4. References
Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus.Biosensors and Bioelectronics, 68 , 149-155. https://doi.org/10.1016/j.bios.2014.12.040
Ahangari, A., Salouti, M., & Saghatchi, F. (2016). Gentamicin-gold nanoparticles conjugate: a contrast agent for X-ray imaging of infectious foci due to Staphylococcus aureus. IET nanobiotechnology, 10 (4), 190-194. https://doi.org/10.1049/iet-nbt.2015.0034
Alves, C. J., Figueiredo, S. M. d., Azevedo, S. S. d., Clementino, I. J., Keid, L. B., Vasconcellos, S. A., Batista, C. D. S. A., Rocha, V. C. M. & Higino, S. S. (2010). Detection of Brucella ovis in ovine from Paraíba State, in the Northeast region of Brazil. Brazilian Journal of Microbiology, 41 (2), 365-367. https://doi.org/10.1590/S1517-83822010000200016
Amini, B., Kamali, M., Salouti, M., & Yaghmaei, P. (2018). Spectrophotometric, colorimetric and visually detection ofPseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199 , 421-429. https://doi.org/10.1016/j.saa.2018.03.056
Bayramoglu, G., Ozalp, V. C., Oztekin, M., & Arica, M. Y. (2019). Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta, 200 , 263-271. https://doi.org/10.1016/j.talanta.2019.03.048
Eltzov, E., & Marks, R. S. (2016). Miniaturized flow stacked immunoassay for detecting Escherichia coli in a single step.Analytical chemistry, 88 (12), 6441-6449.https://doi.org/10.1021/acs.analchem.6b01034
Emameian, A., Ahangari, A., Salouti, M., & Amirmozafari, N. (2020). Enhanced effect of Amikacin in conjugation with gold nanopartcles as a carrier to kill Pseudomonas aeruginosa . Nanochemistry Research, 5 (2), 179-184.https://doi.org/10.22036/NCR.2020.02.008
Gattani, A., Singh, S. V., Agrawal, A., Khan, M. H., & Singh, P. (2019). Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Analytical biochemistry, 579 , 25-34. https://doi.org/10.1016/j.ab.2019.05.014
Le, T. N., Tran, T. D., & Kim, M. I. (2020). A Convenient Colorimetric Bacteria Detection Method Utilizing Chitosan-Coated Magnetic Nanoparticles. Nanomaterials, 10 (1), 92.https://doi.org/10.3390/nano10010092
Li, L., Yin, D., Xu, K., Liu, Y., Song, D., Wang, J., Zhao, C., Song, X. & Li, J. (2017). A sandwich immunoassay for brucellosis diagnosis based on immune magnetic beads and quantum dots. Journal of pharmaceutical and biomedical analysis, 141 , 79-86. https://doi.org/10.1016/j.jpba.2017.03.002
Li, S., Liu, Y., Wang, Y., Wang, M., Liu, C., & Wang, Y. (2019). Rapid detection of Brucella spp. and elimination of carryover using multiple cross displacement amplification coupled with nanoparticles-based lateral flow biosensor. Frontiers in cellular and infection microbiology, 9 , 78. https://doi.org/10.3389/fcimb.2019.00078
Mehrotra, P. (2016). Biosensors and their applications–A review.Journal of oral biology and craniofacial research, 6 (2), 153-159. https://doi.org/10.1016/j.jobcr.2015.12.002
Narmani, A., Kamali, M., Amini, B., Kooshki, H., Amini, A., & Hasani, L. (2018). Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles. Process Biochemistry, 65 , 46-54. https://doi.org/10.1016/j.procbio.2017.10.009
Pal, D., Boby, N., Kumar, S., Kaur, G., Ali, S. A., Reboud, J., Shrivastava, S., Gupta, P. K., Cooper, J. M. & Chaudhuri, P. (2017). Visual detection of Brucella in bovine biological samples using DNA-activated gold nanoparticles. Plos one, 12 (7), e0180919. https://doi.org/10.1371/journal.pone.0180919
Pereira, C. R., Cotrim de Almeida, J. V. F., Cardoso de Oliveira, I. R., Faria de Oliveira, L., Pereira, L. J., Zangerônimo, M. G., Large, A. P& Dorneles, E. M. S. (2020). Occupational exposure to Brucellaspp.: A systematic review and meta-analysis. PLoS neglected tropical diseases, 14 (5), e0008164. https://doi.org/10.1371/journal.pntd.0008164
Rubab, M., Shahbaz, H. M., Olaimat, A. N., & Oh, D.-H. (2018). Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics, 105 , 49-57. https://doi.org/10.1016/j.bios.2018.01.023
Salouti, M., & Ahangari, A. (2014). Nanoparticle based drug delivery systems for treatment of infectious diseases (Vol. 552): InTech. http:// doi.org/10.5772/58423
Sattarahmady, N., Kayani, Z., & Heli, H. (2015). Highly simple and visual colorimetric detection of Brucella melitensis genomic DNA in clinical samples based on gold nanoparticles. Journal of the Iranian Chemical Society, 12 (9), 1569-1576. https://doi.org/10.1007/s13738-015-0629-5
Shahbazi, R., Salouti, M., Amini, B., Jalilvand, A., Naderlou, E., Amini, A., & Shams, A. (2018). Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Molecular and cellular probes, 41 , 8-13. https://doi.org/10.1016/j.mcp.2018.07.004
Shams, A., Rahimian Zarif, B., Salouti, M., Shapouri, R., & Mirzaii, S. (2019). Designing an immunosensor for detection of Brucella abortus based on coloured silica nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47 (1), 2562-2568. https://doi.org/10.1080/21691401.2019.1626403
Singh, A., Poshtiban, S., & Evoy, S. (2013). Recent advances in bacteriophage based biosensors for food-borne pathogen detection.Sensors, 13 (2), 1763-1786. https://doi.org/10.3390/s130201763
Sun, Q., Zhao, G., & Dou, W. (2016). An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sensors and Actuators B: Chemical, 226 , 69-75. https://doi.org/10.1016/j.snb.2015.11.117
Taheri, H., Amini, B., Kamali, M., Asadi, M., & Naderlou, E. (2020). Functionalization of anti-Brucella antibody based on SNP and MNP nanoparticles for visual and spectrophotometric detection ofBrucella. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229 , 117891. https://doi.org/10.1016/j.saa.2019.117891
Tallury, P., Malhotra, A., Byrne, L. M., & Santra, S. (2010). Nanobioimaging and sensing of infectious diseases. Advanced drug delivery reviews, 62 (4-5), 424-437. https://doi.org/10.1016/j.addr.2009.11.014
Urmann, K., Modrejewski, J., Scheper, T., & Walter, J.-G. (2016). Aptamer-modified nanomaterials: principles and applications.BioNanoMaterials, 18 (1-2). https://doi.org/10.1515/bnm-2016-0012
Varshney, M., Li, Y., Srinivasan, B., & Tung, S. (2007). A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157: H7 in food samples.Sensors and Actuators B: Chemical, 128 (1), 99-107.https://doi.org/10.1016/j.snb.2007.03.045
Table 1. Limit of detection of several methods for investigation of Brucella .