4. References
Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015).
Aptamer-conjugated silver nanoparticles for electrochemical
dual-aptamer-based sandwich detection of Staphylococcus aureus.Biosensors and Bioelectronics, 68 , 149-155.
https://doi.org/10.1016/j.bios.2014.12.040
Ahangari, A., Salouti, M., & Saghatchi, F. (2016). Gentamicin-gold
nanoparticles conjugate: a contrast agent for X-ray imaging of
infectious foci due to Staphylococcus aureus. IET
nanobiotechnology, 10 (4), 190-194.
https://doi.org/10.1049/iet-nbt.2015.0034
Alves, C. J., Figueiredo, S. M. d., Azevedo, S. S. d., Clementino, I.
J., Keid, L. B., Vasconcellos, S. A., Batista, C. D. S. A., Rocha, V. C.
M. & Higino, S. S. (2010). Detection of Brucella ovis in ovine
from Paraíba State, in the Northeast region of Brazil. Brazilian
Journal of Microbiology, 41 (2), 365-367.
https://doi.org/10.1590/S1517-83822010000200016
Amini, B., Kamali, M., Salouti, M., & Yaghmaei, P. (2018).
Spectrophotometric, colorimetric and visually detection ofPseudomonas aeruginosa ETA gene based gold nanoparticles DNA
probe and endonuclease enzyme. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 199 , 421-429.
https://doi.org/10.1016/j.saa.2018.03.056
Bayramoglu, G., Ozalp, V. C., Oztekin, M., & Arica, M. Y. (2019). Rapid
and label-free detection of Brucella melitensis in milk and milk
products using an aptasensor. Talanta, 200 , 263-271.
https://doi.org/10.1016/j.talanta.2019.03.048
Eltzov, E., & Marks, R. S. (2016). Miniaturized flow stacked
immunoassay for detecting Escherichia coli in a single step.Analytical chemistry, 88 (12),
6441-6449.https://doi.org/10.1021/acs.analchem.6b01034
Emameian, A., Ahangari, A., Salouti, M., & Amirmozafari, N. (2020).
Enhanced effect of Amikacin in conjugation with gold nanopartcles as a
carrier to kill Pseudomonas aeruginosa . Nanochemistry
Research, 5 (2),
179-184.https://doi.org/10.22036/NCR.2020.02.008
Gattani, A., Singh, S. V., Agrawal, A., Khan, M. H., & Singh, P.
(2019). Recent progress in electrochemical biosensors as point of care
diagnostics in livestock health. Analytical biochemistry, 579 ,
25-34. https://doi.org/10.1016/j.ab.2019.05.014
Le, T. N., Tran, T. D., & Kim, M. I. (2020). A Convenient Colorimetric
Bacteria Detection Method Utilizing Chitosan-Coated Magnetic
Nanoparticles. Nanomaterials, 10 (1),
92.https://doi.org/10.3390/nano10010092
Li, L., Yin, D., Xu, K., Liu, Y., Song, D., Wang, J., Zhao, C., Song, X.
& Li, J. (2017). A sandwich immunoassay for brucellosis diagnosis based
on immune magnetic beads and quantum dots. Journal of
pharmaceutical and biomedical analysis, 141 , 79-86.
https://doi.org/10.1016/j.jpba.2017.03.002
Li, S., Liu, Y., Wang, Y., Wang, M., Liu, C., & Wang, Y. (2019). Rapid
detection of Brucella spp. and elimination of carryover using
multiple cross displacement amplification coupled with
nanoparticles-based lateral flow biosensor. Frontiers in cellular
and infection microbiology, 9 , 78.
https://doi.org/10.3389/fcimb.2019.00078
Mehrotra, P. (2016). Biosensors and their applications–A review.Journal of oral biology and craniofacial research, 6 (2), 153-159.
https://doi.org/10.1016/j.jobcr.2015.12.002
Narmani, A., Kamali, M., Amini, B., Kooshki, H., Amini, A., & Hasani,
L. (2018). Highly sensitive and accurate detection of Vibrio
cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and
magnetic nanoparticles. Process Biochemistry, 65 , 46-54.
https://doi.org/10.1016/j.procbio.2017.10.009
Pal, D., Boby, N., Kumar, S., Kaur, G., Ali, S. A., Reboud, J.,
Shrivastava, S., Gupta, P. K., Cooper, J. M. & Chaudhuri, P. (2017).
Visual detection of Brucella in bovine biological samples using
DNA-activated gold nanoparticles. Plos one, 12 (7), e0180919.
https://doi.org/10.1371/journal.pone.0180919
Pereira, C. R., Cotrim de Almeida, J. V. F., Cardoso de Oliveira, I. R.,
Faria de Oliveira, L., Pereira, L. J., Zangerônimo, M. G., Large, A. P&
Dorneles, E. M. S. (2020). Occupational exposure to Brucellaspp.: A systematic review and meta-analysis. PLoS neglected
tropical diseases, 14 (5), e0008164.
https://doi.org/10.1371/journal.pntd.0008164
Rubab, M., Shahbaz, H. M., Olaimat, A. N., & Oh, D.-H. (2018).
Biosensors for rapid and sensitive detection of Staphylococcus
aureus in food. Biosensors and Bioelectronics, 105 , 49-57.
https://doi.org/10.1016/j.bios.2018.01.023
Salouti, M., & Ahangari, A. (2014). Nanoparticle based drug
delivery systems for treatment of infectious diseases (Vol. 552):
InTech. http:// doi.org/10.5772/58423
Sattarahmady, N., Kayani, Z., & Heli, H. (2015). Highly simple and
visual colorimetric detection of Brucella melitensis genomic DNA
in clinical samples based on gold nanoparticles. Journal of the
Iranian Chemical Society, 12 (9), 1569-1576.
https://doi.org/10.1007/s13738-015-0629-5
Shahbazi, R., Salouti, M., Amini, B., Jalilvand, A., Naderlou, E.,
Amini, A., & Shams, A. (2018). Highly selective and sensitive detection
of Staphylococcus aureus with gold nanoparticle-based core-shell
nano biosensor. Molecular and cellular probes, 41 , 8-13.
https://doi.org/10.1016/j.mcp.2018.07.004
Shams, A., Rahimian Zarif, B., Salouti, M., Shapouri, R., & Mirzaii, S.
(2019). Designing an immunosensor for detection of Brucella
abortus based on coloured silica nanoparticles. Artificial Cells,
Nanomedicine, and Biotechnology, 47 (1), 2562-2568.
https://doi.org/10.1080/21691401.2019.1626403
Singh, A., Poshtiban, S., & Evoy, S. (2013). Recent advances in
bacteriophage based biosensors for food-borne pathogen detection.Sensors, 13 (2), 1763-1786.
https://doi.org/10.3390/s130201763
Sun, Q., Zhao, G., & Dou, W. (2016). An optical and rapid sandwich
immunoassay method for detection of Salmonella pullorum and
Salmonella gallinarum based on immune blue silica nanoparticles
and magnetic nanoparticles. Sensors and Actuators B: Chemical,
226 , 69-75. https://doi.org/10.1016/j.snb.2015.11.117
Taheri, H., Amini, B., Kamali, M., Asadi, M., & Naderlou, E. (2020).
Functionalization of anti-Brucella antibody based on SNP and MNP
nanoparticles for visual and spectrophotometric detection ofBrucella. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 229 , 117891.
https://doi.org/10.1016/j.saa.2019.117891
Tallury, P., Malhotra, A., Byrne, L. M., & Santra, S. (2010).
Nanobioimaging and sensing of infectious diseases. Advanced drug
delivery reviews, 62 (4-5), 424-437.
https://doi.org/10.1016/j.addr.2009.11.014
Urmann, K., Modrejewski, J., Scheper, T., & Walter, J.-G. (2016).
Aptamer-modified nanomaterials: principles and applications.BioNanoMaterials, 18 (1-2).
https://doi.org/10.1515/bnm-2016-0012
Varshney, M., Li, Y., Srinivasan, B., & Tung, S. (2007). A label-free,
microfluidics and interdigitated array microelectrode-based impedance
biosensor in combination with nanoparticles immunoseparation for
detection of Escherichia coli O157: H7 in food samples.Sensors and Actuators B: Chemical, 128 (1),
99-107.https://doi.org/10.1016/j.snb.2007.03.045
Table 1. Limit of detection of several methods for
investigation of Brucella .