777

0,825 0,325 0,6939577659 0,7273424109 0,7595287530 0,7956731036

0,925 0,325 0,7044741505 0,7369921707 0,7683984747 0,8053986682
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Fig. 6.a  2D graphic of the exact and numerical solution of  u(x ,0.325) of the (4.4) time-fractional differential

equation for α=1. 

Fig. 6.b 2D graphic of the numerical solution of  u(x ,0.325) of the (4.4) time-fractional differential equation for

α=1, α=0,75 , α=0,50 , α=0,25 of the (4.4) time fractional differential equation.

It was observed that the acquired for t=0,125 taken in tables 2 and 3 are consistent with the 2D plots in figure 5a and

5b. At the same time, for the t=0,325 value taken in tables 4 and 5, it was acquired that it is consistent with the 2D

plots in figures 6a and 6b. In our studies, it has been observed that there is a convergence for the other values of  t in

the table and the variable values of x, as in the above graphs.

5 Conclusions

In this study, the reduced differential transform method was applied to the time-fractional Murray equation, which is

a member of Reaction-Diffusion equation family. A series solution for the problem was obtained by using the initial

condition. These solutions were compared with tables and graphs. For α=1 these solutions were compared with the

analytical solutions. As a result, this method was found to be very useful for solving nonlinear equations. Reduced

differential  transform method converges to the solution faster than classical or generalized differential transform

methods. Furthermore, this method eliminates the intensive processing load.
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