DATA ACCESSIBILITY
Data are available from the Dryad Digital Repository at https:// doi.org/10.5061 /dryad.v41ns1rw9. The haplotype sequences of our study involved are deposited in GenBank with accession numbers MZ130327-MZ130377.
REFERENCES
  1. Abbott, R.J. & Lowe, A.J. (2004). Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biological Journal of the Linnean Society, 82: 467-474. https://doi.org/10.1111/ j.1095-8312.2004.00333.x
  2. Abbott, R.J. (2003). Sex, sunflowers, and speciation. Science, 301: 1189–1190.
  3. Barkwoth, M.E., & Bothmer, R.V. (2009). Scientific Names in the Triticeae. Genetics and Genomics of the Triticeae, 3-30.
  4. Dewey, D.R. (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In J.P. Gustafson (Ed), Gene Manipulation in Plant Improvement (pp. 209-279). New York, Columbia University Press.
  5. Ellstrand, N.C., Whitkus, R.W. & Rieseberg, L.H. (1996). Distribution of spontaneous plant hybrids. Proceedings of the National Academy of Sciences, USA, 93: 5090-5093. https://doi.org/10.1073/pnas.93.10.5090
  6. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791. https://doi.org/10.1111/j.1558 5646.1985. tb00420.x
  7. Keng, Y. (1984). Flora Illustrata Plantarum Primarum Sinicarum (Gramineae). Beijing, Science Press.
  8. Gill, B.S., Friebe, B., & Endo, T.R. (1991). Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum ). Genome, 34: 830-839. https://doi.org/10.1139/G91-128
  9. Goulet, B.E., Roda, F., & Hopkins, R. (2017). Hybridization in plants: old ideas, new techniques. Plant Physiology, 173(1): 65–78. https://doi.org/10.1104/pp.16.01340
  10. Guindon, S., Delsuc, F., Dufayard, J.F., & Gascuel, O. (2009). Estimating maximum likelihood phylogenies with PhyML. Methods in Molecular Biology, 537: 113-137. https://doi.org/10.1007/978-1-59745-251-9_6
  11. Guo, B. (1987). Flora Reipublicae Popularis Sinicae, Beijing: Science Press.
  12. Han, F., Liu, B., Fedak, G., & Liu, Z. (2004). Genomic constitution and variation in five partial amphiploids of wheat – Thinopyrumintermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theoretical and Applied Genetics, 109(5): 1070-1076. https://doi.org/10.1007/s00122-004-1720-y
  13. Keeble, F., & Pellew, C. (1910). The mode of inheritance of stature and time of flowering in peas (Pisum sativum ). Journal of Genetics, 1: 47-56. https://doi.org/10.1007/BF01798042
  14. Lee, C.S., Lee, K., Yeau, S.H. & Chung, K.S. (2015). Two new and one unrecorded natural hybrids between Asplenium ruprechtii and related taxa (Aspleniaceae). Korean Journal of Plant Taxonomy, 45: 362-368. https://doi.org/10.11110/kjpt. 2015.45.4.362
  15. Lei, Y., Liu, J., Fan, X., Sha, L., Wang, Y., Kang, H., … Zhang, H. (2018). Phylogeny and molecular evolution of the DMC 1 gene in the polyploid genus Roegneria and its affinitive genera (Poaceae: Triticeae). Botanical Journal of the Linnean Society, 186, 129–142. https://doi.org/10.1093/botlinnean/box081
  16. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20: 229-237. https://doi.org/10.1016/j.tree.2005.02.010
  17. Mallet, J., Besansky, N., & Hahn, M.W. (2016). How reticulated are species? BioEssays, 38: 140-149. https://doi.org/10.1002/bies.201500149
  18. Mao, J., Ma, Y., & Zhou, R.C. (2017). Approaches used to detect and test hybridization: combining phylogenetic and population genetic analyses. Biodiversity Science, 25: 577-599.
  19. Murray, H.G., & Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4325. https://doi.org/10.1093/NAR/ 8.19.4321
  20. Paštová, L., Belyayev, A., & Mahelka, V. (2019). Molecular cytogenetic characterisation of Elytrigia ×mucronata , a natural hybrid of E. intermedia and E. repens(Triticeae, Poaceae). BMC Plant Biology, 19(1): 230. https://doi.org/10.1186/s12870-019-1806-y
  21. Petersen, G., & Seberg, O. (2002). Molecular evolution and phylogenetic application DMC 1. Molecular Phylogenetics and Evolution, 22 (1): 43-50. https://doi.org/10.1006/mpev.2001.1011
  22. Posada, D., & Crandall, K.A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817–818. https://doi.org/10.1093/bioinformatics /14.9.817
  23. Quijada, A., Liston, A., Robinson, W., & Alvarez-buylla, E. (1997). The ribosomal ITS region as a marker to detect hybridization in pines. Molecular Ecology, 6: 995-996. https://doi.org/10.1046/j.1365-294X.1997.t01-1-00273.x
  24. Rauscher, J.T., Doyle, J.J., & Brown, A.H.D. (2002). Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex. Molecular Ecology, 11(12): 2691-2702. https://doi.org/10.1046/j.1365-294X.2002.01640.x
  25. Rieseberg, L.H. (1995). The role of hybridization in evolution: old wine in new skins. American Journal of Botany, 82: 944-953. https://doi.org/10.1002/J.1537-2197.1995.TB15711.X
  26. Rieseberg, L.H. (1997). Hybrid origins of plant species. Annual Review of Ecology & Systematics, 28(28): 359-389.
  27. Rieseberg, L.H., & Carney, S.E. (1998). Plant hybridization. New Phytologist, 140(4): 599-624.
  28. Ronquist, F., & Huelsenbeck, J.P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed model. Bioinformatics, 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  29. Sang, T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 37(3): 121-147. https://doi.org/10.1080/10409230290771474
  30. Sang, T., Crawford, D.J., & Stuessy, T.F. (1995). Documentation of reticulate evolution in peonies (Paeonia ) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States, 92: 6813-6817. https://doi.org/10.1073/pnas.92.15.6813
  31. Sha, L., Fan, X., Yang, R., Kang, H., Ding, C., Zhang, L., … Zhou, Y. (2010). Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclearAcc 1, DMC 1 and chloroplast trnL -Fsequences. Molecular Phylogenetics and Evolution, 54: 327–335. https://doi.org/10.1016/ j.ympev.2009.05.005
  32. Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., … Small, R.L. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92: 142-166. https://doi.org/10.3732/ajb.92.1.142
  33. Shull, G.H. (1908). The composition of a field of maize. Journal of Heredity, , 4: 296-301. https://doi.org/10.1093/jhered/os-4.1.296
  34. Smith, J.F., Funke, M.M., & Woo, V.L. (2006). A duplication of gcyc predates divergence within tribeCoronanthereae (Gesneriaceae): phylogenetic analysis and evolution. Plant Systematics and Evolution, 261(1-4): 245-256. https://doi.org/10.1007/s00606-006-0445-6
  35. Soltis, D.E., & Soltis, P.S. (1993). Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences, 12: 243-273. https://doi.org/10.1080/07352689309701903
  36. Soltis, P.S., & Soltis, D.E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60: 561–588. https://doi.org/10.1146/ annurev.arplant.043008.092039
  37. Soltis, P.S., Doyle, J.J., & Soltis, D.E. (1992). Molecular data and polyploid evolution in plants. In P.S. Soltis, D.E. Soltis, & J.J. Doyle (Eds.), Molecular Systematics of Plant (pp. 177 -201). New York, NY: Chapman & Hall.
  38. Stebbins, G.L., & Singh, R. (1950). Artificial and natural hybrids in the Gramineae, Tribe Hordeae. IV. Two triploid hybrids ofAgropyron and Elymus . American Journal of Botany, 37(5): 388-393.
  39. Stebbins, G.L., & Vaarama, A. (1954). Artificial and natural hybrids in the Gramineae, Tribe Hordeae. VII. Hybrids and allopolyploids betweenElymus glaucus and Sitanion spp. Genetics, 39(3): 378-395.
  40. Stebbins, G.L., & Walters, M.S. (1949). Artificial and natural hybrids in the Gramineae, Tribe Hordeae. III. Hybrids involvingElymus condensatus and E. triticoides . American Journal of Botany, 36(3): 291-301.
  41. Stukenbrock, E.H. (2016). The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology, 106: 104-112. https://doi.org/10.1094/PHYTO-08-15-0184-RVW
  42. Tang, C., Qi, J., Chen, N., Sha, L., Wang, Y., Zeng, J., … Fan X. (2017). Genome origin and phylogenetic relationships of Elymus villosus (Triticeae: Poaceae) based on single-copy nuclearAcc 1, Pgk 1, DMC 1 and chloroplasttrnL -F sequences. Biochemical Systematics and Ecology, 70: 168–176. https://doi.org/10.1016/j.bse.2016.11.011
  43. Tian, D., Li, C., Xiao, Y., Fu, N., Tong, Y., & Wu, R. (2017). Occurrence and characteristics of natural hybridization ofBegonia from China. Biodiversity Science, 25: 654-674. https://doi.org/10.17520/biods.2017050
  44. Von Tschermak, E., & Bleier, H. (1926). Über fruchtbareAegilops -Weizenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 44: 110–132.
  45. Wang, L., Shi, Q., Su, H., Wang, Y., Sha, L., Fan, X., … Zhou, Y. (2017). St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome, 60: 553–563. https://doi.org/10.1139/gen-2016-0228
  46. Wang, N., Borrell, J.S., Bodles, W.J., Kuttapitiya, A., Nichols, R.A. & Buggs, R.J.A. (2014). Molecular footprints of the Holocene retreat of dwarf birch in Britain. Molecular Ecology, 23: 2771-2782. https://doi.org/10.1111/mec.12768
  47. Wang, Y. (2017). Natural hybridization and speciation. Biodiversity Science, 25(6): 565-576.
  48. Yan, C., Hu, Q., Sun, G., & McIntyre, C.L. (2014). Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history ofElymus pendulinus . Genome, 57(2): 97–109. https://doi.org/10.1139/gen-2014-0002
  49. Yan, L., Gao, L., & Li, D. (2013). Molecular evidence for natural hybridization between Rhododendron spiciferum and R. spinuliferum (Ericaceae). Journal of Systematics and Evolution, 51: 426-434. https://doi.org/10.1111/j.1759-6831.2012.00243.x
  50. Yang, J., Baum, B.R., & Yen, C. (2008). A revision of the genusRoegneria C. Koch (Poaceae: Triticeae). Journal of Sichuan Agricultural University, 26: 311–381.
  51. Yu, Y., Than, C., Degnan, J.H., & Nakhleh L. (2011). Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology, 60: 138-149. https://doi.org/10.1093/sysbio/syq084
  52. Zeng, J. (2011). Molecular Phylogenetic Study on Kengyilia C. Yen Et J.L. Yang and Molecular Cytogenetic Analysis of New Breeding Resources Derived fromElytrigia Desv. (Triticeae: Poaceae). Sichuan Agricultural University.
  53. Zeng, J., Fan, X., Zhang, H., Sha, L., Kang, H., Zhang, L., … Zhou, Y. (2012). Molecular and cytological evidences for the natural wheat grass hybrids occurrence and origin in west China. Genes & Genomics, 34: 499-507. https://doi.org/10.1007 /s13258-012-0057-1
  54. Zhang, H., & Zhou, Y. (2006). Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of genus Hystrix Moench (Poaceae, Triticeae). Plant Systematics and Evolution, 258: 129-136. https://doi.org/10.1007/s00606-005-0394-5
  55. Zhang, H., Fan, X., Wang, Y., & Zhou, Y. (2008). Cytogenetic studies of intergeneric hybrids between Roegneria ciliaris andLeymus multicaulis (Poaceae: Triticeae). Acta Prataculturae Sinica, 17: 162-165.
  56. Zhou, Y., Yen, C., & Yang, J. (1995). A study on the intergeneric hybrid of R. kamoji × Hordeum vulgare. Journal of Sichuan Agricultural University, 13: 144-149.
TABLE 1 The materials used in this study