References:
1. Wang H, Qian J, Xia X, Ye B. Long non-coding RNA OIP5-AS1 serves as an oncogene in laryngeal squamous cell carcinoma by regulating miR-204-5p/ZEB1 axis. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:2177-2184. doi:10.1007/s00210-020-01811-7.
2. Zhu GJ, Song PP, Zhou H, Shen XH, Wang JG et al. Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, β-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol Lett. 2018;15:3472-3481. doi: 10.3892/ol.2018.7751.
3. Kariche N, Moulaï N, Sellam LS, Benyahia S, Ouahioune W et al. Expression Analysis of the Mediators of Epithelial to Mesenchymal Transition and Early Risk Assessment of Therapeutic Failure in Laryngeal Carcinoma. J Oncol. 2019;6;2019:5649846.  doi: 10.1155/2019/5649846.
4. Marioni G, Nicolè L, Cappellesso R, Marchese-Ragona R, Fasanaro E et al.β-Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma. Int J Biol Markers. 2019;;34:33-40.  doi: 10.1177/1724600818813621.
5. Nitta T, Mitsuhashi T, Hatanaka Y, Miyamoto M, Oba K, et al. Prognostic significance of epithelial-mesenchymal transition-related markers in extrahepatic cholangiocarcinoma: comprehensive immunohistochemical study using a tissue microarray. Br J Cancer. 2014;111:1363-1372.  .  doi: 10.1038/bjc.2014.415.
6. Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother. 2019;110:400-408. doi: 10.1016/j.biopha.2018.11.112.
7. Greco A, De Virgilio A,  Rizzo MI, Pandolfi F, Rosati D et al. The prognostic role of E-cadherin and β-catenin overexpression in laryngeal squamous cell carcinoma. Laryngoscope. 2016;126:E148-55. . doi: 10.1002/lary.25736.
8. DI Domenico M, Pierantoni GM, Feola A, Esposito F, Laino L et al.Prognostic significance of N-Cadherin expression in oral squamous cell carcinoma. Anticancer Res. 2011;31:4211-4218.
9. Ma Y, Zheng X, Zhou J, Zhang Y, Chen K. ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition. Int J Clin Exp Pathol 2015;8:11258-11267.
10. Goulioumis AK, Varakis J. Differential. beta catenin expression between glottic and supraglottic laryngeal carcinoma. Eur Arch Otorhinolaryngol. 2010;267:1573–1578. doi: 10.1007/s00405-010-1249-4.
11. Fu D, Huang Y, Gao M. Hsa_circ_0057481 promotes laryngeal cancer proliferation and migration by modulating the miR-200c/ZEB1 axis. Int J Clin Exp Pathol. 2019;12:4066-4076
12. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018; 12: 361–373. doi:10.1007/s11684-018-0656-6.
13. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168: 670–691. doi: 10.1016/j.cell.2016.11.037.
14. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454. doi: 10.1038/nrc822.
15. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell . 2008;133: 704–715. doi:10.1016/j.cell.2008.03.027.
16. Psyrri A, Kotoula V, Fountzilas E, Alexopoulou Z, Bobos M et al. Prognostic significance of the Wnt pathway in squamous cell laryngeal cancer. Oral Oncology. 2014;50:298–305. doi: 10.1016/j.oraloncology.2014.01.005.
17. Capellesso R, Marioni G, Cresscenzi M, Giacomelli L, Guzzardo Vet al. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathol.2015;67:491-500. doi: 10.1111/his.12668.
18. Yu W, Yang L, Li T, Zhang Y. Cadherin signaling in cancer: Its functions and role as a therapeutic target. Front Oncol. 2019;9:989. doi: 10.3389/fonc.2019.00989.
19. Wu HT, Zhong HT, Li GW, Shen JX, Ye QQ, et al. Oncogenic functions of the EMT-related transcrioption factor ZEB1 in breast cancer. J Transl Med. 2020;18:51.  doi: 10.1186/s12967-020-02240-z.
20. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F et al.Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015; 525: 256–260. doi: 10.1038/nature14897.
21. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, et al.Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527: 525–530. doi: 10.1038/nature16064.
22. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 2017; 547: E7–E8. doi: 10.1038/nature22963.
23. Wan Y, Liu H, Zhang M, Huang Z, Zhou H et al. Prognostic value of epithelial-mesenchymal transition-inducing transcription factors in head and neck squamous cell carcinoma: A meta-analysis. Head Neck. 2020;42:1067-1076. doi: 10.1002/hed.26104.
24. Wendt MK, Allington TM, Schiemann WP. Mechanisms of Epithelial-Mesenchymal Transition by TGF-β. Future Oncol. 2009;5:1145–1168. doi:10.2217/fon.09.90.
25. Benzoubir N, Mussini C, Lejamtel C, Santos AD, Guillaume C et al. Gamma-smooth muscle actin expression is associated with epithelial-mesenchymal transition and stem-like properties in hepatocellular carcinoma. PLoS One 2015;10:e130559. doi: 10.1371/journal.pone.0130559.
26. Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JMet al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 2012;33:97. doi: 10.1038/onc.2012.536.
27. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 2013;4:66–83.  doi: 10.7150/jca.5112.
Table Legends:
Table 1: Baseline characteristics of the 100 patients with LSCC
Table 2: Relationship between LNM and pathological tumour stage with EMT markers and histopathological findings (Chi-square analysis)
Table 3: Multivariate analysis of Zeb1 in tumor and Zeb1 in stromal expression predicting OS
Figure Legends:
Figure 1: (A) Loss of membranous expression of E-cadherin (x200), (B Cytoplasmic and membranous staining of beta-catenin (x200), (C) Cytoplasmic expression of N-cadherin (x400), (D) Smooth muscle actin expression in stroma (x200), (E) Zeb-1 staining in tumor and stroma (x200), (F) Zeb-1staining in stroma (x100)
Figure 2: Kaplan Meier curves of OS stratified according to pathological stage, Lymph node status, Zeb1 expression in tumour and Zeb1 expression in stroma
Table I